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Abstract
Attackers regularly use SSH (Secure SHell) to compromise

systems, e.g., via brute-force attacks, establishing persistence
by deploying SSH public keys. This ranges from IoT botnets
like Mirai, over loader and dropper systems, to the back-ends
of malicious operations. Identifying compromised systems at
the Internet scale would be a major break-through for combat-
ting malicious activity by enabling targeted clean-up efforts.

In this paper, we present a method to identify compromised
SSH servers at scale. For this, we use SSH’s behavior to only
send a challenge during public key authentication, to check if
the key is present on the system. Our technique neither allows
us to access compromised systems (unlike, e.g., testing known
attacker passwords), nor does it require access for auditing.

With our methodology used at an Internet-wide scan, we
identify more than 21,700 unique systems (1,649 ASes, 144
countries) where attackers installed at least one of 52 verified
malicious keys provided by a threat intelligence company, in-
cluding critical Internet infrastructure. Furthermore, we find
new context on the activities of malicious campaigns like,
e.g., the ‘fritzfrog’ IoT botnet, malicious actors like ‘teamtnt’,
and even the presence of state-actor associated keys within
sensitive ASes. Comparing to honeypot data, we find these
to under-/over-represent attackers’ activity, even underesti-
mating some APTs’ activities. Finally, we collaborate with a
national CSIRT and the Shadowserver Foundation to notify
and remediate compromised systems. We run our measure-
ments continuously and automatically share notifications.

1 Introduction

Since its introduction in 1995, SSH has become the de
facto standard for secure remote access to shell-enabled sys-
tems. Originally developed for Unix and Linux systems, SSH
servers have now permeated the digital landscape, being avail-
able even for Windows systems. This popularity is also re-
flected in the up to 40 million SSH servers [27] seen to be
publicly accessible on the Internet. Furthermore, with the ad-
vent of the Internet-of-Things (IoT), especially Linux found

its way onto millions more devices, with SSH being com-
monly available and enabled by default on IoT systems [78].

The most common implementations of SSH support a va-
riety of authentication mechanisms, including public/private
key-based authentication and, traditionally, password-based
authentication. With the general prevalence of password
authentication, attackers commonly run brute-force cam-
paigns to compromise systems with weak or default pass-
words [50, 102]. Similarly, many systems attackers compro-
mise may also run SSH servers, meaning a convenient way
of access after the system has been compromised [89].

After a compromise, it may be difficult for an attacker to
change the password of a system, as being suddenly unable
to log in would likely alert the benign owners to the compro-
mise [30]. Hence, attackers have been observed in several
incidents [7], but also via honeypots [64], to install their own
public SSH keys into accounts on compromised systems.

Interestingly, the behavior of most SSH implementations
differs depending on a public key actually being installed
when a user provides the fingerprint of a public key to ini-
tiate authentication via the associated key-pair: Usually, a
challenge will only be sent if the key is installed for the
user [36]. This is a conscious design choice in the SSH
protocol [98], and as such, not considered a security issue
by, e.g., OpenSSH developers [48]. In turn, this means that
systems compromised by attackers can be remotely identified,
if one gets a hold of the attackers public SSH key.

In this paper, we present the first study leveraging this me-
chanic to identify compromised systems at the Internet scale.
We received a set of 52 keys through a collaboration with
Bitdefender [15]. Bitdefender is a threat intelligence company
that provides antivirus software, Internet security, and other se-
curity solutions to protect devices and networks. These keys
were encountered in honeypots, or during malware analysis
and incident investigations. We then design a measurement
methodology that enables us to identify more than 21K com-
promised systems worldwide, including critical systems in
core Internet infrastructure, government agencies, research
institutions, and critical civil infrastructure. Furthermore, our



collected data on who compromises which systems where
allows us to characterize and analyze attacker behavior in
so far unprecedented detail. Finally, we integrated our mea-
surements with a notification campaign via the Shadowserver
Foundation and–later–the national CSIRT for Germany lo-
cated at the Federal Office for Information Security (BSI). We
currently perform continuous regular scans with automated
notifications generated and distributed via our partners.
Contributions: In summary, our contributions are:

• We design and implement a methodology to accurately
identify compromised SSH servers by leveraging unique
characteristics of the SSH protocol.

• We identify more than 21,700 compromised hosts in
1,649 ASes for 52 SSH public keys attributed to mali-
cious activity on the most common SSH ports (tcp/22
and tcp/2222) for IPv4 and IPv6.

• We describe attackers’ modus-operandi (identified by
the used malicious key (MK)) in unprecedented detail,
including persistent IoT botnets, as well as likely nation-
state level attackers and individual attack specific keys.

• We cross-reference our active measurement data with re-
sults from a large honeypot network, establishing that 24
of the compromised hosts we identified are actually used
to perform attacks and other two are used as malware
storage location, i.e., show ongoing attacker activity.

• We also demonstrate how it allows tracking malicious
activity to better understand ongoing attacks.

Structure: The remainder of this paper is structured as fol-
lows. In Section 2, we introduce the necessary background
on attacker activities and intricacies of the SSH protocol.
Subsequently, we document our methodology in Section 3,
including an extensive ethics discussion, and a documentation
of our lab experiments to ensure the reliability of our method.
In Section 4, we then document the parameters and schedule
of our measurements. We present and analyze our results in
Section 5, before discussing notable events and cases in more
detail in Section 6. Finally, we compare to related work in
Section 7, before concluding in Section 8.

2 Background

Here, we first discuss the functionality of the SSH protocol as
per RFC4252 [98], and then focus on the mechanic we lever-
age for our methodology. Additionally, we discuss common
attacks on SSH, and attackers’ post-compromise behavior.

2.1 The Secure SHell (SSH) Protocol
SSH has first been published in 1995 by Tatu Ylönen to re-
place by then prevalent plain-text commands, e.g., rsh (re-
mote shell), rcp (remote copy), and telnet, for remotely in-
teracting with systems. The standards track RFCs, RFC4251-
RFC4254 [98–101], were only published in 2006, and later
updated by several documents [8, 9, 12–14, 38, 88], mostly to
update algorithms used for encryption or authentication.

SSH is a layered protocol, with an underlying transport
layer (RFC4253 [101]) over which sessions for individual
purposes, e.g., sFTP, X11 forwarding, port forwarding, or–
commonly–an interactive terminal session can be started
(RFC4254 [99]). For each session, different authentication
and authorization requirements may be set, with authentica-
tion being defined in RFC4252 [98].

These days, the most prevalent SSH implementation is
OpenSSH [68] by the OpenBSD project. In addition, espe-
cially on embedded devices, Dropbear–a more resource con-
scious implementation–is widely used [25], see also Table 1.

2.2 Public-Key Based Authentication in SSH

In addition to, e.g., password based authentication, SSH sup-
ports a public key based authentication method, see RFC4252,
Section 7 [98]. For public key based authentication, a public
key is installed for a user account. The server can then use
this public key to encrypt a challenge which only a party with
access to the private key can decrypt. That party can then
proof possession of the private key by returning the plain-text
challenge to the server.

We depict the technical process of a full SSHv2 authenti-
cation process step-by-step in Figure 1. After the TCP hand-
shake the SSH Client and SSH Server exchange version in-
formation. Subsequently, the client initiates a Key Exchange.

Only now, the client starts user authentication.
First a SSH2_MSG_SERVICE_REQ is sent, and if a
SSH2_MSG_SERVICE_ACCEPT is received the authenti-
cation continues. If the server accepts user authentication,
the clients starts by sending a SSH2_MSG_USERAUTH_REQ
message containing the ‘username’ and fingerprint of the
‘pubkey’ it wants to use for authentication.

The server will verify if the ‘pubkey’ is present in the
‘authorized_keys’ file (or related resource for public keys)
of the user. Only if the key is present, the server returns a
‘challenge’—a message encrypted with the ‘pubkey’. This
allows the server to skip the computationally costly public-
private key authentication if the public key is not present.
The user authenticate by decrypting the ‘challenge’ using
the correct ‘privatekey’. Authentication concludes when the
plain-text challenge is returned to and verified by the server.

Naturally, this setup enables identifying whether a specific
public key is installed for a user, without requiring knowledge
of the private key. The general mechanic was first described
by Siebenmann in 2016 [76]. In 2019, Golubin noted that this
mechanic can be utilized to identify infrastructure used by
specific GitHub users, given that GitHub makes users’ SSH
keys publicly available [36]. In 2021, Kaiser submitted a pull-
request to the OpenSSH project [48] to change this behavior,
referencing CVE-2016-20012, which in the meantime had
been assigned to this behavior. Within the discussion around
the pull request, however, OpenSSH developers clarified that
this is, indeed, intended behavior [48].
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Figure 1: Step-by-Step SSH authentication. The red line indi-
cates when a client knows if a public key is present or not.

2.3 Brute-Force Attacks

Enumerating passwords, possibly restricted to a word-list of
known or default passwords, to bypass authentication for re-
mote systems is most likely the oldest ‘attack’ on the Internet,
and was already part of the Morris Worm [69]. Naturally, in
the context of SSH, brute force attacks as part of Internet
background noise have been a constant since the protocol has
been wildly deployed [7, 30, 50, 77, 91, 92].

Especially in recent years, the emergence of the ‘Internet-
of-Things’ (IoT) led to a new upswing of SSH related brute-
forcing, due to many of these devices having been deployed
with weak and/or known default passwords [62, 71]. Accord-
ingly, several botnets of IoT devices used for, e.g., (d)DoS
attacks, including Mirai, have been created using mostly brute-
force attacks [4, 11, 82, 96].

While industry and policy actions, especially in the context
of IoT [29,86], are increasingly enforced, the underlying issue
remains. Similarly, newer versions of SSH, by default, do not
permit password authentication for the root user, or–as in
newer Ubuntu versions–a remote root login all-together.

Technically, the best method to evade brute-force attacks
on SSH is disallowing password authentication in favor of,
e.g., token-backed public key authentication. Nevertheless,
especially for embedded devices and systems operated by less
experienced users, passwords remain common.

2.4 Attackers’ Post-Compromise Behavior

Once attackers compromise a system, usually the first order
of action is ensuring persistence [89]. From honeypot stud-
ies [64], it is known that attackers regularly first ‘scout’ for
vulnerable systems, and later–en mass–log in to systems for
establish persistence and provisioning subsequent use, e.g.,

use as a loader, dropper, additional brute-forcer etc. In honey-
pot studies, several attack groups established persistence by
installing their own public keys into the authorized_keys
file, with some groups overwriting all existing keys [64].

3 Methodology

In this section, we discuss the general methodology we use,
including the ethical considerations. For details on our dataset,
i.e., the scanning schedule etc., please see Section 4.

3.1 Public-Key Presence Identification
The core of our methodology is the behavior of the SSH
protocol during public key authentication, see Section 2.2.
Using the method described there, see also Figure 1, we can
identify if a specific public key was installed for a specific
user account by sending the fingerprint of a public key, and
checking whether we did receive challenge.

Hence, in principle, for a given set of public keys and pos-
sible usernames on a given host, we can:

1. Start an authentication process
2. Send the username and pubkey fingerprint to the server
3. Either

(a) Receive a challenge, and hence know that the spe-
cific public key for the user user, i.e., anyone in
possession of the corresponding private key (but
not us) could log into the server as that user, OR,

(b) Do not receive a challenge, and hence know that
the corresponding key is not installed for that user.

Please note that there is a limited chance for false negatives.
Even though if the server would not send a challenge for a key
even though it was installed, normal authentication with that
key would also not be functional. In turn, however, a sever
might send challenges despite a key not being present, which
we will address in Section 3.4.

Furthermore, as the only two parameters required to ex-
ecute this method are (i) a public key, and, (ii) a username,
there is no possibility to log in/complete the authentication
attempt for us, as we only are in possession of public keys.
As such, the thick red line in Figure 1 also marks the point
where our probes for a user/key combination end. We imple-
mented this method as a patch for Zgrab2, which we make
publicly available at https://edmond.mpg.de/dataset.
xhtml?persistentId=doi%3A10.17617%2F3.LVPCS6.

Such probes do show up in authentication logs as failed
authentication attempts, being indistinguishable from ‘normal’
brute-force attacks. We hence apply dedicated consideration
to this issue in our ethics discussion, see Section 3.7.

3.2 Lab Experiment
Prior to implementing our methodology on Internet-scale,
we performed a set of lab experiments to ensure its efficacy

https://edmond.mpg.de/dataset.xhtml?persistentId=doi%3A10.17617%2F3.LVPCS6
https://edmond.mpg.de/dataset.xhtml?persistentId=doi%3A10.17617%2F3.LVPCS6


and safety given a broad set of SSH implementations. For
that, we first tested our implementation on several versions of
OpenSSH [68], Dropbear [25], BitviseSSH [16], and Wolf-
SSH [97]. We selected these implementations based on the
observed distribution of implementations in scan-data from
censys.io [27], see Table 1, and evaluate each version between
the newest and oldest listed in the table.

Our in-lab validation consisted of four distinct tests:
Deployment: The first step is to ensure that each SSH server
can be successfully built and deployed. This process presents
challenges, particularly with older versions; for example,
Dropbear SSH versions 0.44 to 0.46 cannot be compiled due
to the unavailability of required custom libraries.
Zmap Test: Upon successful deployment, we conduct a
Zmap scan to confirm that the SSH server’s port can be accu-
rately identified as open. This step is essential for validating
the initial phase of our scanning protocol.
Zgrab2 Test: For this test, we install a set of public keys on
the SSH server and used Zgrab2 to issue a ‘preauth’ request.
We assess the server’s response to determine if the requested
public key is recognized.
Public Key Login: Finally, we perform a public key login to
verify that the installed keys are functional and that the SSH
server correctly performs public key authentication.

The results of our in-lab testing are summarized in Ta-
ble 1. We did not encounter any stability issues during our
tests. However, OpenSSH versions (≤2.9) only support cryp-
tographic algorithms no longer supported by current crypto-
graphic libraries, which is why we left them out-of-scope.

One notable issue involved the handling of ssh-rsa keys.
Since OpenSSH version 8.2, ssh-rsa has been deprecated1,
meaning that all OpenSSH servers running version 8.2 or
higher reject ssh-rsa keys, even if they are installed.

To address this, we implemented a workaround similar to
the approach used by the OpenSSH client. If an ssh-rsa key
is denied due to its deprecation (indicated by a specific error
message), our instrument automatically attempts to reconnect
using the rsa-sha-256 algorithm instead. Specifically, if the
key ‘ssh-rsa AAAABBBCCCCCDDDD...’ fails, our tool retries
with ‘rsa-sha-256 AAAABBBCCCCCDDDD...’.

3.3 Controlled Environment Tests
To further evaluate our instrument, we also ran tests over the
Internet against two consenting ASes. In each of the ASes,
several hosts were deployed and SSH public keys installed for
various users. Team members not informed about which hosts
and users on these hosts had which keys installed then utilized
our instrument to scan the ASes. Furthermore, we conducted
high-throughput scans, again with consent of the operators,
to assess whether unexpected issues may occur. These initial
runs were invaluable for identifying and resolving minor bugs,
as well as for uncovering unexpected behaviors.

1https://www.openssh.com/txt/release-8.2
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OpenSSH:

9.4 2024 <0.01% <0.01% <0.01% ✓ ✓ ✓ ✓
... 2016-2024 29.21% 22.7% 46.1% ✓ ✓ ✓ ✓
7.4 2016 23.01% 17.00% 18.08% ✓ ✓ ✓ ✓
... 2001-2016 22.28% 12.3% 6.17% ✓ ✓ ✓ ✓
3.0 2001 <0.01% <0.01% <0.01% ✓ ✓ ✓ ✓
2.9 2001 <0.01% <0.01% <0.01% ✓ ✓ ✗ ✗
... 2000-2001 <0.01% <0.01% <0.01% ✓ ✓ ✗ ✗
2.1.1 2000 <0.01% <0.01% <0.01% ✓ ✓ ✗ ✗

Dropbear:

0.84 2024 <0.01% <0.01% <0.01% ✓ ✓ ✓ ✓
... 2019-2024 2.42% 0.91% 0.77% ✓ ✓ ✓ ✓
0.78 2019 8.36% 10.01% 12.74% ✓ ✓ ✓ ✓
... 2005-2019 3.51% 1.23% 3.80% ✓ ✓ ✓ ✓
0.47 2005 <0.01% <0.01% <0.01% ✓ ✓ ✓ ✓
0.46 2005 <0.01% <0.01% <0.01% ✗ ✗ ✗ ✗
... 2004-2005 <0.01% <0.01% <0.01% ✗ ✗ ✗ ✗
0.44 2004 <0.01% <0.01% <0.01% ✗ ✗ ✗ ✗
0.43 2004 <0.01% <0.01% <0.01% ✓ ✓ ✓ ✓
... 2003-2004 <0.01% <0.01% <0.01% ✓ ✓ ✓ ✓
0.39 2003 - - - ✓ ✓ ✓ ✓
0.38 2003 <0.01% <0.01% - ✗ ✗ ✗ ✗
... 2003 <0.01% <0.01% <0.01% ✗ ✗ ✗ ✗
0.23 2003 <0.01% - - ✗ ✗ ✗ ✗

BitviseSSH:

9.31 2023 <0.01% - <0.01% ✓ ✓ ✓ ✓
9.29 2023 <0.01% - <0.01% ✓ ✓ ✓ ✓
8.49 2021 <0.01% - <0.01% ✓ ✓ ✓ ✓
7.46 2018 <0.01% - <0.01% ✓ ✓ ✓ ✓
6.51 2018 <0.01% - <0.01% ✓ ✓ ✓ ✓

WolfSSH:

1.4.14 2023 <0.01% <0.01% <0.01% ✓ ✓ ✓ ✓

Table 1: SSH server implementation, in-lab testing.

3.4 False-Positive Detection

A limited number of SSH servers observed in the wild con-
sciously and consistently reply to all authentication requests
with a challenge, regardless of the key actually being installed.
These may either be honeypots, or–as we observed during
our measurements–specific SFTP server implementations, see
Section 5. Similarly, we encountered SSH servers that would
send a challenge for any public key when it uses and algo-
rithms they did not support, e.g. a prototype SSH server with
support for federated authentication accepting all ED25519
keys [95].

To mitigate this issue, we use ‘Canary’ keys. These keys are
fully valid SSH keys, but have been newly generated by us. If a
remote server responds with a challenge for this key, we can be
reasonably sure that it will do so for all keys. Furthermore, to
mitigate the issue of some servers only showing this behavior
for specific algorithms, the canary key must always be of
the same key-type as other keys being tested at that time,
e.g., only using an ED25519 canary key provides information
regarding ED25519 keys under test. If RSA or DSS keys are
to be tested as well, an additional canary for these algorithms
must be created and tested.

In case a canary key solicits a challenge on a remote host,
we classify this system as not being testable with our method-
ology. Over the course of our measurements, roughly 0.2%
of hosts fell into this category.



Algorithm 1: Public Key Scanning Protocol.
Data: PublicKeys, TargetedPort, UsernameList, Blocklist
Result: Scan results for open ports and associated public keys

1 Split PublicKeys into 11 pubkey_sets;
2 foreach port in TargetedPort do
3 foreach User in UsernameList do
4 for round← 1 to 11 do
5 IPList← Check blocklist;
6 targetIPs← Zmap(IPList, port);
7 Generate ‘Canary Key’ with the same algorithm as the keys

in pubkey_set;
8 potential_ips← Check targetIPs with ‘Canary Key’;
9 foreach pubkey in pubkey_set do

10 output← Check potential_ips with pubkey;
11 Sleep for 1 hour;
12 end
13 end
14 end
15 end

3.5 Malicious Keys
To execute our methodology, we need to obtain a dataset of
known malicious public keys. We received a set of 52 mali-
cious keys from Bitdefender—the threat intelligence company
with which we are collaborating. These keys were encoun-
tered by the company during the investigation of incidents,
during malware analysis, and in honeypots they operate.

We are also collaborating with the Global Cyber Alliance
(GCA) [35], a non-governmental organization that operates a
large-scale honeynet comprising 221 SSH/Telnet honeypots
powered by Cowrie [20]. These honeypots are uniformly
configured and distributed across 55 countries and 65 ASes,
primarily deployed within residential ISPs.

However, no additional keys were shared with us, i.e., all
keys from these sources were also included in the data shared
by the threat intelligence company. The dataset also includes
the first and last time the threat intelligence company ob-
served each malicious key, with just a few keys being seen
consistently over several years. Furthermore, we received
the number of events observed in relation to a key, and–if
available–the user name in which it was found. While we
did receive some attribution information to known groups
for individual keys, Bitdefender was unable to publicly share
background information on most keys.

For our analysis, we ranked keys based on the number of
events and their activity period, see Figure 2. This ranking
is used in our subsequent analysis, with Malicious Key 01
(MK01) being associated with the highest number of attacks,
and Malicious Key 52 (MK52) corresponding to the fewest
attacks recorded in the threat intelligence company’s dataset.

3.6 Tested Usernames
A caveat of our methodology is that we need to initiate an
authentication attempt for each username and public key com-
bination we want to test. Naturally, this means that we have
to limit the usernames we are testing for the keys obtained
from Bitdefender, as each tested username leads to 52 authen-
tication attempts.
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Figure 2: Activity periods of malicious key recorded by the
threat intelligence company.

We hence decided to limit our measurements to three user
names. Here, we include ‘root’ and ‘admin’ based on findings
in prior work that consistently see these two accounts as the
most targeted ones [3, 51, 55, 70]. Additionally, we included
‘udatabase’, given that this was the third most common user-
name in the public key dataset where this information was
available, after ‘root’ and ‘admin’. The dataset we received
from the threat intelligence company contains a total of 23
unique usernames, with ‘root’, ‘admin’, and ‘udatabase’ being
the most frequent. The three selected usernames account for
83% of compromises in the threat intelligence dataset.

3.7 Ethical Considerations

Our work entails several ethical implications. As such, we
tightly followed best-practices, see, e.g., the Menlo report [23],
during the preparation and execution of our measurements.
IRB Clearance: Our work was submitted under No. 24-02-1
to our institution’s responsible IRB. The IRB evaluated our
experimental plan and instigated procedures, and ultimately
granted permission to execute the work. The IRB was again
contacted under the same case concerning a continuous ex-
ecution of our measurements, see below. Similarly, this was
also granted by the IRB.
Scanning Best-Practices: We followed best-practices for
Internet wide scans, i.e., ensured a responsive reverse DNS
entry, hosted a web-page explaining the experiments on our
measurement systems, and actively handled messages sent to
our network’s abuse contact. This included opting out remote
parties as soon as they requested it, and also actively notifying
each person writing to the abuse contact that they can opt out.
Harm-Benefit Analysis: In addition to following best prac-
tices, we conducted a harm benefit analysis concerning our
study. We identified the following potential for harm:

• Performing non-authorized connections to third parties.
• Accidentally overloading individual remote systems.
• Causing additional workload, as the scans are, see Sec-

tion 3.1, indistinguishable from brute-force attempts.
We acknowledge that the harm of non-authorized connec-
tions cannot be easily mitigated. Similarly, the additional
workload on operators cannot–despite best efforts in terms
of transparency–be easily mitigated. Even though our traffic



should not stand out in contrast to standard Internet back-
ground noise, these points will have to be weighted against
the potential benefits of our research.

Concerning harm due to accidentally overloading systems,
we took precautions in terms of rate-limiting, see Section 4.
However, in practice these might be ineffective in individual
cases. Issues we encountered were, for example, large sets
of IPv4 addresses mapped to a single host [17], e.g., for SNI,
and NAT64 setups accumulating significant traffic, as they
map the whole IPv4 Internet into a single /96 IPv6. If we
encountered such cases and either our monitoring or external
notifications alerted us to them, we implemented additional
precautions to ensure a further spread of requests.

In addition to the identified potential harm, we also identi-
fied several potential benefits of our work:

• The identification of compromised hosts allows remedi-
ation, especially if attackers did not yet become active
on a system and remains undetected. This is specially
crucial for compromised critical infrastructure systems.

• Characterizing how and where malicious actors com-
promise systems may provide further insights regarding
individual malicious groups, allowing further root-cause
oriented mitigation.

Weighting these potential benefits against the aforementioned
potential harm, we concluded that our measurements could
be ethically feasible, if we notify affected parties.
Notification: To ensure that affected operators are notified,
we–prior to starting our measurements–reached out to the
Shadowserver Foundation. The Shadowserver foundation is a
non-profit focused on making the Internet secure, and oper-
ates notification channels where they distribute information
about, e.g., compromised systems to responsible CSIRTs and
operators. We opted against a general individual notification
campaign, given that the expected number of compromised
hosts would exceed what could reasonably be notified indi-
vidually2. As such, special reports have been released by the
Shadowserver Foundation for our results 3.

In addition to the Shadowserver foundation, CERT-Bund–
the national CSIRT for Germany located at the Federal Office
for Information Security (BSI)–reached out to us concern-
ing our scans, initially assuming a compromise due to the–
seemingly–SSH brute-force attempts. After an explanation of
our work, they also offered to participate in the notification
of affected parties.

Furthermore, given the success after the first round, we
obtained ethical clearance for continuous scans from our IRB.
These scans are now running, and data-processing and noti-
fication have been automated with both, the Shadowserver
foundation and our national CSIRT.

2We conducted individual notifications for high-profile cases, e.g., gov-
ernment infrastructure, or a compromised back-bone router of a major ISP in
the corresponding country.

3https://www.shadowserver.org/what-we-do/
network-reporting/compromised-ssh-host-special/

4 Experiment

Here, we briefly describe our scanning setup and dataset, i.e.,
we provide information on the machines used for our mea-
surements, and the implemented scanning schedule.

4.1 Measurement Infrastructure
Our measurement systems are four physical machines with 16
cores/32 threads and 64GB of memory each. The machines
are connected to a dedicated network segment that does not
pass through stateful middle-boxes before reaching the Inter-
net. Each machine had an informative reverse DNS set and
ran a website with information on our study, see Section 3.7.

4.2 Scan Execution Methodology
For our scans, we first ingest lists of available IP addresses.
For IPv4, we utilize the CAIDA Routing Data which collects
BGP (Border Gateway Protocol) routing information and use
a snapshot of all routable prefixes from April 20244. For IPv6,
we leverage the IPv6 Hitlist5.

We then pre-process these inputs by filtering the prefixes
against our blocklist, which is maintained and updated over
time by our group to honor opt-out requests. Subsequently,
we generate all IPs from the prefixes and randomly distribute
them into 16 sets of similar size. Each machine is assigned to
scan four of these sets.

For each set, one per machine at a time, we then process
chunks of up to five keys. We first perform Port Discovery,
where we utilize Zmap [28] to identify IP addresses that have
the TCP port for that run open (Port 22 or 2222) 6

Next, we execute Public Key Verification for all hosts
with open ports. There, we employ our patched version of
Zgrab2 [26], see Section 3, to check for the presence of a
public key on each IP address with an open port identified
in the first phase. We limit the number of Zgrab2 runs to
one per hour. Before testing any malicious keys, we first run
a newly generated canary key of the same algorithm as the
other keys in the set, see Section 3.4. If the canary key solicits
a challenge or results in a timeout/error, we do not test the
remaining keys in the set against that specific host.

The total time to complete a full (all users) scan for one port
on IPv4 is 37 days due to the rate limits we set. Specifically,
for three users and four sets per scanning machine, Zgrab2 has
to be run for 52 malicious keys and 11 canary keys (maximum
of five keys per iteration), and we also run zMap 11 times. For
IPv6 we use only one IP set per machine, i.e., can complete a
run in 9–10 days.

4https://publicdata.caida.org/datasets/routing/
routeviews-prefix2as/2024/04/

5https://ipv6hitlist.github.io/
6We do this multiple times, as we significantly reduced our scan volume,

by ensuring that each IP only receives no more than one authentication
attempt per hour. Hence, we need to periodically re-run zMap to prevent the
impact of IP address churn influencing our results. See Section 3.7.

https://www.shadowserver.org/what-we-do/network-reporting/compromised-ssh-host-special/
https://www.shadowserver.org/what-we-do/network-reporting/compromised-ssh-host-special/
https://publicdata.caida.org/datasets/routing/routeviews-prefix2as/2024/04/
https://publicdata.caida.org/datasets/routing/routeviews-prefix2as/2024/04/
https://ipv6hitlist.github.io/
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4.3 Scanning Schedule

The data collection for the dataset in this paper started on
2024-04-04, beginning with the IPv4 address space and sub-
sequently progressing to the IPv6 address space. The scan-
ning of usernames was conducted in the following sequence:
‘root’, ‘admin’, and ‘udatabase’. All 52 keys were checked.
The scans for port tcp/22 completed on 2024-06-01, and the
one for the subsequently started port tcp/2222 measurements
on 2024-07-31.

4.4 Descriptives and Comparison to Censys

In the collected dataset, we find around 25 million (25M ±
110K) servers responding on port 22, while 4.5 million (4.5M
± 31.2K) servers responded on port 2222. Please note that
the listed deviation is due to IP address churn over time, i.e.,
when hosts became (un)reachable in between multiple key set
iterations, or across different usernames. For port tcp/22, 23.9
million (23.9M ± 192K), i.e., nearly all actually implemented
the SSH protocol, while the fraction on port tcp/2222 is lower
with only 643K ± 5.7K servers confirmed as running SSH.
These findings align with Censys scans conducted during the
same period. On 2024-04-16, Censys reported 25.2 million
servers on port 22 and 655K servers on port 2222 actually
running SSH.

We also compare the SSH server implementations and
versions identified in our scans with those from Censys scans,
see Figure 3. Especially for major versions our results (orange)
closely align with those of Censys (blue), see also Table 1.
Our comparably lower rate of identified systems aligns with
our use of a blocklist, see Section 3.7.

Our methodology was executed successfully on 16.9 mil-
lion (16.9M ± 89K) hosts, while 8.3 million (8.3M ± 23K)
hosts returned an error, e.g., not being configured to support
public key authentication, or timed out. Additionally, 44K ±
1.3K hosts triggered our false-positive detection. Please note
that the 8.3M failed hosts include hosts that were incomplete,
e.g., had a timeout for individual keys, possibly including
the canary key. However, with such partial results, we can
not make definitive statements on whether these hosts are
compromised.
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Figure 4: SSH server implementation vs. username, port 22

5 Results

In this section we present our results of our experiment. Ini-
tially focusing on findings for the standard SSH port, i.e.,
tcp/22, we first discuss how different types of SSH implemen-
tations show up among compromised hosts. Subsequently,
we focus on the AS types where systems are affected, and
then take a more global perspective, before delving into the
behavior of individual actors. Finally, we present our results
for non-standard SSH ports, tcp/2222 and we provide insights
gained from our large-scale scanning campaign.

5.1 Compromised Host Overview Port 22
Overall, we find 22,938 instances of malicious keys being
installed, 22,691 of these being for IPv4 (21,061 hosts) and
247 for IPv6 (163 hosts). Filtering by server host key, this
number reduces to 16,753 unique servers. Please note that
this likely includes host key collisions, e.g., due to poorly
engineered IoT devices sharing host keys [52]. Furthermore,
the host keys of 125 found via IPv6 can also be found via
IPv4, with the other 38 being unique to IPv6.
SSH Server Versions: SSH servers usually sent their ver-
sion and/or general information (banner) after a connection
has been established. Investigating these, see Figure 4, we
find that the most frequently encountered SSH server imple-
mentations are–as expected–OpenSSH and Dropbear, due to
their general popularity. Beyond that, we find a plethora of
other banners, including IoT specific software (RomSSHell),
and servers obscuring their banner (simply returning, e.g.,
‘ssh’). Relating this information to the users that were com-
promised, ‘root’ is more frequent for OpenSSH than ‘admin’
or ‘udatabase’, likely due to OpenSSH being more commonly
found on servers in comparison to, e.g., the embedded focused
Dropbear. Notably, we find 320 cases of hosts were multiple
users have been compromised.
Affected AS Types: Next, we assess what types of ASes
contain compromised systems. To categorize ASes, we use
labels from PeeringDB [2] and data from BGP.tools [1], cre-
ating seven categories: CDN, corporate, government, hosting
providers, ISPs, universities, and ‘other’, see Figure 5 for an
overview.
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We find that the majority of compromised hosts can be
found in end-users ISPs, again hinting towards a high number
of non-traditional servers among compromised hosts. In con-
trast, we find a limited number of compromised machines in
University networks, Corporations, and Government networks.
However, please note that especially giving the progressing
flattening of the Internet [5], a system in a hoster or other type
of AS may still be operated by, e.g., another company or a
government agency [45].
Summary: The majority of compromised systems runs
OpenSSH, and these systems are concentrated within end-
user ISPs, CDNs, and hosting ASes, with the ‘root’ user being
the most frequently compromised across all categories.

5.2 Geographic Distribution
Next, we investigate where compromised hosts are located.
To determine the geolocation of each compromised server,
we use the host IP address in conjunction with the IPinfo [44]
geolocation tool, pinpointing the location at the country level.
Figure 6 illustrates the distribution of compromised hosts
across various countries.
Country-Level Distribution: We identify at least one com-
promised host in 144 different countries. On a high level,
the distribution of compromised hosts follow, roughly, the
‘size’ of the Internet in corresponding countries, i.e., the high-
est numbers of compromised hosts are located in countries
with a large population and/or a traditionally strong IT in-
dustry. Hence, the majority of these compromised hosts are
concentrated in North America, Europe, and Asia, with fewer
instances observed in South America, Australia, and Africa.
Location vs. AS type: Next, we study the affected AS types
per country, see Figure 7 for the distribution of compromised
servers across AS types in the 30 countries with most hits.
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Figure 7: Top 30 countries based on number of compromised
servers vs. AS type, port 22

Globally, the majority of compromised machines is found
in end-user ISPs and hosters. However, for–especially–China
and France, a large portion of compromised machines is also
found in CDNs. We attribute this to an unclear classifica-
tion of the Cloud/Hosting business of major platforms in
these countries (Huawei Cloud, Baidu, OVH) as CDNs in
our data sources. Notably, for Iran, we find a higher number
of machines having attacker-attributed SSH keys installed in
universities.
Summary: Overall, we find compromised SSH servers to
be globally evenly distributed along traditional metrics, with
expectable concentrations in North America, Europe, and
Asia, particularly in countries with large populations or robust
IT infrastructure.

5.3 Malicious Keys & Actors
Our initial scan set included 52 verified malicious SSH public
keys. Out of these, we found 41 in the wild. However, some
of these keys are found on a notably larger portion of com-
promised machines than others. While not all keys could be
attributed to specific attackers, our collaborator provided in-
formation that attributed six keys to ‘teamtnt’ (MK23, MK30,
MK31, MK32, MK33, MK34), and three to the actor ‘mexalz’
(MK25, MK26, MK27). Additionally, one key was attributed
to the ‘fritzfrog’ P2P botnet (MK01), two to the ‘coinminer’
botnet (MK40, MK43), and one each to the ‘mozi’ (MK28),
‘hehbot’ (MK24), and ‘muhstick’ (MK29) botnets. Further-
more, two keys have been seen in relation to the persona
‘Jia Tan’, involved in the XZ backdoor [61]. Beyond that, we
labeled MK06 as ‘mdrfckr’, as–contrary to other keys–it is
regularly installed on honeypots with that string in the SSH
key’s comment field. We did not receive specific attribution
for the remaining keys, beyond their involvement in various
malicious activities.

Expected vs. Measured Frequency Based on the number of
hits observed by the threat intelligence company, there were
underlying expectations that the most observed keys by them
would also be the most observed keys by our methodology.



(fr
itz

fro
g)

=m
ke

y-
01

()=
m

ke
y-

02
()=

m
ke

y-
03

()=
m

ke
y-

04
()=

m
ke

y-
05

()=
m

ke
y-

06
()=

m
ke

y-
07

()=
m

ke
y-

08
()=

m
ke

y-
09

()=
m

ke
y-

10
()=

m
ke

y-
11

()=
m

ke
y-

12
()=

m
ke

y-
13

()=
m

ke
y-

14
()=

m
ke

y-
15

()=
m

ke
y-

16
()=

m
ke

y-
17

()=
m

ke
y-

18
()=

m
ke

y-
19

()=
m

ke
y-

20
()=

m
ke

y-
21

()=
m

ke
y-

22
(te

am
tn

t)=
m

ke
y-

23
(h

eh
bo

t)=
m

ke
y-

24
(m

ex
al

z)
=m

ke
y-

25
(m

ex
al

z)
=m

ke
y-

26
(m

ex
al

z)
=m

ke
y-

27
(m

oz
i)=

m
ke

y-
28

(m
uh

st
ik

)=
m

ke
y-

29
(te

am
tn

t)=
m

ke
y-

30
(te

am
tn

t)=
m

ke
y-

31
(te

am
tn

t)=
m

ke
y-

32
(te

am
tn

t)=
m

ke
y-

33
(te

am
tn

t)=
m

ke
y-

34
()=

m
ke

y-
35

()=
m

ke
y-

36
()=

m
ke

y-
37

()=
m

ke
y-

38
()=

m
ke

y-
39

(c
oi

nm
in

er
)=

m
ke

y-
40

()=
m

ke
y-

41
()=

m
ke

y-
42

(c
oi

nm
in

er
)=

m
ke

y-
43

()=
m

ke
y-

44
()=

m
ke

y-
45

()=
m

ke
y-

46
()=

m
ke

y-
47

()=
m

ke
y-

48
()=

m
ke

y-
49

()=
m

ke
y-

50
(JT

01
)=

m
ke

y-
51

(JT
02

)=
m

ke
y-

52

Malicious Key

100

101

102

103

104

Hi
ts

Hits

Figure 8: Malicious key count, port 22
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Figure 9: Malicious key vs. SSH server, port 22

This, however, is not the case, see Figure 8. The top malicious
keys identified in our scans are MK06 (16535 hits), MK35
(2050 hits), and MK32 (727 hits). We attribute this to dif-
ferent exploitation methodologies, i.e., keys observed more
frequently in our dataset being either deployed via different
methods7, or the actors behind them being more adapt in
discovering honeypots, not deploying keys there.

‘teamtnt’ and the ‘ssh’ Banner: ‘teamtnt’ emerged as a sig-
nificant threat in early 2020, primarily targeting cloud environ-
ments, including misconfigured Kubernetes clusters, Docker
APIs, and Redis servers 8. This attribution supports the hy-
pothesis that these keys may be part of an attack campaign
aimed at CDNs.

For ‘teamtnt’, we identified 757 hosts compromised by
one of their six keys. These keys are also over-proportionally
found in hosting ASes, as well as South-East-Asian networks
classified as ‘CDN’ by our data, i.e., most likely misclassi-
fied cloud networks, see Figure 10. This maps to the modus-
operandi of ‘teamtnt’, i.e., their focus on compromising sys-
tems via misconfigurations and vulnerabilities associated with
common cloud software stacks, e.g., Redis [31] and Kuber-
netes [58].

7‘teamtnt’, e.g., focused on exploiting Kubernetes setups.
8https://aquasec.com/blog/new-malware-in-the-cloud-by-teamtnt

Notably, though, one key attributed to ‘teamtnt’, MK32, is
one of two keys found on servers featuring a version banner of
simply ‘ssh’. The other key found on such hosts is MK32, and
usually overlaps with MK06 and MK36. Closer investigation
revealed that the overlapping IP addresses–either in contin-
uous netblocks in the Baidu cloud or in a hoster from Hong
Kong–belong to a Chinese Git SaaS solution gitee.com op-
erating similar to Github.

The most likely explanation for this is that the platform
is being used as the code repository by ‘teamtnt’ and the
unknown threat actor behind MK36, and the custom SSH
implementation of the Git hoster replies with a challenge for
any known key, i.e., key uploaded by a user for use with their
repository. This is also supported by these keys (and no other
keys, including the canary) having been found for all three
users we tested for on those IPs, i.e., the gitee.com platform
is not compromised. Additionally, revisiting file samples in
relation to ‘teamtnt’ compromises, we also find these tool-
chains to explicitly reference gitee.com [79–81]. We hence
conclude that ‘teamtnt’ as well as the unknown actor behind
MK06 and MK36–possibly overlapping with ‘teamtnt’–are
likely using gitee.com for hosting their source code.

IoT Botnets: When looking at Dropbear, as a software more
likely to be found on embedded devices, we only find MK01
(7 hits), MK06 (610 hits), MK46 (2 hits), MK48 (74 hits),
and MK49 (1 hit). Following up on the ASes we find these
keys in, we, e.g., find MK01 (‘fritzfrog’) to be most preva-
lent in end-user ISPs, i.e., exactly where one would expect a
large number of IoT devices. Interestingly, our–by far–most
prominent key, MK06, is also wide-spread among IoT devices.
Unfortunately, aside from the label associated with this public
key—‘mdrfckr’—we lack additional information regarding
the identity or origin of the attacker behind this activity. Still,
we reached out to the authors of a related study investigating
SSH honeypot data [64], and they confirmed that this key is
among the most aggressive attacks identified in their research
as well. Other keys found in notable frequency on Dropbear
servers, i.e., likely IoT devices, are MK48 and MK49, see
Figure 9, even though those are less constrained to ISPs, see
Figure 10.

Turning our attention to ‘muhstick’ botnet, we again find
a high prevalence, i.e., more than 95% of hits in end-user
ISPs. Incidentally, though, ‘muhstick’ is not prevalent among
hosts running Dropbear. This is likely due to its distribution
mechanic focusing on a critical Apache RocketMQ vulnera-
bility (CVE-2023-33246) 9 to achieve remote code execution,
targeting Linux servers and IoT devices for distributed denial-
of-service (DDoS) attacks and cryptocurrency mining. As
such, it is more likely to compromise home-servers beyond
embedded machines, likely to also run OpenSSH instead of
Dropbear.

9https://thehackernews.com/2024/06/
muhstik-botnet-exploiting-apache.html

https://aquasec.com/blog/new-malware-in-the-cloud-by-teamtnt
gitee.com
gitee.com
https://thehackernews.com/2024/06/muhstik-botnet-exploiting-apache.html
https://thehackernews.com/2024/06/muhstik-botnet-exploiting-apache.html
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Figure 10: Malicious key vs. AS type, port 22
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Figure 11: Malicious key vs. username, port 22
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Figure 12: MK48: SSH server and AS type, port 22

Potential State-Actor Deployment (MK48): The diverse
prevalence of MK48 throughout various AS types, see Fig-
ure 12, triggered a further investigation of this key. Specifi-
cally, the key can mostly be found in:
• Several European hosters generally renown for their af-

fordable offerings.
• Several ASes associated with a middle-eastern state (MES)

with tense relationships with most European countries.
• Individual hosts in a diverse set of ASes, often associated

to IoT devices (see above).
Notably, for the ASes where we find MK48 within the MES,

MK48 is the only key we observe. Furthermore, across all sys-

tems where this key has been found with a high frequency
(MES ASes and large European Hosters), we find a gener-
ally high rate of OpenSSH 8.2p1, i.e., the version found on
Ubuntu 20.04 LTS (Focal Fossa). This version consistency
contributes to an assumption that these systems may be asso-
ciated with the actor behind MK48 and not compromised.

A further investigation of the affected systems within Eu-
ropean hosters provided several indications of them being–at
least on the outside–being used for censorship evasion. This
included Tor setups [83], V2Ray [87], HTTPS Proxies [63,72],
and domain-fronting [32, 60]. Incidentally, MES is known for
a comparatively tight censorship regime.

Given the overall circumstances, and due to limited in-
formation available on the origin of MK48, several viable
explanations for this pattern emerged:
• Actual censorship evasion infrastructure, also leveraging

residential proxies (see Dropbear hosts).
• Censorship evasion infrastructure compromised by a state-

actor from MES.
• Operated by a state-actor from MES as censorship-evasion

‘honeypots’ in use against their citizens.
• Operated and/or compromised by a 3rdparty state actor.

Given the potential ethical implications of any possible
explanation, we immediately coordinated with our national
CSIRT. The national CSIRT handled communication with
relevant national authorities, who requested further informa-
tion and asked for MK48 to not be notified temporarily. After
several weeks, we received the information that the event was
investigated, and we could include MK48 in future notifica-
tions. No further information was shared from the authorities.
KillNet Cross-Reference: Additionally, we conducted a
cross-analysis with the KillNet DDoS Blocklist 10, which
is a list of IP addresses or networks associated with KillNet, a
pro-Russian hacking group known for launching Distributed
Denial of Service (DDoS) attacks. KillNet has been actively
targeting various organizations, particularly those in countries
opposing Russian policies. The blocklist is instrumental in
protecting networks by identifying and blocking traffic from
IPs linked to KillNet’s malicious activities.

Our motivation for using this specific list is twofold: First,
ongoing research within our group suggests a connection
between KillNet and IP addresses involved in installing public
keys. This behavior makes the IP list particularly relevant to
our study. Second, the KillNet list, unlike other blocklists,
offers a high level of attribution confidence.

Our analysis revealed that five compromised hosts are listed
on the KillNet DDoS Blocklist. All of these servers run
OpenSSH, and the keys that matched are MK06 and MK48,
with the compromised user being ‘root’. These servers are
located in ISP or hosting provider ASes in Japan, Argentina,
China, Germany, and the Netherlands.

10https://github.com/securityscorecard/
SSC-Threat-Intel-IoCs/blob/master/KillNet-DDoS-Blocklist/
ipblocklist.txt

https://github.com/securityscorecard/SSC-Threat-Intel-IoCs/blob/master/KillNet-DDoS-Blocklist/ipblocklist.txt
https://github.com/securityscorecard/SSC-Threat-Intel-IoCs/blob/master/KillNet-DDoS-Blocklist/ipblocklist.txt
https://github.com/securityscorecard/SSC-Threat-Intel-IoCs/blob/master/KillNet-DDoS-Blocklist/ipblocklist.txt


The presence of MK48 here is notable, as it adds further
options regarding the MES case around MK48 above. Given
the observation of MK06 along with MK48, it is possible
that KillNet may be the party who compromised the MES’
systems. Alternatively, the activity in and around the MES
involving MK48 may have been constructed to be able to led
to false attribution of activity by KillNet to the MES. Fur-
thermore, the MES and the organization behind KillNet may
be collaborating, for example, by creating and maintaining
censorship evasion honeypots to identify citizens trying to
attain uncensored information as indicated above. However,
as before, a conclusive assessment is not possible without
further forensic evidence from affected machines.
Summary: Using our methodology, we could illustrate the
operation of several attributed malware families. Furthermore,
we were able to identify, e.g., code repositories as well as coin-
cidences of malicious key co-location. Given further forensic
evidence, these observations may allow conclusive attribution
of specific groups to countries or regions of origin.

5.4 Port 2222 Findings
The scan of non-standard SSH port 2222 revealed a signifi-
cantly lower number of servers and subsequently identified
compromised hosts compared to the standard SSH port 22.
Among the 643k ± 5.7k servers confirmed as running SSH on
port tcp/2222, we find 547 hits corresponding to 480 unique
IP addresses and 395 unique server host keys. Again, this indi-
cates that some of the identified servers are likely configured
with multiple IP addresses or that there are shared configura-
tions across different servers. For IPv6, we only observed 8
hits for port tcp/2222.

Furthermore, we find 10 compromised IP addresses run-
ning SSH on both port 22 and port 2222, with the same server
host key present on both ports. This suggests a possible con-
figuration pattern where certain servers are accessible through
multiple SSH ports, e.g., during a transition phase to an off-
port, or due to a misconfiguration like not commenting out the
standard ssh port. In addition to these ten cases, we identified
another 15 IP addresses that share a server host key with IPs
detected in the port 22 scan, again, likely due to IP churn.

The results from the port 2222 scan, despite containing
less hosts are largely consistent with those from the port 22
scan with a few notable exceptions. Apart from the–naturally–
generally smaller number of different keys found, we actually
observe a key–MK21–only on port tcp/2222. The affected
machine was running in Amazon EC2 and has since been
disconnected. This was the only reported hit for MK21 in our
data. Additionally, we find less compromised IoT devices and
systems in end-user ISPs on port tcp/2222, see Figure 13. We
attribute this to IoT devices usually using standard ports, while
using an off-port commonly requires manual intervention.
Summary: Overall, the data suggests that while port 2222 is
less commonly used for SSH than port 22, using an off-port
for SSH does not necessarily prevent compromises.
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Figure 13: Malicious key vs. AS type, port 2222

5.5 Notable Events
In this section, we describe several notable circumstances
during our study, reaching beyond the collected data itself.
Opt-Back Hoster: A major European hoster has been opted
out of measurements from our group for several years. As
such, we initially did not plan to include this hoster, who
currently holds around 2.8 million IPv4 addresses and–likely–
a corresponding amount of VMs and dedicated servers.

However, given that this hoster is, due to the high number
of end-user controlled systems, likely to also harbor a large
amount of potentially compromised systems, we reached out
to the hoster to obtain explicit consent. After a brief discus-
sion, explicit consent was granted.

In our subsequent measurements, we find that almost 1%
of all compromised hosts identified by our methodology are
hosted in the networks of this hoster. Notably, the identified
compromised keys are dominated by two distinct keys: MK06,
which is the generally most prevalent key, and MK48. Note
that MK48 is the key related to the MES in Section 5.3. Fur-
thermore, especially the high prevalence of MK48 in this spe-
cific hoster triggered our deeper investigation of hosts found
to have this key. Hence, we likely would not have detected
the MES case without the hoster opting back in.
GitHub Key Identification: Following our observations on
gitee.com, we also verified our full key list against github.
com. Unlike with gitee.com, GitHub’s SSH implementation
does not trigger challenges on any installed key regardless
of the username. Hence, we ran a single test for all 52 keys
against a GitHub SSH endpoint with the username git.

In total, 5 keys (MK05, MK17, MK36, MK51 and MK52)
were found to be installed, with the latter two being expected
to be present, as the keys have not been removed after the
account was disabled. Notably, MK36, might be related to
‘teamtnt’, see Section 5.3. Apart from GitHub, these keys
can be found on 328 compromised hosts world-wide. The
information was shared for mitigation with a GitHub contact.
Compromised Internet Core Router: When cross-
referencing our results with data on Internet core routers from
a study going on in parallel, we found 66 IPv4 addresses that

gitee.com
github.com
github.com
gitee.com


are both compromised and have port tcp/179, i.e., BGP, open
to the Internet. After examining the server host keys, we found
that these correspond to 19 different hosts. 18 of these were
non-critical edge devices, e.g., exposed Mikrotik routers that
do not necessarily participate in the Internet core.

However, one device was one of the core-routers of a lead-
ing ISP in a large central European country, where we detected
MK06, i.e., a potential compromise by a nation-state associ-
ated attack group. In fact, the device in question was between
one and two network hops away from the ASes border when
attempting to reach hosts within the network. We reached
out to a contact with another major ISP of which the affected
one is a subsidiary. The contact relayed the information, and
incident investigation was initiated. Due to the critical nature
of this procedure, no information was communicated back to
the status of the incident investigation.
Summary: Our measurements identified additional attacker
activity on GitHub, highlighted the impact large networks
can have when opting out of measurements, and led to the
clean-up of compromised Internet core infrastructure.

6 Discussion

Here, we further discuss and contextualize implications of our
findings and responses we received during our measurements.

6.1 Internet Measurement Opt-Out and Ethics

In Section 5.5, we discuss the case of a hoster who had previ-
ously opted out of measurements from our group. However,
after getting in contact with the hoster, we were able to con-
vince them to opt back in.

In our results, around 1% of compromised hosts is located
within this hoster. Furthermore, we might have missed events
around MK48, which was noticeably pronounced in this hoster.
Hence, this single hoster not being included could have signif-
icantly changed our findings. Furthermore, missing detection
and remediation of these systems could have been causing
harm to other Internet participants.

Current discussions around ethical feasibility of Internet
scanning usually circle around an implicit assumption that
there are no negative implications, i.e., potential to cause
harm, by opting out [23]. However, this case, we argue,
demonstrates that this is not always the case. This highlights
an interesting tension for assessing ethical feasibility:

• Depending on a measurement’s purpose, an operator opt-
ing out may, unintentionally, occlude malicious activity.
This may not only impact research results, but also–as
in this case–led to potential harm for third parties.

• Researchers usually are, in all likelihood, convinced that
their measurements, especially security focused ones, are
uniquely important, and will be more inclined to assume
that opt-out by operators may hold potential for harm.

• Operators may be skeptical of network measurements,
and hence prefer to opt out over ‘enduring’ measure-
ments, including those preventing them causing harm.

While we believe that this discussion–as also greatly advanced
by Kohno et al. [54]–is already ongoing, we note a consider-
able uni-polar perspective on researcher’s actions here. How-
ever, researcher’s action can not necessarily be seen in a vac-
uum, and instead the responsibility of other parties, e.g., in
the context of Internet scanning, needs to be more thoroughly
considered by the community when evaluating ethics.

6.2 Feedback on IPv6 Measurements

During our measurements, we received several opt-out re-
quests, as well as automated and manual complaints. A few
noteworthy cases emerged during our IPv6 scans. In one
instance, we received an abuse report for a host where the
logs only showed IPv4 addresses. This was due to the log
analyzer’s inability to process IPv6 addresses.

Moreover, we encountered several instances where we re-
ceived reports related to our IPv6 scanning activity, particu-
larly from network administrators who included log messages
that resembled those generated by routers from vendors like
Cisco and Juniper. Interestingly, these reports often came
from parties that did not experience any IPv4 traffic from our
scans on those–apparently–network infrastructure systems.
This indicates that their IPv6 firewall configurations were
more permissive than their IPv4 counterparts, as we would
have otherwise probed the associated IPv4 addresses as well.
This observation suggests that IPv6 networks may sometimes
be less stringently secured, potentially exposing critical in-
frastructure to increased risks, aligning with observations by
Czyz et al. [21].

6.3 Evasion Tactics and Scalability Challenges

Attackers could potentially install a non-root or non-admin
SSH key to an account (with sudo capabilities) that they create,
as a means to evade detection. Similarly, they could use one
unique key per host or patch the SSH server to always send
a challenge. While these tactics are theoretically feasible,
they pose significant logistical challenges. Attackers would
need to meticulously track user/key combinations for each
compromised host, adding complexity and scalability issues.
As observed in our ongoing research, attackers typically aim
to make compromised systems as fungible as possible to
streamline their operations. Additionally, if attackers switch
to a non-unique user, it can be quickly detected and added to
our scan list.

Patching SSH servers presents similar difficulties. Attack-
ers would need to reliably patch a diverse range of software
across various platforms without causing system failures, a
task that requires significant effort and precision.



7 Related Work

In this section, we briefly compare to related work on (i)
honeypots, (ii) Scanning/SSH Compromises and Attacks, (iii)
Botnet Counteraction, and (iv) Threat-Actor Characterization.
Honeypots: Honeypots act like viable targets, waiting for
attackers to compromise them [18, 67]. They can generally
be implemented as VMs or on physical hardware [33, 85, 90],
and come in various specialized forms, e.g., as web [46, 94]
or mobile [93] honeypots, or with a focus on worm detec-
tion [22]. Furthermore, in 2022, Hiesgen et al. used ‘Spoki’,
a mix between a traditional network telescope and a honey-
pot to study malicious activity, finding over 10K executables,
including variants of attacks such as ‘Mozi’ and ‘Mirai’.

Regarding SSH honeypots, Kippo [53] and Cowrie [20]
are among the most widely used today [67], and commonly
form the foundation of studies of malicious activity [10, 56].
For instance, Munteanu et al. [64] use data from a honepot
setup to analyze attacks captured over a fifteen-month pe-
riod. Their work focuses on SSH brute-force attacks, malware
distribution campaigns, and botnet activity.

IoT honeypots have proven to be invaluable in identify-
ing various malware families targeting IoT devices [62, 71],
contributing information for botnet counteraction [49, 57, 73].
These studies emphasize the necessity of proactive detection
and mitigation strategies to effectively combat botnets.
Scanning, SSH Compromises & Brute-Force attacks: SSH,
being around since the 1990’s, has been frequently studied
from different perspectives. On a descriptive level, a study by
Gasser et al. [34] presents a comprehensive analysis of SSH
deployments in the wild, examining the prevalence, configura-
tion, and security practices of SSH servers across the Internet.
Several studies also investigated the behavior of brute-force
attacks against SSH [7,30,50,70,91,92,102]. Several of these
studies also suggest high-interaction honeypots to solicit fur-
ther information on attackers and enhance mitigation.

Other related work focuses on SSH brute force detection
and countermeasures, utilizing techniques such as network
flow analysis [24, 39–41, 47] and machine learning [37, 42,
43, 59, 65, 66]. However, especially machine-learning based
approaches often show a high number of false positives. A
more recent study by Sachin et al. [77] introduces a defense
mechanism that successfully blocks 99.5% of SSH brute force
attacks, significantly outperforming state-of-the-art rate-based
blocking methods while reducing false positives by 83%.

In 2019, Cao et al. [19] introduced CAUDIT, a framework
for continuously monitoring and auditing SSH servers to de-
tect and prevent brute-force attacks. The paper discusses vari-
ous brute-force methods and the use of public key authentica-
tion by malicious actors, providing a comprehensive view of
the challenges in securing SSH servers against such attacks.
Threat-Actor Characterization: Attribution and character-
ization are some of the most difficult aspects of defending
against organized or state-sponsored threat actors [6, 75, 84].

Still, these studies note that specific system properties, such
as configuration, vulnerabilities, and the perceived value of
targets, play a crucial role in shaping attacker behavior. These
factors influence the strategies attackers employ, the persis-
tence of their attacks, and the likelihood of specific types of
attacks occurring. Each study also highlights the importance
of distinguishing between human-driven attacks and those
carried out by automated bots.

As before, honeypots can be instrumental in this, as for
example shown by Sadique et al. [74], who analyze botnet
behavior, focusing on the actions and strategies employed by
attackers after compromising hosts.
Summary: Related work heavily leans on honeypots for the
identification of attacks and characterization of threat actors.
Contrary to these studies, our technique allows us to identify
threat actor compromised systems at Internet scale, even if the
systems are not in active use by attackers. Furthermore, due
to the exhaustive nature of our method, we are able to find cor-
relations between–in our case–public SSH keys employed by
threat actors, indicating the possibility of an overlap between
so-far assumed distinct groups. Overall, our approach lifts the
state-of-the-art from reactive characerization of attackers to a
proactive characterization.

8 Conclusion

In this paper, we present an Internet-scale method to identify
compromised SSH servers leveraging SSH’s behavior of only
sending a challenge for installed public keys during authen-
tication. Our method neither requires privileged access nor
does it allow us to access compromised systems, limiting the
ethical implications of our approach.

Using our method, we find more than 21,700 compromised
accounts on systems in 144 countries, compromised by at least
one of the 52 verified malicious keys provided by a threat
intelligence company. Our results uncovered compromised
servers in critical infrastructure such as core Internet routers
of a European ISP, and allowed us to uniquely characterize
behavior of known threat actors, like ‘teamtnt’, or ‘KillNet’.

In addition to one-time notifications for the data presented
in this study, we implemented continuous scanning with auto-
mated reporting via our national CSIRT and the Shadowserver
Foundation for the forseeable future, to ensure that compro-
mised machines–as well as potentially threat-actor operated
systems can be remidiated. We also plan to release our code
and collaborate with the CSIRT and threat intelligence com-
munity on further remidiation of compromised systems.

Open Science & Artifact Availability
Our measurement instrument, including the patched ver-
sion of ZGrab2, has been released under an Open
Source license and is publicly available. You can ac-
cess it here: https://edmond.mpg.de/dataset.xhtml?
persistentId=doi%3A10.17617%2F3.LVPCS6

https://edmond.mpg.de/dataset.xhtml?persistentId=doi%3A10.17617%2F3.LVPCS6
https://edmond.mpg.de/dataset.xhtml?persistentId=doi%3A10.17617%2F3.LVPCS6
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