
From Mirai to Gorilla: Deep Dive into a Long-Lasting DDoS-for-Hire Botnet

Maarten Weyns
Delft University of Technology

m.b.m.weyns@tudelft.nl

Dario Ferrero
Delft University of Technology

d.ferrero@tudelft.nl

Stefan Op de Beek
Delft University of Technology

s.opdebeek@tudelft.nl

Daniel Wagner
MPI-INF / DE-CIX

daniel.wagner@de-cix.net

Georgios Smaragdakis
Delft University of Technology

g.smaragdakis@tudelft.nl

Harm Griffioen
Delft University of Technology

h.j.griffioen@tudelft.nl

Abstract
In 2016, the Mirai botnet swept the Internet, ushering in a

new era of DDoS attacks. Over the following decade, spinoffs
of the Mirai botnet transitioned from simple attack tools into
commercial platforms, offering Distributed Denial of Ser-
vice (DDoS) attacks for Hire. Such platforms enable users to
launch large-scale DDoS attacks with minimal technical ex-
pertise. One notable example is the Gorilla Botnet, which was
operational between Fall 2024 and Summer 2025, an unusu-
ally long lifetime compared to similar Mirai-based Botnets.

In this paper, we reverse-engineer the Mirai-based Go-
rilla Botnet and aim to understand its design, engineering
decisions, and marketing strategies to enhance its resilience
and success. We investigate its operational characteristics,
including the types of attacks it supports, its underlying in-
frastructure, and the behavior of its bots. We find that Gorilla’s
longevity stems from targeted improvements, including two
software development phases and learning from previous re-
leases, setting it apart from typical Mirai-based botnets. In
the process, we analyze the firepower and attack vectors of
the Gorilla botnet and characterize the business types of its
targets.

1 Introduction

Botnets remain a cornerstone of large-scale cyber threats [15],
leveraging distributed networks of compromised devices to
launch attacks ranging from Distributed Denial of Service
(DDoS) to credential theft and spam campaigns. Early botnets
such as Mirai [5], infamous for exploiting weak credentials on
Internet of Things (IoT) devices, demonstrated the potential of
commodity malware when its source code was publicly leaked
in 2016 [21]. In the years since, adversaries have evolved their
tactics and tooling, giving rise to a new generation of botnets
that combine enhanced evasion techniques with DDoS-for-
Hire, a business model in which attackers rent out access to
botnet-driven DDoS capabilities, transforming Mirai-based
tools to full-service attack platforms.

However, DDoS-for-Hire platforms based on Mirai, e.g.,
Bashlite and Tsunami [59] struggle to maintain stability, reli-
ability, and a long-lasting presence with the average lifespan
range from weeks to a couple of months [8]. A noticeable
exception is the Gorilla Botnet, whose operation was first re-
ported in the fall of 2024 and was taken down by law enforce-
ment through coordinated efforts in the Summer of 2025. The
“Gorilla” botnet (often referred to as GorillaBot) is a Mirai-
based DDoS-for-Hire platform that was flagged by national
CERTs following a DNS amplification campaign against crit-
ical infrastructure [45] in October 2024. Before that, Go-
rilla has already conducted over 300,000 attacks across more
than 100 countries, targeting a wide range of services in-
cluding gaming platforms, financial institutions, and media
outlets [48].

The Gorilla Botnet offers a range of services with varying
price levels, catering to different types of attack demands and
budgets. The Gorilla Botnet also employs marketing strate-
gies on social media and other channels to demonstrate the
capabilities of its platform, highlighting high-profile attacks
to showcase its efficacy. The botnet is provided as a DDoS-
for-Hire service, which enables customers to launch attacks
without needing to manage their own botnet infrastructure
and without revealing their real identity. While attacks are
typically short-lived, lasting only a few minutes, they can be
highly disruptive, with some campaigns succeeding in ham-
pering high-profile organizations. For example, the Swedish
Public Broadcasting service SVT [11].

In this paper, we reverse-engineer the Gorilla Botnet to
understand the design, engineering decisions, and marketing
strategies employed to enhance its resilience and success,
thereby making it stand out among other Mirai-based botnets.
We investigate the Gorilla botnet to understand why it was so
successful. We leverage a dedicated Command-and-Control
(C2) “milker”, where we emulate a bot and are effectively
“part of the botnet” from an attacker’s point of view. We com-
bine attack data obtained from our milker with network tele-
scope data, netflow records, and Gorilla malware binaries to
provide the first in-depth characterization of the Gorilla Bot-

net architecture, the modern DDoS-for-Hire economy, and
DDoS attack economics. Our contributions are multifold:

• We present a systematic dissection of the Gorilla infec-
tion lifecycle, its infrastructure, its encrypted C2 pro-
tocols, and functionalities in Section 4. We notice that
despite inheriting heavily from the original Mirai code,
Gorilla underwent two major software releases, learning
from previous experiences to make it more resilient.

• We perform a detailed study of the target profiles and
the attack vectors that were weaponized for the attacks
in Section 5, and show trends in the attack traffic and
high-profile targets that are successfully attacked.

• We empirically evaluate Gorilla’s firepower and attack
efficacy in Section 6, showing that the network relies on
centralized infrastructure next to the botnet for attacks.

2 Background

Denial of Service for Hire: Denial of Service (DoS) attacks
aim to render a service unavailable to legitimate users. This is
typically achieved by resource exhaustion, where the attacker
consumes the target’s resources (such as bandwidth, memory,
or processing power) to the point that it can no longer respond
to legitimate requests. In a Distributed Denial of Service
(DDoS) attack, multiple compromised systems (often part of
a botnet) are used to flood the target with traffic.

To launch a DDoS attack, an attacker typically needs to
control a large number of compromised devices, and direct
them to send a massive amount of traffic to the target, over-
whelming its resources and causing service disruption. In
recent years, the emergence of Denial of Service for Hire has
made it easier for even non-technical individuals to launch
DDoS attacks [62]. This model allows attackers to rent access
to botnets or DDoS attack tools, allowing users to launch
attacks with minimal technical knowledge.
Mirai Botnet: The Mirai botnet is one of the most notorious
examples of a DDoS attack tool that has been used to launch
large-scale attacks. Mirai scans the internet for devices that
are using default usernames and passwords, which are com-
mon in many IoT devices. Once it finds a vulnerable device,
it infects it and adds it to the botnet. The infected devices
can then be commanded to launch coordinated attacks against
specified targets, overwhelming them with traffic. The source
code of Mirai was released in 2016, leading to a proliferation
of similar botnets and DDoS attack tools [5]. The ease with
which Mirai can be deployed has made it a popular choice for
attackers, contributing to the rise of DDoS-for-Hire offerings.
Many other botnets (such as Gorilla) have since been devel-
oped using similar techniques, lowering the barrier to entry
for launching DDoS attacks even further.

The common setup of a Mirai-based botnet is shown in
Figure 1. The botnet consists of a command and control (C2)

A1
Order attack

A3
DDoS Command

A2
Forward

B1
Search host

B2
Report host

A4
Spoofed traffic

A5
Attack traffic

A3
DDoS Command

Original to Mirai

I1
Scan & exploit

New in Gorilla

Figure 1: Common setup of a Mirai-based DDoS platform.

server that issues commands to the infected devices, which are
referred to as bots. The bots, once infected, continuously scan
for new vulnerable devices to infect, expanding the botnet.
If a device is found, an ‘infector’ is used to exploit it and
download the payload from a ‘hosting server’.

3 Methodology

The goal of this work is threefold: (1) to understand the Go-
rilla platform and its DDoS-for-Hire (stresser) business model,
(2) to follow and characterize the attacks it performs, and (3)
to map the ecosystem of the platform. To achieve this, we
employ a combination of reverse-engineering, network traffic
analysis, and data collection techniques.

In this section, we outline the methodologies used in our
research, detailing how we collect and analyze data from the
Gorilla platform. We also discuss the tools and techniques
employed to reverse-engineer the malware, monitor its C2
communications, and analyze network traffic. A high-level
summary is presented in Table 1.

Dataset Method Start End Description Section

Malware samples Reverse engineering 2024-09-05 2025-07-05 Inner workings of the botnet. 4, 5, 6
Attack commands C2 milker 2024-10-07 2025-06-28 Continuous polling of C2 commands. 4, 5, 6
Scan traffic Network telescope 2024-09-05 2025-07-14 Scanning traffic towards “dark” IP space. 4
Major IXPs + ISPs Netflow analysis 2025-03-13 2025-06-04 Flow records for volumetric analysis. 5, 6
Telegram groups Chat monitoring 2025-04-19 2025-07-14 Monitoring of the Gorilla Telegram group. 4
C2 panel Web scraping 2025-04-22 2025-06-19 Regular scraping of the control panel. 4, 6
DStat dashboards Web scraping 2025-04-29 2025-06-28 Scrapes every 10 seconds for attack size. 6
Attack traffic Self-Attacks 2025-06-20 2025-06-26 12 attacks on our own infrastructure. 6

Table 1: Summary of Datasets, Methodologies, Extracted Information, and which Section they are used.

3.1 Reverse Engineering
We begin by performing static analysis of malware samples
associated with the Gorilla platform. This analysis enables us
to enumerate the implemented attack vectors, observe how
the bots connect to and communicate with the Command-and-
Control (C2) server, and identify additional functionalities.

During this process, we focus on Gorilla binaries that are
compiled for the ARMv7 architecture. Opposed to the other
binary types (e.g., ARM, x86), these binaries are not stripped.
This implies that, for example, function names and system
calls are visible, which allows us to analyze the code with-
out the complexity that arises from stripped binaries. Not
stripping the ARMv7 binaries is often observed in botnet
repositories based on Mirai source code [12, 57], which is
likely due to a particular bug in the cross-compiler that makes
it unable to compile a stripped binary. For this reason, many
Mirai forks include a special case in the Makefile to build an
ARMv7 sample without stripping it. Additional information
on the reverse engineering is listed in Appendix A.

3.1.1 Obtaining Samples

We analyze Gorilla botnet samples obtained from various
sources. We start by identifying samples in MalwareBazaar,
a repository of malware samples [1], with the first sample
identified on September 5th, 2024. We have classified the
samples as part of the Gorilla botnet based on the presence of
the string “gorilla botnet is on the device ur not
a cat go away” in the binary, and the C2 server that is con-
tacted by the malware, which are unique identifiers for Gorilla
samples. From this initial set, we create a Yara rule, a “filter”
that searches for such unique identifiers in malware samples.
We deployed this Yara rule on YARAify [2] (Appendix A.5)
to be notified of new Gorilla samples. This allows us to con-
tinuously monitor new samples as they become available.

Next to proactively identifying new samples, we also per-
form retro-hunting, a process to search through a database of
historical malware samples on existing repositories such as

Hybrid Analysis [29] and VirusTotal [61]. This allows us to
expand our dataset and analyze the evolution of the Gorilla
botnet over time. The process of identifying malware samples
based on a Yara rule relies on these samples being present
in the repositories. However, some samples may simply not
have been uploaded to these repositories. To address this, we
also download samples directly from the botnet. We start this
automated download process on April 18, 2025, and continue
to download samples hourly to ensure we have the latest ver-
sions of the Gorilla botnet malware. This is possible because
we can identify the malware download link through our net-
work telescope, explained in Section 3.3. Overall, we obtain
134 unique samples.

3.2 C2 Milking
To monitor the Gorilla botnet’s activities, we connect and com-
municate directly to its Command-and-Control (C2) server.
The information obtained from reverse-engineering the Go-
rilla samples is used to implement a “C2 milker”, which is a
tool that emulates a bot and “joins the network”. This tool is
designed to extract commands sent by the C2 server, allowing
us to monitor the botnet’s activities and understand its oper-
ational patterns. Throughout our experiments, the C2 server
was updated multiple times, shown in Table 2.

We implement the C2 milker in Python, using the exact
connection protocols and encryption methods observed in the
samples. This ensures that we can communicate with the C2
server in a way that does not involve any attack traffic from us,
thus avoiding any potential legal issues or ethical concerns.

We are interested in how the botnet operates, and how
bots are chosen to execute attacks. To understand whether
the botmasters use a specific selection mechanism of bots
for attacks (e.g., based on geolocation), we run multiple C2
milkers with different IP addresses and geolocations through
the use of proxies. We run a total of five C2 milkers distributed
across different continents. We find that the botmasters do not
use a specific selection mechanism but indiscriminately send
commands to all active bots.

Ref Start Date IP Address DL AS

S1 2024-09-06 45.202.35.64 ↭ AS6079
S2 2024-10-04 154.216.19.139 – AS17561
S3 2024-10-14 87.120.84.248 – AS215439
S4 2024-10-20 193.143.1.70 ↭ AS198953
S5 2024-12-01 94.156.227.234 – AS214943
S6 2025-02-25 193.143.1.72 ↭ AS198953
S7 2025-02-26 176.65.134.15 ↭ AS214717
S8 2025-06-06 196.251.84.41 ↭ AS401120
S9 2025-06-10 86.54.42.125 ↭ AS42624

Table 2: Overview of C2 servers. New C2s replace the old.
Ref refers to the labels on Figure 2. DL indicates that the IP
also hosted the malware samples.

3.2.1 Aggregating C2 Commands to Attacks

One single “attack” event can consist of multiple commands
from the C2 server: successive commands can be sent for a
longer attack, and duplicated commands can occur to instruct
higher-power attacks (see Section 4.2.4). To turn a log of C2
commands into distinct attacks, we use a simple grouping
algorithm based on the configuration of the command. For ev-
ery unique (duration, vector, target, options) tuple, we group
successive commands within a 30 second time window. In
other words, if a new command is issued with the exact same
configuration as a previous command expired less than 30
seconds ago, we count both as part of the same attack event.
We do this since, from the victim’s perspective, it looks like
one continuous attack. We empirically verify that continuous
attacks typically occur within this 30-second window.

3.3 Network Telescope
The Gorilla botnet code is largely based on the Mirai botnet,
which is known to indiscriminately scan the Internet for vul-
nerable devices. To capture the scanning traffic of the Gorilla
botnet, we utilize a network telescope consisting of 80,000 IP
addresses that are not assigned to any legitimate services. This
telescope is designed to passively observe incoming traffic,
allowing us to identify scanning activities.

A passive telescope does not actively send traffic. As such,
it does not allow us to observe any application-layer payloads
after the initial TCP SYN scanning packet from the botnet. To
observe in more detail the specific exploits that are used by
the Gorilla botnet, we also deploy a reactive telescope [26],
which responds to the scanning traffic with a TCP SYN-ACK
packet completing the TCP handshake. This allows us to
capture the subsequent traffic from the botnet, including any
exploit attempts. Our reactive telescope consists of 2,000 IP
addresses and interacts on the entire TCP port range.

To identify which hosts are part of the Gorilla platform,
we determine which hosts aim to download the Gorilla mal-

ware binary from the C2 server as part of their exploit. After
identifying the Gorilla scanning infrastructure (as shown in
Section 4.2.3), we can track the exploit attempts of Gorilla
over time. The Gorilla platform leverages multiple exploits,
including an ADB exploit, which is used to infect Android
devices. The ADB exploit is particularly interesting because
it contains a wget command that downloads the Gorilla client
from the C2 server. By observing these commands, we can
identify the newest download server and get the most recent
botnet sample. This provides us with a continuous view of
Gorilla’s C2 infrastructure. An example of the ADB exploit
is shown in Appendix A.6.

3.4 Netflow Analysis
In addition to the network telescope, we analyze netflow
records from IXPs and ISPs to characterize the Gorilla bot-
net’s attack activities. While netflow records can be used to
estimate the attack power of the botnet, they are not com-
pletely accurate due to traffic sampling and aggregation. Ad-
ditionally, providers can only observe the traffic passing their
own network. However, netflow data still provides valuable
information about the botnet’s attack patterns and the volume
of traffic generated. To ensure we obtain the closest possible
estimation on the attack volume, we analyze netflow records
on attacks against victims that are located within the netflow
provider’s network. This ensures that all attack flows have
passed through the network. Because of this, we refrain from
making claims about the botnet’s full potential through this
dataset, and only use it for validation.

3.5 Miscellaneous Data Sources
In addition to the primary methodologies outlined above,
we also leverage various other data sources to enrich our
understanding of the Gorilla botnet. These sources include:
Telegram Channels: We monitor Telegram channels to gain
insights into the botnet’s operations and marketing.
Web Scraping: We scrape the Gorilla botnet’s control panel
to collect information about the botnet’s services and pricing,
and the self-reported attack capabilities.
DDoS Power Dashboard: Public DDoS power dashboards,
such as dstat.love [14] and vedbex [60], are used by users
to test attack capabilities against a public endpoint. We scrape
these DStat dashboards every 10 seconds and correlate the
observed traffic to Gorilla botnet attack commands, allowing
us to estimate the attack power of Gorilla.
Self-Attacks: We perform self-attacks against our own infras-
tructure to test the attack capabilities and botnet footprint of
Gorilla.
Victim Testimony: We talked to victims of the Gorilla botnet
to gather qualitative insights into their experiences with the
botnet, including the impact of the attacks on their services
and any mitigation strategies they employed.

2000

4000

6000

8000

Platform downPhase 1 Phase 2

2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 2025-04 2025-05 2025-06 2025-07

Start of
measurements

Introduction of
rate-limits

Major revision
of the platform

Supposed
takedown

Removal of
weekly plans

High-profile attacks

Pricing change

C2 server change

Notable bot update

N
um

be
r o

f
at

ta
ck

s
pe

r d
ay

Figure 2: General timeline of activity within the Gorilla Platform.

4 The Gorilla Platform

This section provides an in-depth analysis of the Gorilla Plat-
form by dissecting its technical and organizational aspects.
Figure 2 provides a timeline of activity of the platform.

4.1 Gorilla Marketplace
The Gorilla platform, marketed as the “Gorilla Stresser” was
available online via gorillastress.st. Here, users can buy
subscriptions and start DDoS attacks. Additionally, this web-
site is used by the maintainers to provide statistics: attacks
today, running attacks, total amount of users, users currently
online, and the load per network cluster. We find that the re-
porting is accurate by comparing the data from our C2 milkers
to these statistics. This shows that the actors do not exaggerate
their statistics for marketing purposes. In addition, the oper-
ators expose an “uptime monitor” where the status of every
component of the platform can be checked. From this uptime
monitor, we learn that the Gorilla platform not only relies on a
botnet, but also uses centralized infrastructure to complement
their DDoS attacks. This centralized infrastructure is covered
in more detail in Section 6.

The control panel shows 5,355 registered users. Since e-
mail addresses are never confirmed, and an account can exist
without a subscription, this statistic does not represent the
number of paying customers. Through the control panel, users
can contact the botmasters to ask for support. Additionally,

a Telegram channel is available for updates. While the chan-
nel is often removed, we record @catmeowatyou to have a
peak of 525 subscribers. The Telegram channel is mainly
used to share updates for the network, such as new methods
or improved performance. Regular promotion campaigns are
also published, e.g., temporary discounts. The stresser ser-
vice is promoted to keep itself known among potential users.
To show off attacks and their potential impact, a YouTube
channel demonstrates how to perform an attack. The chan-
nel promotes mainly gaming-related attacks, showing online
sessions stuttering and crashing after launching an attack
through the service. Furthermore, many DStat sites include
advertisement banners for stresser services, including Gorilla.
Screenshots of the marketing materials are included in Ap-
pendix A.8. On May 9th, 2025, the network administrators
posted a message on Telegram expressing their need for new
advertisers, preferably on YouTube. We did not observe an
increase in attack traffic after this request.

4.2 Evolution of the Gorilla Client
4.2.1 C2 Connection

The Gorilla botnet client includes a method called lolxd,
used to connect to the Gorilla C2 server. Initial versions of the
client included four IPs in the binary, encrypted with a cipher
based on the Tiny Encryption Algorithm [63]. This encryp-
tion complicated the extraction of C2 IPs from the malware

samples. Clients would decrypt and cycle through these IP
addresses, until a successful connection was established with
one of them over TCP on port 38242, which is hardcoded in
the binary. Throughout the entire campaign, the port used for
the C2 server did not change.

On October 20th, 2024 (“B2” in Figure 2), the client code
changed and only a single IP address was included in the
code, still encrypted with the same cipher. On November 20th
(“B3”), the IP address changed in the binary to plaintext.

4.2.2 C2 Communication

The original Mirai botnet used a simple communication proto-
col with its C2 servers, relying on a fixed set of commands and
a straightforward encoding scheme [5]. This communication
scheme has been fingerprinted on a network-level, allowing
defenders to proactively identify and block Mirai traffic [33].
The Gorilla botnet builds upon this foundation but, starting
October 1st, 2024, introduces obfuscation to its C2 traffic.

On October 1st of 2024 (“B1” in Figure 2), the client intro-
duced a SHA-256 hash and a byte-wise Caesar cipher for the
C2 communication. The Caesar cipher is used on the original
Mirai packet with an offset of 3, after which a SHA-256 hash
is calculated and prepended to the message: [sha256, com-
mand]. A visual representation of this communication can
be found in Appendix A.3. The goal of the SHA-256 hash is
unclear. While it is used by the bots as a checksum to identify
that the command is valid, it provides little extra protection
against a hostile takeover, as anyone who seizes control of the
C2 could craft these commands.

In addition, to make it more difficult to eavesdrop on the
Gorilla C2 server, the botnet introduced a client-server authen-
tication mechanism on the same date. To authenticate, the bot
sends 01 as a ping, after which it receives a four-byte chal-
lenge. Using a hardcoded key, it decrypts another hardcoded
TEA-encrypted buffer. Then, it computes the SHA-256 of the
[challenge, buffer] pair. This hash is sent back as a response.
If correct, the client starts to receive commands from the C2
server. An overview of the authentication handshake can be
found in Appendix A.4.

While the actual attack command in the first phase was ob-
fuscated, the underlying structure remained similar to Mirai,
making it possible to write a simple detection rule. Starting
with the second phase, indicated by “B5” in Figure 2, actual
encryption is used to prevent detection and to obfuscate the
meaning of the commands even further. The communication
protocol was overhauled to be more complex, incorporating
a custom Feistel cipher [36] to encrypt the commands. The
full payload contains decryption parameters, SHA-256, and
decryption keys, making it much harder to detect and analyze
the traffic without reverse-engineering the binary. The com-
mand structure changed to: [decryption parameters, sha256,
key, command], which decrypts to a regular Mirai command.
This change significantly increases the complexity of the bot-

Figure 3: Scanning activity on the 10 most scanned ports.

net’s communication, disallowing anyone from identifying
the actual command without extra information on the specific
encryption protocol. However, if the protocol is known, only
a single C2 message is needed to decrypt the command.

On February 28, 2024 (“B6” in Figure 2), the client intro-
duced a new handle_utility_command method. This method
allows the C2 server to kill all running attacks or update the
client. When a client update is desired, the C2 server can
specify the download URL of the new binary. During our
measurements, we have not observed this method being used.

4.2.3 Scanning

In the first phase, the individual bots scan the Internet for
vulnerable Telnet devices, propagating as an Internet worm
in the same way as Mirai [5, 58]. While this spreads the
botnet exponentially, it also makes the bots more detectable
as the scanning will be noticed by defenders. Additionally, the
operators relied on centralized servers to spread the malware.

In the second phase of the Gorilla platform, shown in Fig-
ure 2, the scanning routine in the botnet clients was com-
pletely removed in favor of this centralized infrastructure.
Using our telescope datasets introduced in Section 3, we are
able to identify hosts aiming to exploit devices and down-
load samples of Gorilla malware. As the reactive part of our
telescope collects Application-layer information on many pro-
tocols, we can extract exploit attempts where the installed
malware binary is part of Gorilla. From this analysis, we
identify 29 IPs that are used to spread Gorilla infections.

Figure 3 shows the top 10 ports targeted by the scanning
hosts that are part of the Gorilla platform, and the amount of
hosts participating in the scans on a daily basis. There is a
clear cut between the first and second phase of the Gorilla
platform, with the first phase focusing on many different ports,
and the second phase being much more specific towards a
smaller set of ports. The malware emphatically targets ADB
(TCP/5555), trying to infect vulnerable devices such as set-
top boxes or routers running Android. The cut in the scanning
activity shows that the Gorilla platform was not scanning for
new devices to infect during the downtime in January 2025
and was thus completely offline.

4.2.4 Attack Rates and Limits

Whenever an attack command is received by a Gorilla client,
it creates a child process responsible for executing the attack.
When we first observed the Gorilla client, it did not contain
any rate-limiting code in the clients and the bots simply gener-
ate packets as fast as possible. This means that any concurrent
attack effectively reduces the attack volume as bots are split-
ting their attack capabilities over multiple targets, and the
operators had no control over the bots’ attack power.

On November 24th, 2024 (indicated by the “B4” event in
Figure 2), we see an updated version of the Gorilla client that
does in fact include rate-limiting. The included rate-limit is
a throttle mechanism that limits the amount of packets per
second (pps) sent to a victim to 3,000. Later, in April of 2025,
we see an updated version of the botnet in which the rate-
limit halved and attacks are capped at 1,500 pps. Interestingly,
a month later, the C2 server starts sending duplicated com-
mands. This reverted the earlier halving of the packet rate
limit, putting it back at 3,000 pps. Now, to increase the attack
volume, users can ask for multiple “concurrents”. In essence,
“concurrents” are just multiple attacks running at the same
time, instructed by the C2 server simply sending the same
command multiple times. This launches multiple instances of
an attack, each capped at 3,000 pps.

During the entire Gorilla campaign, the C2 does not selec-
tively include bots in an attack, but rather uses all bots in the
network. We verify this by comparing the number of attacks
seen by our C2 milker to the number of attacks shown in the
control panel discussed in Section 4.1 and by running our
milkers in different geographical locations as discussed in
Section 3.2.

The operators of the platform publish the “load on the
network” on their control panel, which is a measure of the
number of attacks that are currently running. We initially
observe that every attack introduces a 2% load on the network,
meaning that the Gorilla platform would be capable of running
50 concurrents at a time. When usage was high, the operators
would increase the capacity of the platform to 60 simultaneous
attacks. An example Telegram update can be seen in Figure 11
in Appendix A.8. This change also reflects in their reported
load statistics, every attack now accounting for 1.67% load
on the network. Multiple concurrents also take up multiple
attack slots in the network.

4.3 Subscriptions
Gorilla offers two types of subscriptions: “normal” and “API”,
the only difference being API access. With the normal plan, at-
tacks can only be started through their WebUI. The maximum
power and duration of an attack is defined by the subscrip-
tion. As of May 20, 2025, the cheapest option allows users to
launch one “concurrent” for 100 seconds per attack. The most
expensive plan allows users to launch 20 concurrent attacks

Name Normal API Concurrents Time(s)

Basic $40 $60 1 100
Pro $80 $120 2 200
Gold $120 $180 3 300
Diamond $160 $240 4 400
Enterprise $200 $300 5 500
Crystal $240 $360 6 600
Quartz $280 $420 7 700
Sapphire $320 $480 8 800
Emerald $360 $540 9 900
Palladium $400 $600 10 1,000
Grauer $600 $900 15 1,500
Amethyst $800 $1,200 20 1,500

Table 3: Available Gorilla plans after May 20, 2025.

for a duration of 1,500 seconds per attack. Table 3 provides an
overview of the available subscriptions. In our measurements,
we observe 344 attacks that are instructed with a duration of
1,500 seconds, all requiring at least the Amethyst plan.

On April 26, 2025 (“P1” in Figure 2), an “Alexandrite”
plan was introduced, allowing users to launch 30 concurrent
attacks. At the time of writing, this plan was removed. On
May 8, 2025 (“P2”), the operators introduced a free tier. Free
attacks were limited in power and were mainly provided as a
demo for their stresser panel. A user could perform a free UDP
or HTTP attack for maximum of 60 seconds. Interestingly,
attacks in the free tier did not use the botnet, but relied solely
on the centralized infrastructure. When instructing a free
attack, the maximum bitrate we measure is 300 Mbps, which
would not cause harm for most Internet connections [49].

All plans were available as daily, weekly, and monthly
subscriptions. The daily and weekly options, starting at just
$5, were removed on May 20, 2025 (“P3”). On the same
day, the monthly plans were revised as well. The price per
concurrent dropped, but the removal of the daily and weekly
options raised the minimum spending amount significantly.

Subscriptions are paid with cryptocurrency. When purchas-
ing a plan, users can choose to pay with Litecoin, USDT,
Solana, or Tron. Upon ordering, a unique wallet address is
generated, and we were not able to find any information on
the payments on the blockchain. Payments using Bitcoin or
Ethereum are only possible when creating a support ticket or
contacting one of the admins on Signal directly.

5 Gorilla DDoS Attacks

During our measurement period, we observe a total of 740,351
DDoS attacks executed by the Gorilla Platform, shown in Fig-
ure 2, targeting 146,213 unique IP addresses. In this section,
we provide insights into Gorilla’s attack patterns, target selec-
tion, and attack characteristics.

Name Vec. V1 V2 Mirai # attacks

udp_generic 0 ↭ – ↭ –
udp_vse 1 ↭ ↭ ↭ 32,280
tcp_syn 3 ↭ ↭ ↭ 38,968
tcp_ack 4 ↭ ↭ ↭ 60,103
tcp_stomp 5 ↭ ↭ ↭ 10,227
gre_ip 6 ↭ ↭ ↭ 4,883
gre_eth 7 ↭ ↭ ↭ 3,713
udp_plain 9 ↭ ↭ ↭ 246,276
tcp_bypass 10 ↭ ↭ – 135,140
udp_bypass 11 ↭ ↭ – 26,275
std 12 ↭ ↭ – –
udp_openvpn 13 ↭ ↭ – 5,346
udp_rape 14 ↭ – – –
wra 15 ↭ ↭ – 6,749
tcp_ovh 16 ↭ ↭ – 34,984
tcp_socket 17 ↭ ↭ – 16,276
udp_discord 18 ↭ ↭ – 62,884
udp_fivem 19 ↭ ↭ – 14,346
udp_a2s 20 ↭ ↭ – 54,667
udp_teamspeak 21 – ↭ – 27,140
udp_samp 22 – ↭ – 441
udp_cs16 23 – ↭ – 353
utility 250 – ↭ – –

Table 4: Attack vectors present in the bots. V1 and V2 refer
to the two phases. The bold vectors are the most used.

5.1 Types of Attacks
As Gorilla is largely based on Mirai, which is known for
its ability to perform a wide range of DDoS attacks [5], it
includes all attack vectors that are available in Mirai. Ad-
ditionally, Gorilla includes a number of new attack vectors.
All available vectors are listed in Table 4. The added attack
vectors are designed to target specific services or circumvent
specific DDoS mitigations. Many of them are gaming related,
such as Discord, TeamSpeak, or FiveM (a popular multiplayer
modification framework for Grand Theft Auto V [17]).

While many specific vectors are available, the Gorilla
platform primarily performs volumetric attacks with the
udp_plain vector, also shown in Table 4, even when more
specific attacks are available. Users can select the vector used
in the attack, but the mapping of the vector as presented to
the user to the actual vector is not always straightforward. Ta-
ble 5 provides an overview of the mapping recorded on June
20, 2025 using the data from our self-attacks (Section 6.2).
There is a striking mismatch between the selected attack vec-
tor and the vector pushed to the botnet. For example, when
a user performs a “UDP bypass” attack, the service sends a
“UDP plain” command to the bots, but when the user requests
a “UDP fivem” attack, the bots are instructed to perform a
“UDP bypass” instead. In the background, the Gorilla opera-

Requested vector Actual vector

udp_game udp_fivem
udp_ts3 udp_teamspeak
udp_discord udp_discord
tcp_bypass tcp_ack
tcp_spazz tcp_bypass
tcp_storm tcp_ovh
network_rand gre_ip
udp_bypass udp_plain
udp_fivem udp_bypass
udp_raknet Does not use the botnet

Table 5: Mapping of attack vectors on June 20, 2025.

tors are likely adjusting the attack commands sent to the bots
to optimize the attack’s effectiveness.

When looking at the attack types in Table 4, we can identify
that there are attack vectors in use that are not bound to the
methods provided to users on June 20, 2025. The mapping
at this time is provided in Table 5. When looking at their
Telegram updates, we find that user-facing methods change
often while the methods in the botnet clients remain fairly
stable, further indicating that the operator updates the attack
strategies in the backend. In Appendix A.7, the usage of
botnet attack vectors is shown over time.

5.2 Attack Characteristics
The Gorilla Botnet contains attack vectors for both UDP and
TCP attacks, as well as some lower-level attacks. During our
data collection period, we observed 60% of attacks targeting
UDP services, 39% of attacks targeting TCP services, and 1%
uses attacks on lower layers of the OSI model.

To understand what types of services are under attack by
the platform, we look at the top 10 most targeted ports, shown
in Table 6. In addition, attacks can be configured to randomize
the target ports. When this is set, the C2 command sends port
0 and the bots will generate a random port every packet. We
observed this in 2.5% of all attacks.

The data presented in Table 6 indicates a rather uniform
distribution of target ports. While popular ports such as 80,
443, 53, and 22 stand out, all other ports are targeted in under
2% of the attacks. Many targeted ports are ephemeral ports not
associated with a specific service, such as 32000, 32002, and
32003. This makes it difficult to infer what specific services
are targeted by just looking at the ports. However, UDP/6672
and UDP/30120 are assigned to game servers, namely Red
Dead Redemption 2 and Grand Theft Auto V respectively.
Combined with the attack vectors this indicates that there is
interest towards targeting gaming services.

We also consider the time at which attacks are instructed.
Figure 4 shows the times during which attacks are started,

Port Protocol Count Percentage (%)

80 UDP 69,744 8.93
443 TCP 43,963 5.63
80 TCP 38,141 4.88
53 UDP 35,368 4.53
22 TCP 22,080 2.83
32003 UDP 14,864 1.90
32002 UDP 14,817 1.90
6672 UDP 14,578 1.87
32000 UDP 14,506 1.86
30120 UDP 13,934 1.78

Table 6: Top 10 most targeted ports, also split by protocol.

Figure 4: Probability density estimation of attack start times
in local time.

grouped in major time zones. Attacks against US-based tar-
gets are shown in UTC-6, attacks against China-based targets
are shown in UTC+8, and other attacks are shown in UTC.
We can see that most attacks are performed in the evening
from the victim’s perspective, contributing to the hypothesis
that many attacks are launched against gaming services in the
evening.

5.3 Concurrent and Repeated Attacks
Many attacks performed by the Gorilla platform are short
in duration, which is common in DDoS-for-Hire related at-
tacks [9]. To increase the power and the duration of an attack,
users have to rely on performing multiple attacks (concur-
rents) at the same time, and stringing together individual at-
tacks after eachother. From the attacks collected by our C2
milker, we can identify both cases as the C2 server will simply
send multiple attack commands at the same time (for running
multiple concurrents), or consecutively (to increase the du-
ration). We find that for 58% of attacks, an identical attack
is launched within 30 seconds of the original attack expir-
ing. As for running multiple concurrents, we find that 30% of
the launched attacks make use of more than one concurrent.
We made four observations of attacks with 20 concurrents
(“H1” in Fig. 2), which aligns with the most expensive plan

AS Type # victims # attacks

Hosting 70,859 574,397
ISP 68,028 175,008
Business 5,684 26,613
Education 368 1,085
Government 307 1,016
Unknown 967 3,232

Table 7: Number of unique victims and attacks by AS Type.

Victim AS Total time AS Name

AS16276 81 days OVH SAS
AS62041 48 days Telegram Messenger
AS16509 40 days Amazon.com
AS4134 37 days ChinaNet
AS396982 32 days Google

Table 8: Top 5 most attacked ASes in terms of total attack
time rounded down to days (24h).

described in Section 4.3. Coincidentally, these attacks took
place within three days without overlap and all targeted host-
ing providers, indicating that a single actor might be behind
these attacks. We observed the longest attack, lasting 24 hours,
on June 27th, targeting a hosting provider (“H4”).

5.4 Attack Targets
Gorilla is a DDoS-for-Hire platform, which means that it is
rented out to users who can select their own targets. When
analyzing the 146,213 unique targets, we indeed observe that
Gorilla is used to attack a wide range of victims, including
gaming, educational, and government. We classify the victims
based on the mappings of IPInfo [30], which provides informa-
tion on the type of Autonomous System (AS) that the victim
belongs to. The results are shown in Table 7. Most attacks are
targeted at hosting providers (48%) and ISPs (46%), mainly
targeting gaming platforms. However, we also observe a sig-
nificant number of attacks on business (4%), education (0.3%),
and government (0.2%) ASes.

Looking at the total attack time per target AS, we see some
ASes that are disproportionally targeted compared to others.
Table 8 shows the top 5 of ASes that were attacked most in
terms of attack time. From this data, we can see that OVH-
cloud has been attacked for over 81 days during our measure-
ment period. Given that our data spans 265 days, OVHcloud
was actively under attack for over 30% of the time.

Looking at the configured attack duration per target AS
type in Figure 5, we can see that attacks targeting Govern-
ment and Education tend to have a higher duration configured
compared to attacks at other AS types. This indicates that
attacks targeting Government and Education institutions gen-

Figure 5: Duration in attack command per AS type.

Country # attacks

US 164,617
CN 90,200
NL 80,104
DE 70,376
BH 31,932

Table 9: 5 most targeted coun-
tries for all AS types

Country # attacks

US 458
AE 285
RU 264
ID 256
TH 181

Table 10: Top 5 countries (Ed-
ucation and Government)

erally require a more expensive subscription. Table 9 shows
the 5 most targeted countries, with the United States being the
most targeted country, followed by China and the Netherlands.
This distribution is likely influenced by the large number of
hosting providers and gaming services in these countries [46].
When removing these categories and focusing on just Gov-
ernment and Education target ASes, we observe a different
distribution, as shown in Table 10. The United States is still
targeted the most, but we can see that other countries such as
the United Arab Emirates and Russia are also heavily targeted.

5.4.1 High Profile Attacks

While most attacks are aimed at gaming services, we also
observe a number of successful attacks against high-profile
targets. While these attacks are less frequent, they demon-
strate the capability of a stresser service to impact a wide
range of organizations. In this section, we discuss two high-
profile attacks that were performed in June 2025. We corre-
late press releases with attack commands observed in our C2
milker. We are not able to identify who would be responsible
for these attacks, but we can provide some insight based on
the data. Targeted organizations experienced significant dis-
ruptions to their services as a result of the attacks, showing
the impact of DDoS-for-Hire services beyond gaming related
attacks [34, 41].
Roularta Media Group (“H2”): On June 10, 2025, the
Roularta Media Group was targeted by a series of DDoS
attacks [23]. These attacks occurred between 06:21 UTC and
15:45 UTC, and consisted of volumetric UDP attacks target-

ing ports 80 and 300 on their public-facing firewall. In our C2
milker, we identify multiple “UDP plain” commands aimed at
their network. We contacted the organisation, and they shared
a recorded bandwidth of 4Gb/s and 3Mpps. This traffic was
generated through 3 ‘concurrents’ of 300 seconds per attack,
but were repeated throughout the duration of the attack. This
attack setup points at the “gold” plan, which would cost a user
$120 per month as shown in Section 4.3. The attacks disrupted
normal operations and impacted users trying to access Dutch
and Belgian news sites and apps. The printing facility was
also affected, causing delays in newspaper and magazine de-
liveries. During the response, the attack was geoblocked, but
this was ineffective as the attack appeared to move with every
geoblock, likely saturating the uplink and seeing a different
part of the attack when blocking out part of the traffic.
SVT (Swedish Public Service) (“H3”): The Swedish Public
Service broadcaster SVT was targeted by a series of DDoS
attacks in June 2025, lasting on-and-off for more than a
week [11]. In this attack, SVT experienced multiple waves of
TCP traffic targeting ports 443 and 18264, with the first attack
starting on June 8, 2025, and the last command being sent on
June 16, 2025. The attacks were characterized by their dura-
tion, with some attacks lasting up to 1,000 seconds. For these
attacks, a user would have to buy the “palladium” plan of
$400, which allows for longer attacks and higher bandwidth.

6 Measuring the Gorilla Infrastructure

To identify why the attacks performed using the Gorilla
stresser are so potent, we aim to map the elements partic-
ipating in a Gorilla DDoS attack. In this section, we identify
(1) the attack capabilities by leveraging the attacks of Go-
rilla against public DStat services, and (2) the elements that
contribute to the attacks by attacking our own infrastructre.

6.1 Attack Capabilities
To attract users to the platform, DDoS-for-Hire operators ac-
tively market their networks on Telegram. They apply two
strategies: (1) attack a specific service after which the gener-
ated attack volume is placed in a leaderboard in the channel,
or (2) share screenshots of a website going offline due to one
of their DDoS attacks. Example screenshots of such Telegram
promotion techniques can be seen in Appendix A.8.

We scrape multiple websites that provide servers that can
be attacked to measure the attack power of a botnet, as de-
scribed in Section 3. The Gorilla network also attacks these
endpoints regularly, either by the operators or users that want
to test the power of the network, and we observe 2,000 Gorilla
attacks targeting these services. From this data, we observe
the attack power at certain points in time, and observe a max-
imum firepower of almost 13 Gbps per concurrent. On May
1st, 2025, we observe UDP attacks using three concurrents.
From the corresponding DStat result, we find a peak bitrate

Figure 6: Observed packets based on packet length.

of 41 Gbps. On May 18th, 2025, we observe a UDP attack
directed at a different endpoint with five concurrents. The
attack caused a peak bandwidth of 24.5 Gbps, which satu-
rated the reported 25 Gbps uplink of the endpoint. Due to this
saturation, the actual attack bandwidth is likely higher. The
DStat attacks do not reliably indicate the attack power of the
Gorilla platform, as it fluctuates often.

6.2 Attacking Controlled Infrastructure
To obtain a ground-truth on what constitutes an attack of the
Gorilla platform, we attack our own infrastructure in consul-
tation with our local ISP. This allows us to do a full network
dump of the traffic. The data collected in this experiment is
not complete as our local ISP performs DDoS scrubbing, lim-
iting the packets we observe in the attacks. We thus cannot use
this information for a full picture of the attack, but instead use
it to identify a lower-bound on the number of active bots, the
characteristics of an attack, and a mapping of attack options
in the control panel to specific attack types in the botnet. We
perform 12 attacks, covering every attack type available on
the platform as of June 20, 2025. All attacks target a different
IP address to account for transient effects.

When starting an attack we immediately see traffic coming
into our system. However, the command sent to the botnet is
delayed, and we only observe the command in our C2 milkers
roughly 30 seconds after the start of the attack. Figure 6 plots
an attack over time, where we show when the C2 milker first
received an attack command by the vertical red line. From the
botnet client code, we know that bots send packets of exactly
1,428 Bytes. This allows us to identify the traffic originating
from the botnet. The Figure shows that the bots indeed attack
for the specified duration of the attack (30 seconds) after re-
ceiving the command from the C2 server. However, before the
attack command is sent to the bots, other traffic is generated
for the duration of the attack (30 seconds). When inspecting
this traffic, we find a mix of DNS amplification, accounting for
35% of these packets, and generic UDP packets with spoofed
source IPs. Looking into the payloads of these packets, we ob-
serve DNS responses to an ANY query for the collectd.org
domain name. This returns around 1,200 bytes of data. The

UDP packets with randomized sources contain small amounts
of random data in the payload. We hypothesize that this traf-
fic originates from centralized servers rather than the bots, as
it requires IPs to be located in a network that allows spoof-
ing [7,16]. Additionally, the Gorilla uptime monitor states the
status of a so-called “spoofed” network.

The Gorilla platform thus appears to have a more complex
attack infrastructure than Mirai, likely because the botnet does
not contain many hosts and is not capable of generating the
attack power required to make the platform effective. During
the attacks on our own infrastructure, we only observe 220
bots participating in the attack, which would generate 7 Gbps
of attack traffic, as every bot would theoretically generate
33.6 Mbps of traffic per concurrent (due to rate limits and
payload sizes). However, the attacks observed on the DStat
endpoints show that the platform is capable of generating
10+ Gbps of traffic per concurrent, requiring more than just
the botnet. As we observe all commands in all of our geo-
graphically dispersed C2 milkers, it is unlikely that we only
observe a portion of the botnet. This shows that, while the
botnet is not as large as others, the network is very effective.

To identify whether the bots that we observe in the attacks
are indeed generating 3,000 packets per second, and not being
throttled by the devices that they are running on, we analyze
the packet payloads of the bots. To perform a UDP attack, the
bot generates random payloads using the same RNG as Mirai.
We rely on a similar methodology as Griffioen et al. [21],
where the random data generated by the RNG is identifiable.
When four consecutive random values are observed from the
RNG, all next values can be predicted. This means that we can
identify exactly which packets were dropped by our upstream
provider. A detailed explanation of this methodology can be
found in Appendix C. When a packet is received, we can
analyze its payload to identify the offset in the RNG stream.
By tracking these offsets over time, we can infer the packet
transmission rate at the sender and compare it to the actual
reception rate at the measurement point. A transmission rate
of approximately 3,000 packets per second is observed for
the bots, which aligns with the previously observed rate-limit
in Section 4.2.4.

6.3 Netflow Measurements
The attacks targeting our own infrastructure described in Sec-
tion 6 revealed the existence of a distributed attack infrastruc-
ture employed by the Gorilla Platform, composed of (1) a
botnet and (2) centralized infrastructure. While the former
generates attack traffic without spoofing its source IP address,
the latter performs more stealthy attacks either by directly
sending spoofed packets or leveraging amplification attacks.
This attack model is crucial when measuring traffic routed
through IXPs and ISPs. For the entire duration of June 2025
we correlate the commands milked from the active C2.

We find that netflows can provide an accurate lower bound

on the attack traffic, but are not a good proxy for identifying
the attack sources. This is due to the operators not only lever-
aging bots, but also hosts that attack with spoofed source IP
addresses. This means that when counting sources participat-
ing in an attack, we are both overestimating due to the spoofed
sources (attacks record more than 100,000 sources), and un-
dersampling due to the limited sampling rate of netflows (we
only observe a fraction of the actual traffic). To identify the
common hosts participating in the attacks, we apply an inter-
section between the sets of source IP addresses targeting sepa-
rate attack victims over the same time window. This approach
allows us to filter out the spoofed sources while keeping the
common origin hosts, and at the same time remove legitimate
traffic, since it is unlikely that a non-malicious host would con-
nect to multiple DDoS victims at the same time. We choose
to group the data over time windows of five minutes to limit
measurement errors due to IP churn. This approach results in
netflow aggregates originating from both botnet clients and
reflection hosts. These two can be further distinguished by
looking at the source ports, which will be in the ephemeral
range for botnet clients, and limited to well-known service
ports for amplification [50].

Applying this methodology allows us to identify an average
of roughly 100 unique hosts per time window during the last
month of activity of the Gorilla Platform. A time series is
visible in Appendix B. While these numbers are lower than
what we observe through the self-attacks on June 20th, they
provide a reliable baseline. The spoofed component from
the centralized attacks is not measurable with this approach,
requiring more sophisticated traffic fingerprinting methods.

7 Related Work

DDoS stresser services have been studied in the past, with a
focus on their business models, attack capabilities, and the
underlying botnet architectures. Previous research has high-
lighted the evolution of DDoS-for-Hire platforms, their tar-
gets, and their potential power [27, 35, 47, 51, 54, 55].

A major focus of previous work has been on the analysis of
specific botnets, such as Mirai [5], which has served as a foun-
dation for many subsequent DDoS botnets, including Gorilla.
Antonakakis et al. [5] provided an early analysis of the Mirai
botnet, examining its architecture, propagation mechanisms,
and attack capabilities. Their work laid the groundwork for
understanding how modern DDoS botnets operate and how
they can be mitigated. In a followup work, Griffioen et al. [21]
show how the descendants of Mirai compete for market share.
Affinito et al. [3] further explored how the variants of Mirai
spread through the Internet, focusing on the infection vectors
and the techniques used to compromise IoT devices.

After the leak of the Mirai source code, many botnets have
adopted similar architectures and attacks, leading to a pro-
liferation of DDoS services that share common characteris-
tics [3,19,39]. This led to botnets implementing similar proto-

cols and attacks [18,39], and competing for market share [21].
In addition to the analysis of botnet architectures, previous

research has also investigated the techniques used by DDoS
botnets to evade detection and mitigation [4, 6, 10, 38]. This
includes the use of encryption, obfuscation, and sophisticated
C2 protocols to avoid detection by security systems.

Other studies have examined stresser platforms and their
impact, exploring how these services affect the DDoS land-
scape [22, 25, 53, 55]. Jonker et al. [32] show that a large part
of the Internet has been victimized by a DDoS attack at some
point, and that the number of attacks has been increasing over
time. They also highlighted the role of stresser platforms in
facilitating these attacks, making it easier for adversaries to
launch large-scale campaigns without needing to maintain
their own botnet infrastructure. Hutchings et al. [28] report
that before Mirai and botnets were weaponized, DDoS attacks
were often performed using centralized servers. Other works
have also reported on DDoS attacks and mitigations without
botnets [13,31,40,56]. Kopp et al. [37] identify how effective
takedown of DDoS services can be, and how the DDoS-for-
Hire business model is resilient to such take-downs, which is
further analyzed by Vu et al. [62]. Taking down these services
is not trivial [20, 42, 43].

Modern stresser services, such as Gorilla, are less studied
in the literature. While based on Mirai, the additional features
and attack capabilities of modern stresser services have not
been extensively analyzed. Recent works have investigated
the descendants of Mirai [3], but these studies focus on the
malware’s propagation and infection mechanisms rather than
the DDoS-for-Hire business model and attack capabilities.

This paper is the next in a line of research that aims to
provide a comprehensive understanding of DDoS services [25,
28, 32, 37, 52, 55], by focusing on the Gorilla stresser. By
analyzing the Gorilla botnet, we shed light on the current
state of DDoS-for-Hire platforms, their attack capabilities, and
the market behind their operation. Furthermore, we provide
insights into how these networks and their attacks can be
effectively monitored and what data is needed, contributing
to the broader understanding of DDoS threats.

8 Discussion

Gorilla is a new generation of Mirai-based DDoS-for-Hire
platform that has been very successful in launching high-
profile attacks. The developers of Gorilla leveraged the knowl-
edge gained over a decade in developing and deploying Mirai-
based botnets, while also being quite aggressive in advertising
their products and engaging customers of the DDoS platform.
Gorilla offered a spectrum of options to their customers in
terms of functionality and pricing, and utilized different at-
tack vectors, some off-path, e.g., UDP reflection attacks, and
others on-path, e.g., TCP attacks.
Research and Development Cycle of Gorilla: Although the
Gorilla software originates from the Mirai software, written

a decade ago, small additions and changes to the code have
made it more popular and effective. While Mirai boasted
eight attack vectors, the latest version of Gorilla offers 25
functionalities. This indicates that the operators of the Gorilla
Botnet continuously improve their offerings, causing them to
be highly successful. The addition of an update functionality
for the bots indicate that the operators do not treat their devices
as disposable anymore.

Gorilla implemented two major software updates, adding
additional attack vectors (functionalities) while phasing out
unused functionalities, making it more robust over time.
While in the first Gorilla software release phase, updates were
quite frequent, in the second phase, there is only one ma-
jor update. This indicates that the changes in cryptographic
communication during the second phase had a significant
impact on the platform’s resilience. This also shows that the
developers of Gorilla learned from their mistakes that made
it easy to reverse engineer the C2-bot communication and
commands. While the Gorilla network had a rather small bot-
net, the addition of centralized infrastructure made its attacks
more powerful.
Resilience of Gorilla: While previous networks struggled to
maintain their customer base and attack power when switch-
ing C2 servers [62], this was not the case for Gorilla. In the
first phase, it took only a couple of days for the Gorilla oper-
ator to reach the same level of attacks after a C2 switch. In
the second phase, there was practically no interruption; the
number of switches between C2 servers was minimal. This
shows that the Gorilla platform owners have become more
selective about where to install and operate their C2 servers.

This complicated a takedown of the Gorilla network, but
on June 28, 2025, law enforcement supposedly succeeded.
While there has not been an official statement from law en-
forcement, the Gorilla Telegram channel became inactive, and
the supporting infrastructure went offline shortly after.
Marketing Strategies: The updates in pricing in the second
phase also contributed to the Gorilla’s success, making it pos-
sible to attract a diverse range of customers with different
budgets. The operators of Gorilla frequently demonstrated
its success in high-profile attacks, provided free attack ca-
pabilities, and even offered discounts for follow-up attacks.
This indicates that the success of Gorilla was not solely a
technical achievement. The Gorilla operators not only offered
a full-fledged attack platform for non-experts, but were very
involved in attracting new users and offering competitive pric-
ing. Users do not have to resubscribe after a C2 update [62],
which contributes to the loyalty of existing users and high
demand for the DDoS platform.
Limitations: In this study, we focus on one successful DDoS-
for-Hire platform, the Gorilla Botnet. Although this is a
clear example of successful engineering and marketing in
the DDoS-for-Hire market, we still cannot confirm whether
such decisions have been or will be adopted by other DDoS-
for-Hire platforms and if they will lead to the same success.

Moreover, although we did our best to utilize data from
different sources to assess the efficacy of the network, it is
possible that we do not have the complete view of its fire-
power. Our analysis reports a lower bound of its DDoS im-
pact, which nevertheless shows that Gorilla was responsible
for high-profile DDoS attacks during its operation.

9 Conclusion

The Mirai botnet architecture continues to evolve, having cre-
ated a new market for DDoS-for-Hire built on top of its orig-
inal design and software. In this paper, we reverse-engineer
one of the most successful Mirai-based DDoS-for-Hire plat-
forms, the Gorilla Botnet. Our analysis reveals that the op-
erators have learned from the shortcomings of Mirai design,
deployment, and operation, offering a resilient and efficient
proposition that quickly garnered the trust and attention of
DDoS customers. While much of the Gorilla network re-
lies on the one-decade-old original software, changes in C2
communication, the separation of scanning and attack infras-
tructure, the C2 server hosting selection, and the addition of
new functions as a response to users’s demand have made
Gorilla one of the most successful DDoS-for-Hire platforms
to date. We also notice that the pricing schemes and market-
ing strategies played a significant role, as the operators made
efforts to improve engagement among its existing users and
attract new ones. As the DDoS-for-Hire ecosystem continues
to evolve, we would like to evaluate how the methodology
for reverse-engineering the Gorilla platform can be applied to
analyze similar platforms in the future and understand which,
sometimes subtle, differences in engineering and operation
can make them successful and profitable.

10 Acknowledgments

This work was supported by the Dutch Research Council
(NWO) under the ADAPTIve project and by the European
Commission under the Horizon Europe Programme as part of
the project SafeHorizon (Grant Agreement #101168562).

Ethical Considerations

In this paper we describe in detail the inner workings of a
botnet. While our research aims to advance the understanding
of DDoS-for-Hire services and their impact, we acknowledge
the potential ethical implications of disclosing such informa-
tion. We have taken care to anonymize any sensitive data and
to focus on the technical aspects of the botnet’s operation,
rather than on specific individuals or organizations. In this
section, we assess the ethical impact for the stakeholders.
Users of the Gorilla stresser: Since we observe the stresser
from the perspective of the botnet, we do not come across

any personally identifiable information of the users of the
network.
The Gorilla stresser platform: We have only conducted ex-
periments that did not require any active engagement with
the botnet, except from the attacks on our own infrastructure.
Other than during these self-attacks, we did not actively en-
gage with the botnet and we did not attempt to disrupt or
interfere with their activities. Our goal was to simply observe
and analyze the botnet’s behavior. To conduct the self-attacks,
we have bought the cheapest tier without API access. The
botnet analyzed in this paper was operational from 2024 until
June 2025, and we have not observed any activity since then.
The botnet’s C2 server went offline on June 28, 2025, and
we believe it is no longer active. Therefore, the operators of
this botnet will not learn from the publication of our find-
ings. However, we recognize that the techniques and insights
gained from this research could potentially be used by other
malicious actors to improve their own botnets. To mitigate
this risk, we have focused on the technical aspects of the
botnet’s operation and have avoided disclosing any sensitive
information that could be adopted by malicious actors.
Attack victims: When using netflow data for verification
of attacks, the data was collected by network operators for
operational purposes. All analysis on the netflow data was
performed live and not stored as raw data. All analysis was
performed on-premises, and no unanonimized data was shared
outside of the network operator. We received only aggregated
and anonimized data, e.g.,IP addresses were salted and hashed
with a secret key that is not known to us. The shared artifacts
of this work contain solely anonimized data, as to not expose
victim IP addresses.
Infected devices: While performing attacks on our own infras-
tructure, many bots send data as part of the attack. To ensure
anonymity of these devices and their owners, we anonimized
all source IPs in the data with the Crypto-PAN algorithm [64].
Self-attack upstream networks: The DDoS attacks per-
formed on our own infrastructure were done with full knowl-
edge and consent from our upstream Internet Service Provider.
We obtained permission from the national police agency.
While setting up the attack, we chose the smallest and shortest
attack possible as to not potentially overload our upstream
provider or any network further up the data path. We targeted
our own infrastructure and did not target any third-party ser-
vices.
National Cyber Security Center: The “C2 milker” we devel-
oped in this work was shared with the National Cyber Securiy
Center, so they could use the gathered intelligence to attribute
attacks targeting local victims.

Open Science

We support the principles of Open Science and have made
our research as transparent as possible. This includes sharing
our datasets and methodologies to enable reproducibility and

further research in the field. We encourage other researchers
to build upon our work and to contribute to the collective
understanding of DDoS-for-Hire services and botnets. From
the datasets listed in Table 1, we share the artifacts of all data
sources used except the netflows and web scraping data.

We provide the Gorilla botnet’s command logs (from the
C2 milker), analyzed malware sample hashes, and data on the
scanning infrastructure observed by our reactive telescope,
including exploit payloads. We also make available selected
Telegram messages displaying the advertisement strategies
of the Gorilla operators. To preserve the anonymity of the
victims of the attacks, we anonymize all IP addresses collected
by the C2 milker through the Crypto-PAN algorithm [64].

In addition, we share the network traffic logs from our self-
attacks. To preserve the anonymity of infected devices in the
network, we anonimized the source IPs in this data with the
Crypto-PAN algorithm as well. To preserve anonymity of our
own infrastructure, all destination IPs are redacted.

All shared artifacts of this work are available for reference
at https://doi.org/10.5281/zenodo.17886098.

References

[1] Abuse.ch. Malware Bazaar. https:
//bazaar.abuse.ch/, 2025. [Online; accessed
21-August-2025].

[2] Abuse.ch. Yaraify. https://yaraify.abuse.ch/,
2025. [Online; accessed 21-August-2025].

[3] Antonia Affinito, Stefania Zinno, Giovanni Stanco,
Alessio Botta, and Giorgio Ventre. The evolution of
Mirai botnet scans over a six-year period. Journal of
Information Security and Applications, 79:103629, De-
cember 2023.

[4] Dennis Andriesse, Christian Rossow, Brett Stone-Gross,
Daniel Plohmann, and Herbert Bos. Highly Re-
silient Peer-to-Peer Botnets Are Here: An Analysis of
Gameover Zeus. In 8th International Conference on Ma-
licious and Unwanted Software, pages 116–123. IEEE,
2013.

[5] Manos Antonakakis, Tim April, Michael Bailey, Matt
Bernhard, Elie Bursztein, Jaime Cochran, Zakir Du-
rumeric, J. Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua
Mason, Damian Menscher, Chad Seaman, Nick Sullivan,
Kurt Thomas, and Yi Zhou. Understanding the Mirai
Botnet. In USENIX Security, pages 1093–1110, 2017.

[6] Manos Antonakakis, Roberto Perdisci, Yacin Nadji,
Nikolaos Vasiloglou, Saeed Abu-Nimeh, Wenke Lee,
and David Dagon. From Throw-Away Traffic to Bots:
Detecting the Rise of DGA-Based Malware. In USENIX
Security, pages 491–506, 2012.

[7] Robert Beverly and Steven Bauer. The Spoofer Project:
Inferring the Extent of Source Address Filtering on the
Internet. In USENIX SRUTI, volume 5, pages 53–59,
2005.

[8] H.L.J. Bijmans and M.S.C. van Leuken. No Time to
Choose: Leveraging Internet Scans to Determine IoC
Lifetimes. In 2024 IEEE International Conference on
Big Data, pages 2586–2595. IEEE, 2024.

[9] Norbert Blenn, Vincent Ghiëtte, and Christian Doerr.
Quantifying the Spectrum of Denial-of-Service Attacks
through Internet Backscatter. In Proceedings of the 12th
International Conference on Availability, Reliability and
Security, pages 1–10, 2017.

[10] Leon Böck, Emmanouil Vasilomanolakis, Max
Mühlhäuser, and Shankar Karuppayah. Next Gen-
eration P2P Botnets: Monitoring under Adverse
Conditions. In International Symposium on Research
in Attacks, Intrusions, and Defenses, pages 511–531.
Springer, 2018.

[11] European Conservative. Massive Cyber-
attacks Target Swedish State Broadcaster.
https://europeanconservative.com/articles/
news-corner/massive-cyberattacks-target-
swedish-state-broadcaster/, 2025. [Online;
accessed 26-August-2025].

[12] DDOS-project. Cybernet DDoS Project. https:
//github.com/DANO-AMP/DDOS-project/blob/
8fb4aff98c6983a81e1f37229df827f0f042d0a0/
Botnet/mirai-source/cybernet/build.sh#L30,
2025. Online; accessed 26-August-2025.

[13] Christos Douligeris and Aikaterini Mitrokotsa. DDoS
Attacks and Defense Mechanisms: A Classification.
In Proceedings of the 3rd IEEE International Sympo-
sium on Signal Processing and Information Technology,
pages 190–193. IEEE, 2003.

[14] dstat.love. dstat.love. https://dstat.love/, 2025.
[Online; accessed 25-August-2025].

[15] ENISA. ENISA Threat Landscape 2024.
https://www.enisa.europa.eu/sites/default/
files/2024-11/ENISA%20Threat%20Landscape%
202024_0.pdf, 2024. [Online; accessed 21-August-
2025].

[16] Paul Ferguson and Daniel Senie. Network Ingress Filter-
ing: Defeating Denial of Service Attacks which employ
IP Source Address Spoofing. RFC2827, 1998.

[17] FiveM. FiveM: Multiplayer Modification Framework
for Grand Theft Auto V. https://fivem.net/, 2025.
[Online; accessed 21-August-2025].

[18] Getoar Gallopeni, Bruno Rodrigues, Muriel Franco, and
Burkhard Stiller. A Practical Analysis on Mirai Botnet
Traffic. In IFIP Networking Conference, pages 667–668.
IEEE, 2020.

[19] Metehan Gelgi, Yueting Guan, Sanjay Arunachala,
Maddi Samba Siva Rao, and Nicola Dragoni. Sys-
tematic Literature Review of IoT Botnet DDOS At-
tacks and Evaluation of Detection Techniques. Sensors,
24(11):3571, 2024.

[20] Dimitrios Georgoulias, Jens Myrup Pedersen, Morten
Falch, and Emmanouil Vasilomanolakis. Botnet Busi-
ness Models, Takedown Attempts, and the Darkweb
Market: A Survey. ACM Computing Surveys, 55(11):1–
39, 2023.

[21] Harm Griffioen and Christian Doerr. Examining Mirai’s
Battle over the Internet of Things. In Proceedings of the
ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 743–756, Virtual Event USA,
October 2020. ACM.

[22] Harm Griffioen, Kris Oosthoek, Paul van der Knaap, and
Christian Doerr. Scan, test, execute: Adversarial tactics
in amplification ddos attacks. In Proceedings of the
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 940–954, 2021.

[23] Roularta Media Group. Temporary disruptions
at Roularta Media Group due to Cyberattack.
https://www.roularta.be/en/about-roularta/
press-releases/temporary-disruptions-
roularta-media-group-due-cyberattack, 2025.
[Online; accessed 26-August-2025].

[24] hex rays. IDA Pro: Powerful Disassembler, Decom-
piler and Debugger. https://hex-rays.com/ida-
pro, 2025.

[25] Raphael Hiesgen, Marcin Nawrocki, Marinho Barcel-
los, Daniel Kopp, Oliver Hohlfeld, Echo Chan, Roland
Dobbins, Christian Doerr, Christian Rossow, Daniel R
Thomas, et al. The age of DDoScovery: An Empirical
Comparison of Industry and Academic DDoS Assess-
ments. In Proceedings of the 2024 ACM on Internet
Measurement Conference, pages 259–279, 2024.

[26] Raphael Hiesgen, Marcin Nawrocki, Alistair King, Al-
berto Dainotti, Thomas C. Schmidt, and Matthias Wäh-
lisch. Spoki: Unveiling a New Wave of Scanners through
a Reactive Network Telescope. In USENIX Security,
pages 431–448, Boston, MA, August 2022.

[27] Nazrul Hoque, Dhruba K Bhattacharyya, and Jugal K
Kalita. Botnet in DDoS Attacks: Trends and Challenges.
IEEE Communications Surveys & Tutorials, 17(4):2242–
2270, 2015.

[28] Alice Hutchings and Richard Clayton. Exploring the
Provision of Online Booter Services. Deviant Behavior,
37(10):1163–1178, 2016.

[29] Hybrid Analysis. Hybrid Analysis Tool. https://
hybrid-analysis.com/, 2025.

[30] IPInfo. IP Enrichment Information. https://
ipinfo.io/, 2025. [Online; accessed 25-August-2025].

[31] Ghafar A Jaafar, Shahidan M Abdullah, and Saifuladli
Ismail. Review of Recent Detection Methods for HTTP
DDoS Attack. Journal of Computer Networks and Com-
munications, 2019(1):1283472, 2019.

[32] Mattijs Jonker, Alistair King, Johannes Krupp, Chris-
tian Rossow, Anna Sperotto, and Alberto Dainotti. Mil-
lions of Targets under Attack: A Macroscopic Charac-
terization of the DoS Ecosystem. In Proceedings of the
2017 Internet Measurement Conference, pages 100–113,
2017.

[33] !ord̄e D Jovanović and Pavle V Vuletić. Analysis and
Characterization of IoT Malware Command and Control
Communication. In 2019 27th Telecommunications
Forum (TELFOR), pages 1–4. IEEE, 2019.

[34] Mohammad Karami and Damon McCoy. Rent to Pwn:
Analyzing Xommodity Booter DDoS Services. Usenix
login, 38(6):20–23, 2013.

[35] Mohammad Karami and Damon McCoy. Understand-
ing the Emerging Threat of DDoS-as-a-Service. In 6th
USENIX Workshop on Large-Scale Exploits and Emer-
gent Threats, 2013.

[36] Lars R Knudsen. Practically Secure Feistel Ciphers. In
International Workshop on Fast Software Encryption,
pages 211–221. Springer, 1993.

[37] Daniel Kopp, Matthias Wichtlhuber, Ingmar Poese, Jair
Santanna, Oliver Hohlfeld, and Christoph Dietzel. DDoS
Hide & Seek: On the Effectiveness of a Booter Services
Takedown. In Proceedings of the Internet Measurement
Conference, pages 65–72, 2019.

[38] Chaz Lever, Platon Kotzias, Davide Balzarotti, Juan Ca-
ballero, and Manos Antonakakis. A Lustrum of Malware
Network Communication: Evolution and Insights. In
2017 IEEE Symposium on Security and Privacy (SP),
pages 788–804. IEEE, 2017.

[39] Artur Marzano, David Alexander, Osvaldo Fonseca,
Elverton Fazzion, Cristine Hoepers, Klaus Steding-
Jessen, Marcelo HPC Chaves, Ítalo Cunha, Dorgival
Guedes, and Wagner Meira. The Evolution of Bash-
lite and Mirai IoT Botnets. In IEEE Symposium on
Computers and Communications. IEEE, 2018.

[40] Jelena Mirkovic and Peter Reiher. A Taxonomy
of DDoS Attack and DDoS Defense Mechanisms.
ACM SIGCOMM Computer Communication Review,
34(2):39–53, 2004.

[41] Asier Moneva and Eric Rutger Leukfeldt. Interest in
Booter Services and Distributed Denial of Service At-
tacks: Insight from Google Search Data. European
Journal of Criminology, 22(4):508–533, 2025.

[42] Yacin Nadji, Manos Antonakakis, Roberto Perdisci,
David Dagon, and Wenke Lee. Beheading Hydras: Per-
forming Effective Botnet Takedowns. In Proceedings of
the ACM SIGSAC conference on Computer & communi-
cations security, pages 121–132, 2013.

[43] Yacin Nadji, Roberto Perdisci, and Manos Antonakakis.
Still beheading hydras: Botnet takedowns then and now.
IEEE Transactions on Dependable and Secure Comput-
ing, 14(5):535–549, 2015.

[44] National Security Agency and developers. Ghidra - Pow-
erful Open-Source Reverse Engineering Tool. http:
//ghidra.net/, 2025.

[45] NCSC. GorillaBot: A new DDoS-for-hire ser-
vice. https://www.ncsc.admin.ch/dam/ncsc/
de/dokumente/dokumentation/fachberichte/
NCSC-CH-GorillaBot.pdf.download.pdf/NCSC-
CH-GorillaBot.pdf, 2025. [Online; accessed
25-August-2025].

[46] Newzoo. Top 10 Countries by Game Rev-
enues. https://newzoo.com/resources/rankings/
top-10-countries-by-game-revenues, 2025. [On-
line; accessed 21-August-2025].

[47] Arman Noroozian, Maciej Korczyński, Carlos Hernan-
dez Gañan, Daisuke Makita, Katsunari Yoshioka, and
Michel Van Eeten. Who Gets the Boot? Analyzing
Victimization by DDoS-as-a-Service. In International
Symposium on Research in Attacks, Intrusions, and De-
fenses, pages 368–389. Springer, 2016.

[48] NSFocus. Over 300,000 GorillaBot: The New King of
DDoS Attacks. https://nsfocusglobal.com/over-
300000-gorillabot-the-new-king-of-ddos-
attacks/, 2025. [Online; accessed 25-August-2025].

[49] World Population Review. Internet Speeds by Country
2025. https://worldpopulationreview.com/
country-rankings/internet-speeds-by-
country, 2025. [Online; accessed 21-August-2025].

[50] Christian Rossow. Amplification Hell: Revisiting Net-
work Protocols for DDoS Abuse. In NDSS, pages 1–15,
2014.

[51] José Jair Santanna, Ricardo O De Schmidt, Daphne
Tuncer, Joey De Vries, Lisandro Z Granville, and Aiko
Pras. Booter Blacklist: Unveiling DDoS-for-Hire Web-
sites. In 2016 12th International Conference on Net-
work and Service Management (CNSM), pages 144–152.
IEEE, 2016.

[52] José Jair Santanna, Joey de Vries, Ricardo
de O. Schmidt, Daphne Tuncer, Lisandro Z. Granville,
and Aiko Pras. Booter List Generation: The Basis for
Investigating DDoS-for-Hire Websites. International
journal of network management, 28(1):e2008, 2018.

[53] José Jair Santanna, Romain Durban, Anna Sperotto, and
Aiko Pras. Inside Booters: An Analysis on Operational
Databases. In 2015 IFIP/IEEE International Symposium
on Integrated Network Management (IM), pages 432–
440. IEEE, 2015.

[54] José Jair Santanna and Anna Sperotto. Characteriz-
ing and Mitigating the DDoS-as-a-Service Phenomenon.
In IFIP International Conference on Autonomous In-
frastructure, Management and Security, pages 74–78.
Springer, 2014.

[55] José Jair Santanna, Roland van Rijswijk-Deij, Rick Hof-
stede, Anna Sperotto, Mark Wierbosch, Lisandro Zam-
benedetti Granville, and Aiko Pras. Booters—An Anal-
ysis of DDoS-as-a-Service Attacks. In 2015 IFIP/IEEE
International Symposium on Integrated Network Man-
agement (IM), pages 243–251. IEEE, 2015.

[56] Saeed Shafieian, Mohammad Zulkernine, and Anwar
Haque. CloudZombie: Launching and Detecting Slow-
read Distributed Denial of Service Attacks from the
Cloud. In IEEE International Conference on Computer
and Information Technology; Ubiquitous Computing
and Communications; Dependable, Autonomic and Se-
cure Computing; Pervasive Intelligence and Computing,
pages 1733–1740, 2015.

[57] Soerungmakara. Soerung-
makara. https://github.com/
soreungmakara2/Soerungmakara/blob/
9cf36ea9b11c3792210af6c3d18986c4a9678db4/
build.sh#L30, 2025. Online; accessed 26-August-
2025.

[58] Eugene H. Spafford. The Internet Worm Program: An
analysis. ACM SIGCOMM Computer Communication
Review, 19(1):17–57, 1989.

[59] Rui Tanabe, Tsuyufumi Watanabe, Akira Fujita, Ryoichi
Isawa, Carlos Gañán, Michel van Eeten, Katsunari Yosh-
ioka, and Tsutomu Matsumoto. Disposable Botnets:
Long-term Analysis of IoT Botnet Infrastructure. Jour-
nal of Information Processing, 30:577–590, 2022.

[60] Vedbex. Vedbex: Live DSTAT. https://
www.vedbex.com/dstat, 2025. [Online; accessed 26-
August-2025].

[61] VirusTotal. VirusTotal Tool. https:
//www.virustotal.com/, 2025.

[62] Anh V Vu, Ben Collier, Daniel R Thomas, John Kristoff,
Richard Clayton, and Alice Hutchings. Assessing the
Aftermath: the Effects of a Global Takedown against
DDoS-for-hire Services. In Proceedings of USENIX
Security, 2025.

[63] David J Wheeler and Roger M Needham. TEA, a
Tiny Encryption Algorithm. In International Workshop
on Fast Software Encryption, pages 363–366. Springer,
1994.

[64] Jun Xu, Jinliang Fan, M.H. Ammar, and S.B.
Moon. Prefix-preserving IP Address Anonymiza-
tion: Measurement-based Security Evaluation and
a New Cryptography-based Scheme. In 10th IEEE
International Conference on Network Protocols, 2002.
Proceedings., pages 280–289, 2002.

A Gorilla Botnet Technical Information

A.1 Reverse Engineering
To understand the inner workings of the Gorilla botnet, we re-
verse engineered the malware samples in detail. We started by
collecting multiple samples of the Gorilla malware from vari-
ous sources, including honeypots and public repositories. We
then used a combination of static and dynamic analysis tech-
niques to dissect the malware. The static reverse-engineering
involved disassembling the binaries using Ghidra [44] and
IDA Pro [24] to analyze the code structure, functions, and
algorithms used. Dynamic analysis was performed in a con-
trolled environment using Docker without Internet.

Throughout the reverse engineering process, we specifically
look at the code of the malware that is responsible for the
C2 communication, the attack vectors, and the persistence
mechanisms. By looking at differences in the binaries and
reverse-engineering samples over time, we identified when
the malware was updated.

A.2 Gorilla Botnet Persistence Techniques
Once malware is loaded on a victim’s device, it aims to estab-
lish persistence and make it hard for defenders to clean up the
device. These measures were not in place in the original Mi-
rai source code. First, it loops over all processes visible from
/proc and kills all of them, except for itself. Then, it symlinks
the malware binary to /bin/sh, effectively replacing the de-
fault shell with itself. Additionally, it unlinks binaries like

shutdown, reboot, poweroff and halt. Until 2024-10-04,
the malware also wrote a systemd service that downloaded
and executed the malware binary upon system startup.

After infection, the following string is appended to
/etc/motd: “gorilla botnet is on the device ur not a cat go
away”. This message is shown to users when they log in to
the device, and it is unclear why the malware authors chose
to include this message, as it can be used to indicate that the
device is compromised. To hinder automated analysis of the
malware, it also contains some simple sandbox detection tech-
niques. First, it checks whether the /proc filesystem exists.
Afterwards, it checks the presence of a debugger by checking
the TracerPid. Lastly, it detects a Kubernetes environment
by checking the /proc/1/cgroup file. If any of these checks
fail, the malware refuses to run.

A.3 C2 Messages

The Gorilla Botnet has two seperate command structures
between the two phases. The first command structure is a
concatenation between a SHA256 hash and a Mirai command
encoded with a ceasar cipher shifting all bytes with an offset
of 3 as shown in Figure 7.

Figure 7: Command of the botnet in the first phase.

In the second phase, the C2 commands use a Feistel Cipher
to encrypt the command, as shown in Figure 8. The command
is sent as: [decryption parameters, sha256, key, command].

Figure 8: Command of the botnet in the second phase.

A.4 C2 Handshake

After successfully establishing a TCP connection with the C2
Server, a challenge-response exchange takes place, illustrated
in Figure A.4. From the protocol scheme described in Sec-
tion 4.2.2, learning both key values while reverse-engineering
the malware samples enables the Bot emulation performed
through the Milker.

Figure 9: Handshake protocol between Bot and C2 Server.

A.5 YARA Rule
To identify Gorilla malware samples, we created a YARA
rule based on a unique string found in the binary. This rule
can be used to scan files and identify those that match the
characteristics of the Gorilla botnet malware.

rule GorillaBotnet {
strings:

$a = "gorilla botnet is on the device
ur not a cat go away"

condition:
$a }

A.6 Gorilla ADB packet
Sample sequence of TCP-based data payloads targeting ADB:
b’CNXN\x00\x00\x00\x01\x00\x00\x04\x00\x1b\x00\x00

\x00M\n\x00\x00\xbc\xb1\xa7\xb1host::features=
cmd,shell_v2’,

b’OPENX\x01\x00\x00\x00\x00\x00\x006\x04\x00\x00\
xc2T\x01\x00\xb0\xaf\xba\xb1shell:cd /data/
local/tmp/; rm *; busybox wget http
://176.65.134.15/arm.nn; chmod +x arm.nn; ./
arm.nn arm.android; busybox wget http
://176.65.134.15/ arm5.nn; chmod +x arm5.nn; ./
arm5.nn arm5.android; (...)\x00’

A.7 Attack Vector Usage
The Gorilla Botnet employs a variety of attack vectors, as de-
tailed in Section 5. The most commonly used vectors include
udp_generic, tcp_ack, and udp_discord. These vectors
are selected by the user based on the target service and the
desired impact of the attack, but mapped differently in the
backend. The daily usage of these attack vectors is illustrated
in Figure 10, showing the frequency of each vector.

A.8 Gorilla Promotion
The Gorilla operators often post updates in their Telegram
channel, explaining changes to their platform. An example of
such a message is shown in Figure 11. In this message, the
operators share that they increased the attack capacity of the
network. Additionally, they introduce a new free tier to their
platform, and ask for advertisers on YouTube.

The Gorilla operators maintained a YouTube channel where
attacks were showcased. The attacks were often targeted at

Figure 10: Daily usage of different attack vectors.

Figure 11: Telegram message promoting more attack slots,
new free plan, and inquiring for YouTube advertisers.

gaming sessions that were live-streamed, as can be seen in
Figure 12a. Additionally, some attacks were targeting DStat
endpoints and showcased the attack power of the network. An
example of such a DStat attack can be seen in Figure 12b.

Many DStat websites include advertisements for different
stresser services. Gorilla was often shown on these websites,
with their own banner, shown in Figure 13.

B Netflow Intersection Timeseries

We correlate attack traffic by intersecting common IPs over
two separate attacks within 5-minute windows. This allows
us to identify overlapping traffic patterns and shared infras-
tructure between attacks. The resulting timeseries is shown
in Figure 14. While we find that netflows are ineffective for
assessing the size of a botnet, they can still provide valuable
insights into the behavior and characteristics of the attack
traffic.

(a) A screenshot of a YouTube video showing an attack
against a live online gaming session.

(b) The DStat panel showing 47 Gbps attack band-
width.

Figure 12: Screenshots of YouTube videos demonstrating the
attack power of the Gorilla platform.

Figure 13: A frame from the Gorilla banner often shown on
DStat websites for promotion.

Figure 14: Timeseries of source IP and byte counts inferred
by intersecting common IPs over separate attacks within 5-
minute windows.

Internal state

Xt Yt Zt Wt

XOR <<11

>>8

XOR

XOR >>19

XOR

Xt+1 Yt+1 Zt+1 Wt+1

rand_next()

Figure 15: Mirai RNG system.

RNG stream

First packet observed

Unknown

Known packet loss

Known packet loss

Known packet loss

Second packet observed

Third packet observed

Recreated stream
 after first packet

Figure 16: Mapping packets to RNG offsets.

C Identifying Random Number Generator Pat-
terns

To identify the random number generator (RNG) patterns used
by the Gorilla botnet, we analyze the random data generated
by the bots during attacks. By observing the payloads, we can
identify the RNG algorithm used and its characteristics. Go-
rilla’s RNG is similar to Mirai’s, which is based on the Linear
Congruential Generator (LCG) algorithm. This algorithm is
known for its simplicity and speed, but it has predictable pat-
terns. By analyzing the random values generated by the bots,
we can identify these patterns and use them to our advantage.
A schematic overview of the RNG is shown in Figure 15.

During a UDP_BYPASS attack, each bot fills payloads with
pseudo-random data generated by the Mirai RNG. A sequence
of four consecutive four-byte integers produced by this RNG
is sufficient to predict the next bytes. Analysis confirms that
the payloads of packets generated by a single bot correspond
to a continuous segment of this RNG output stream. As a
result, each arriving UDP packet can be uniquely mapped to a
specific offset within the RNG stream. This offset effectively
reflects the index of the originally transmitted packet. This
mapping process is illustrated in Figure 16.

With this process, we can identify which packets are
dropped on the network because we can verify which packets
have been sent by the bot as the RNG will be advanced to a

Figure 17: Packet loss based on received and transmitted
packet rates.

Figure 18: RNG offset producing a staircase pattern based on
packet arrival times.

next state. By tracking the increase in these RNG offsets over
time, we can infer the packet transmission rate at the sender
and compare it to the actual reception rate at the measurement
point. A transmission rate of approximately 1,500 packets
per second is observed, which aligns with the hardcoded limit
in the malware sample. The ratio of received to transmitted
packet rates allows us to estimate the experienced packet loss.
This is visualized for a single bot in Figure 17.

When looking at the arrival time of packets together with
their corresponding RNG offsets, we observe a staircase pat-
tern, as shown in Figure 18. This pattern arises from the bot’s
behavior of transmitting up to 1,500 packets at the start of
each second, followed by a period of inactivity for the re-
mainder of that second. This bursty transmission behavior is
reflected in the plateaus of Figure 18. Bots with constrained
upstream bandwidth, which are unable to transmit 1,500 pack-
ets within a second, do not exhibit this staircase pattern, as
they will not have the period of inactivity. Instead, their packet
transmissions are more evenly distributed over time, resulting
in a more linear increase in RNG offsets without the distinct
plateaus seen in the staircase pattern.

