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Abstract
Internet-wide scanning services are widely used for attack

surface discovery across organizations and the Internet. En-
terprises, government agencies, and researchers rely on these
tools to assess risks to Internet-facing infrastructure. However,
their reliability and trustworthiness remain largely unexam-
ined. This paper addresses this gap by comparing results from
three commercial scanners – Shodan, ONYPHE, and LeakIX –
with findings from our independent experiments using verified
Nuclei templates, designed to identify specific vulnerabilities
through crafted benign requests. We found that the payload-
based detections of Shodan are mostly confirmed. Yet, Nuclei
finds many more vulnerable endpoints, so defenders might
face massive underreporting. For Shodan’s banner-based de-
tections, the opposite issue arises: a significant overreporting
of false positives. This indicates that banner-based detections
are unreliable. Moreover, three commercial services and Nu-
clei scans exhibit significant discrepancies. Our work has im-
plications for industry users, policymakers, and the many aca-
demic researchers who rely on the results provided by these
attack surface management services. By highlighting their
shortcomings in vulnerability monitoring, this work serves as
a call for action to advance and standardize such services to
enhance their trustworthiness.

1 Introduction

For over a decade, Internet-wide scanning tools have been
used in industry and academia for attack surface monitoring
and detection of vulnerable hosts. These tools typically em-
ploy two main approaches: one interprets banner data to iden-
tify vulnerable software versions, while the other uses crafted
packets – containing specific payloads, custom headers, and
other parameters – to directly probe hosts for vulnerabilities.
The payload-based approach is seen as more reliable, but both
techniques are used in practice. Services like Shodan [41],
ONYPHE [35], LeakIX [26] and BinaryEdge [5], scan the
Internet using these approaches and tag hosts with specific

vulnerability labels, typically corresponding to CVE iden-
tifiers (Common Vulnerabilities and Exposures [34]). Later,
network defenders – the consumers of these services – can run
simple queries to find vulnerable Internet-facing hosts. For
example, the United States Cybersecurity and Infrastructure
Security Agency (CISA) employs the market-leader Shodan
to monitor and assess Internet-facing network assets of other
federal agencies and evaluate their vulnerability status [11].
Academic researchers have also relied on these services for
collecting data (e.g., [18, 28]). For example, according to
Google Scholar, Shodan is referenced in conjunction with
CVE in around 1,500 research papers.

Given that many governments, companies and researchers
use these services, it is important we gain a better understand-
ing of the accuracy and completeness of their CVE detection.
Earlier research has already exposed some of their limitations.
They miss detections compared to more intrusive methods
(e.g., Nmap scans [25]), privileged vantage points (e.g., In-
ternet exchange traffic [3]), and more bespoke approaches
(e.g., AI-based analysis of web interfaces [38]). Moreover,
the absence of ground truth about which endpoints in the
wild are actually vulnerable is another perennial problem for
vulnerability scanning research. Our goal is to conduct an
independent white-box measurement and compare the results
to those of three industry scanners: Shodan, ONYPHE, and
LeakIX. While they are a subset of all scanning services, they
show up on most top-10 lists of scan engines for industry
security researchers (e.g., [42]), so they represent a significant
portion of the leading services in this market.

We will evaluate the banner-based and payload-based detec-
tions of those services by comparing them against each other
and against our independent and synchronous payload-based
measurements using Nuclei templates [32]. We repeatedly
scanned 104,930 endpoints (IP:port pairs) that are all included
in Shodan’s scan results, so they are not blocking external
scans. Our scans searched for 37 CVEs: 17 CVEs are in-
cluded in Shodan’s payload-based scans (tagged as ‘verified’
detections) and 20 CVEs are part of its banner-based scans
(tagged as ‘unverified’ detections). While 37 CVEs might



seem like a small sample, the reality is that each service offers
payload-based detections for only a limited set of CVEs. For
example, Shodan tracks 38 CVEs and ONYPHE 54 CVEs,
with only 8 in common. This limited overlap severely con-
strains how large the sample can be to compare the detections
for the same vulnerability across different services. In sum,
our 37 samples capture a significant portion of payload-based
scanner results.

Shodan tracks a further 8199 CVEs and ONYPHE 64 CVEs
using banner-based methods. Here, only 10 overlap, which
again provides a small set for comparison. More importantly,
these banner-based methods are reported by the services them-
selves as less reliable and thus are less suitable for evaluating
accuracy. We do include them in the analysis, but do not claim
that our small set is fully representative of the thousands of
CVEs Shodan is tracking with banner-based methods.

We quantified the level of agreement among the results. Our
Nuclei scans confirmed most of the payload-based detections
from Shodan and ONYPHE. Yet, Nuclei detects many more
vulnerable endpoints, raising concerns about false negatives.
When comparing Nuclei to banner-based CVE detections,
Nuclei finds that these are extremely noisy, to the point of
being useless. Nuclei finds 95% of Shodan’s banner-based
detections to be false positives. Remarkably, Shodan implic-
itly confirms the unreliability of those detections, as for two
CVEs it runs both banner-based and payload-based scans and
gets zero overlap, confirming Nuclei’s disconcerting findings.
The community knows that banner-based detections are noisy,
but our findings suggest the situation might be much worse
than that. All in all, our findings raise substantial concerns
about the accuracy of vulnerability-scanning services. In sum,
we make the following contributions:
• We use Nuclei to conduct an independent evaluation of the

vulnerability tagging performance of Shodan, ONYPHE,
and LeakIX. We quantify the level of agreement among the
four scanning solutions across 37 CVEs.

• For payload-based detections, we uncover large discrepan-
cies. While there is a core set of agreed-upon detections,
a much larger portion shows disagreement, highlighting
substantial accuracy issues that affect enterprises relying on
these services for attack surface monitoring and academic
researchers using them to gather vulnerability data.

• For banner-based detections, we find that over 95% consists
of false positives. Even using them as “starting points for
further investigation”, as Shodan describes, is highly ques-
tionable, since none of the payload-based detections fall
inside the set of banner-based detections. This also suggests
the widespread use of banner-based vulnerability detection
in academic work is problematic.

• We complement our evaluation with a ground truth-based
evaluation of 10 CVEs, exposing to the Internet Docker con-
tainers within three states: vulnerable, patched/mitigated,
and non-vulnerable. We show that the precision of Nuclei

scans reaches 100%, while Shodan and ONYPHE report
only 86% and 80% correspondingly. At the same time, Nu-
clei’s recall is only 79% – it misses 4 vulnerable hosts –
while ONYPHE’s result is perfect.

• During the ground truth experiment, we observed no crashes
or service malfunctions as a result of Nuclei scans, sup-
porting our earlier tests that verified templates are safe to
employ.

2 Background and Related Work

There is a range of companies offering similar services for
monitoring the attack surface of organizations [5, 9, 20, 26,
35, 50]. Typically, the data provided by these search engines
includes general information about hosts (e.g., country, orga-
nization, etc.), which ports are open, what services are run-
ning on them, and whether certain vulnerabilities are present.
While their toolchains are mostly proprietary, they rely on
approaches that are also well-known in academic research on
vulnerability scanning.

The first step is typically employing fast scanning tools to
discover reachable hosts and open Transmission Control Pro-
tocol (TCP) and User Datagram Protocol (UDP) ports [30].
During the second step, the service performs a full handshake
either using the protocol based on the IANA-assigned services
list [14] or by deducing the protocol dynamically [22]. Over
the years, researchers [4, 45] have been attempting to under-
stand the Shodan scanning behaviors since it mostly acts as a
black box to users. They ran virtual machines worldwide and
discovered that Shodan allocates different scanning ports and
scanning priorities across its scanners. Each VM received,
on average, 176 scans from Shodan per day [4]. Tundis et
al. [45] ran 8 honeypots and observed that Shodan discovered
all of their services within 31 days. They also pointed out
that the longest scan interval between two scans is around
15 days. Bodenheim et al. [7] deployed four Internet-facing
programmable logic controllers, and Shodan fully identified
them within 19 days.

In the third step, the search engines analyze the obtained
information with algorithms, which typically constitutes their
“know-how”. They annotate the hosts with tags or annotations,
which can be later queried by users. Many of the services,
including Shodan, provide information about possible vulner-
abilities in the corresponding hosts.

Prior work developed two main approaches to getting
from scan results to vulnerability detection: banner-based
and payload-based methods.

Banner-based detection. This method employs the informa-
tion from banners to extract the Common Platform Enumer-
ation (CPE) [33] string or other identifiers, used to identify
software and its version. This information is then checked
against a list of CVEs associated with specific software ver-
sions. Some researchers collect the host metadata themselves,



and others leverage public scan data such as Censys [9]. Laš-
tovička et al. [25] used NetFlow [13] and Nmap [29] to collect
host information and create CPE labels for their university
network. Then, they compared the CVEs inferred from CPE
information with CVE tags from Shodan for the same target
IPs. Shodan returned fewer CVE results than their scans.

There are some downsides for CPE-inferred CVEs, which
may cause the CVE results to become inaccurate. For exam-
ple, banner or service version information can form multiple
CPE combinations due to different naming schemes among
vendors and devices. Ushakov et al. [46] developed an al-
gorithm to map software products to related CPE entries to
obtain CVE lists and assess security risks. Sanguino et al. [37]
proposed a tool to help users find suitable CPE strings for
target software to decrease the potential wrong CVE map-
ping. Thomas et al. [44] studied vulnerabilities in Siemens
Industrial Control Systems (ICS) related devices. They dis-
cussed the inconsistency of product and vendor information
presented in CPE format and between CVE and CPE infor-
mation. Among the selected 207 CVEs, there were 15% of
CVEs had affected devices in their description but were not
entirely in their CPE lists. This inconsistency may cause a
false negative or positive for understanding any potential risk.
Moreover, even a correct CPE may not be accurately associ-
ated with a CVE due to backporting. West et al. [48] used the
Censys dataset [9] to observe OpenSSH software updates for
enterprises. They pointed out that version information may
not be accurate for measuring how outdated the software is
since some of them may apply a backport version, i.e., a new
patched software based on an old version.

Payload-based detection. Finding the existence of CVEs
through actual payload exchange is more reliable than using
CPE data. However, this CVE detection type is often highly
specialized and can be impractical to use on a large scale [25].

Researchers studied various ways to detect vulnerabil-
ities on the Internet through benign payload-based meth-
ods [16] [24] [2] [10]. Durumeric et al. [16] sent out crafted
packets without payload or padding to discover the popula-
tion of Heartbleed vulnerability in the IPv4 address space.
Koot [24] studied the prevalence of CVE-2019-11510 in
the Netherlands. He tested the vulnerability by exploiting
a crafted path. Antrobus et al. [2] developed a vulnerability
scanner to identify multiple vulnerabilities ranging from weak
cipher checks to Denial-of-Service tests. They conducted ac-
tual vulnerability checks, such as parsing URLs or testing the
usage of unpredictable tokens. Gao et al. [10] studied vulner-
ability detection through Internet-wide scans for three CVEs.
They used ZMap to detect open ports and sent special packets
containing certain strings or objects to fingerprint the vul-
nerabilities. Similarly, Yu et al. [49] discussed Internet-wide
vulnerability detection by sending special packets.

In our work, we do not rely on banner-based detections, but
use the Nuclei toolchain [31] to conduct payload-based detec-
tions. Though prior work has compared scan results against

Shodan, these were typically using different methods – more
intrusive (e.g., Nmap scans [25]), using privileged vantage
points (e.g., Internet exchange traffic [3]), and more bespoke
approaches (e.g., AI-based analysis of web interfaces [38]).
These are not apples-to-apples comparisons, however. These
alternative approaches are not as scalable as banner-based
and payload-based methods, so they are not substitutes. To
the best of our knowledge, no prior work has compared differ-
ent leading industry vulnerability monitoring services against
each other and against an independent white-box measure-
ment using the same type of toolchain.

3 Methodology

Figure 1 outlines the workflow of our study. There are two
phases: (I) CVE Selection and (II) Vulnerability Scan. The
goal of Phase I is to select a set of CVEs for comparison. This
set is then scanned in Phase II.

Our goal is to compare three industry scanners (Shodan,
ONYPHE, and LeakIX) to each other and to our independent
scans using the Nuclei toolchain (more on this below). Select-
ing a representative sample of CVEs where we can compare
the results is complicated, however. Each service tracks a dif-
ferent set of CVEs and the intersection of them is very small.
Using payload-based methods, Shodan tracks 38 CVEs and
ONYPHE 54 CVEs, with only 8 in common. Only 4 of these
are tracked by LeakIX. In short, we cannot simply focus our
analysis on the intersection of these three services, since the
intersection is too small. An additional requirement is that we
also need to be able to scan for those CVEs ourselves. This
makes us dependent on the availability of Nuclei scanning
templates for those CVEs and they are not always available.
So this adds a fourth scanning solution to the intersection,
making it even smaller.

Instead of focusing on the intersection of all three services
plus the set of available scanning templates, we developed a
broader sample of CVEs that allows us to make comparisons
across two or more scanning solutions (meaning the three
industry services and our own Nuclei setup). To bootstrap this
process, we started with the market leader Shodan.

3.1 Phase I: CVE Selection

Step 1a. Select CVEs from Shodan: We employed the
stats Application Programming Interface (API) provided by
Shodan to extract all CVE-IDs tracked by the platform. In
total, Shodan tracks 8,237 CVEs. Of these, just 38 are tagged
as verified, so based on payload-based scans, while 8,199 are
tagged as unverified, so based on banner data (see first row in
Table 1).

Step 1b. Select CVEs from Nuclei: The next step is to check
for which of these CVEs we can do our own scans. Our scan-
ning toolchain is based on Nuclei [31], a fast and customizable
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Figure 1: Research Workflow.

Table 1: CVE coverage by different scan types.

Category Payload Banner Total

# Shodan CVE 38 8,199 8,237
# CVE with Templates 20 83 103
# Validated Templates 3 20 23
# Unvalidated Templates 14 0 14

# CVE Selected 17 20 37

vulnerability scanner. The procedure for performing a scan
and analyzing the obtained data is specified in a template.
Due to the simple YAML-based Domain Specific Language
(DSL) used to develop templates, it has become very popular
among security researchers. The templates are contributed
by a large community of volunteers and stored in the offi-
cial nuclei-templates repository [32]. We retrieved a list of
all Nuclei Templates from the repository on May 10, 2024
and extracted the corresponding CVE-IDs from the cves.json
file in the repository, which specifies the CVEs that these
templates support. As of May 2024, the Nuclei repository
contained 2,437 templates for detecting CVEs.

Step 2. Find CVE Intersection: We computed the intersec-
tion between both sets of CVE-IDs. There are 103 CVE-IDs
present on both platforms. Of these, 20 CVEs are payload-
based detections by Shodan, while 83 are banner-based (see
the second row in Table 1).

Step 3. Validate Templates: Given that Nuclei templates are
community-developed, it is crucial to validate their effective-

ness in detecting the specified vulnerabilities. To accomplish
this, we utilized Docker [15] to set up isolated, portable en-
vironments known as containers against which we can test
the Nuclei templates. To speed up the process of finding
relevant Docker environment specifications, we utilized the
Vulhub [47] data. Vulhub is a GitHub repository that stores
a collection of pre-built vulnerable Docker environments for
specific CVEs. As of June 2024, it provided environment-
building specifications for 204 CVEs.

Out of the 83 Shodan CVE detections based on banner data,
the Vulhub project provides Docker environments for 25 of
them. We deployed these 25 Docker environments and manu-
ally validated the performance of the Nuclei templates. A total
of 6 Nuclei templates failed to confirm the presence of vul-
nerabilities in their respective vulnerable environments. We
conducted a detailed investigation of these cases. For 4 CVEs,
we identified the cause and made modifications to improve the
templates’ detection capabilities. For CVE-2014-3704, CVE-
2018-7600, and CVE-2019-3396, we adjusted the headers ei-
ther in the sent requests or in the matching conditions. In the
case of CVE-2018-18778, we did not alter the template itself
but instead modified the input format. The original template
executed HTTP requests but did not revert to HTTPS when
an error occurred. To ensure both protocols were checked, we
manually adjusted the input file to specify both HTTP and
HTTPS explicitly. The template for CVE-2018-19518 failed
to detect the associated vulnerability and no straightforward
remediation was available, so we excluded it. Another tem-
plate, for CVE-2018-7602, was excluded because it required
knowing the username and password for the target service. So



this left us with 23 validated templates. We excluded an ad-
ditional 3 templates (for CVE-2022-0543, CVE-2022-24706,
and CVE-2020-1938) because they required additional interac-
tions with target hosts, potentially resulting in indefinite scan
durations. Ultimately, we selected 20 CVEs from the Shodan
banner-based category, for which the Nuclei templates were
deemed valid and effective.1

Among the 20 Shodan payload-based CVE detections,
only 2 had corresponding Nuclei templates with compati-
ble Docker environments available from Vulhub. To expand
the number of templates we could validate, we explored offi-
cial Docker repositories and identified suitable environments
for additional 4 templates. We then tested these 6 templates.
Among them, 4 passed the validation process. We excluded
the template for CVE-2023-33246 from the validated set be-
cause it required additional interactions with target hosts, po-
tentially leading to indefinite scan durations. Notably, the
CVE-2015-2080 template failed due to an illegal character
in the header field, intended to trigger the vulnerability. This
illegal character prevented Nuclei from sending the correct
packets. This issue has been reported to the Nuclei develop-
ment team for further investigation. The remaining 14 tem-
plates are not validated because the associated software, e.g.,
Microsoft Exchange Server, is extremely difficult to set up in
a Docker environment. However, we decided to include these
CVEs in our final set, so as to have a broader comparison of
payload-based CVE scans, even though we were unable to
independently validate them. We assume their performance is
comparable to the ones we were able to validate. In the end,
for Shodan payload-based CVE scans, we selected 3 CVEs
with validated templates and 14 with not-validated templates.

In conclusion, our final set of CVEs includes 20 Shodan
banner-based CVEs and 17 Shodan payload-based CVEs.
Table 4 in Appendix A provides a detailed overview of these
37 CVEs and their characteristics. The CVEs span a range of
severity levels, with CVSS scores varying from 5.3 to 10.0,
indicating a broad spectrum of risk from moderate to critical
vulnerabilities. The average CVSS score among these CVEs is
8.9, reflecting a predominance of high-severity vulnerabilities
that pose security risks across the affected endpoints.

Step 4. Check Intersection with ONYPHE and LeakIX: We
further examined the intersection of the selected CVEs with
those tracked by ONYPHE2 and LeakIX3, as detailed in Ta-
ble 4. In total, 11 CVEs from our list intersect with those
tracked by ONYPHE, while 8 intersect with LeakIX. And 7
CVEs are tracked by all four scanners.

1We enhanced the CVE-2021-41773 template by adding a URL path
based on Vulhub’s checks. This modification enabled the detection of 200
more vulnerable hosts compared to the original template in our scans.

2The complete list of CVEs tracked by ONYPHE, along with their CVE
selection policy, is available at https://www.onyphe.io/docs/dorkped
ia/vulnscan-cve-list.

3LeakIX uses plugins to detect potential security issues and CVEs, we
included the relevant plugin names capable of detecting these CVEs. The list
of plugins is available at https://leakix.net/plugins.

3.2 Phase II: Vulnerability Scan

To collect data points to compare CVE detections of Shodan,
ONYPHE, LeakIX, and Nuclei, we followed four steps.

Step 1. Extract Vulnerable Endpoints: We need to build a
set of endpoints – where endpoints are defined as IP:port
tuples – that have results in the industry scanners while also
be scannable with Nuclei. We build our set of endpoints from
recent Shodan scan results – thereby ensuring that Shodan can
reach and scan these endpoints. If we were to choose random
IPv4 addresses or networks, it would likely contain some
IP space where Shodan is blocked by the network operator,
while our ad hoc Nuclei scans might have normal access. This
would bias the comparison against Shodan. Given that Shodan
is the most well-known scanner, if it is not blocked for certain
endpoints, we assume that the network administrators also
did not block ONYPHE and LeakIX.

To build the set of endpoints, we used Shodan’s search
API to extract the set of endpoints that it had detected as
vulnerable for any of the 37 selected CVEs in the first three
weeks of July 2024, just before the start of our scanning period.
Shodan performs scans irregularly. According to Tundis et
al. [45], the longest scan interval is around 15 days. So we
employed a slightly longer period of 21 days to maximize the
number of endpoints that have an updated scan result.

Some CVEs are detected at a large scale: hundreds of thou-
sands of vulnerable endpoints. For instance, we collected
956,543 IP:port tuples for CVE-2017-15715 and 721,310
instances for CVE-2021-40438. As we want to perform our
scans in a reasonable time, we restricted number of selected
endpoints to 15,000, by randomly sampling them from all
results for that CVE. Then, we combined all selected end-
points into a single set, obtaining a total of 105,232 entries.
We excluded the entries with IPv6 addresses, since ZMap
only accepts IPv4 addresses. This generates the final dataset
containing 104,930 endpoints (unique IP:port combinations),
which we call the superset. Across the set, there are 1,244
unique ports and 94,265 IPv4 addresses.

We observed a small proportion of honeypots within the
superset.4 Honeypot services can introduce bias when evalu-
ating the safety level of a system, as their primary purpose is
to study attacker behavior. However, since these services in-
herently present vulnerable environments, we opted to retain
them, treating them as true positives for CVE detection scans.

Step 2. Check Endpoint Availability: We used ZMap [17]
to scan the IPs and ports from the superset obtained in the
previous step. We used the ZMap version that has not yet got
the multi-port scanning functionality, therefore, we grouped
our dataset by a port number and run the ZMap scan for each
group and port number. We ran 15 instances of ZMap in
parallel, limiting the speed of each scanning process to 1,000

4Out of the 69,369 IPv4 addresses collected for 17 Shodan payload-based
CVEs, only one IP address was identified as a honeypot by Shodan.

https://www.onyphe.io/docs/dorkpedia/vulnscan-cve-list
https://www.onyphe.io/docs/dorkpedia/vulnscan-cve-list
https://leakix.net/plugins


packets per second. It took us approximately 14 minutes to
check all the endpoints from our dataset. The results of the
scan were merged into one resulting file in a random order.

Step 3. Scan CVE Templates: From July 28 to August 17,
2024, we scanned all endpoints obtained during the previous
step with all 37 Nuclei templates. Since the maximum scan
interval for Shodan is 15 days [45], our three-week collection
period would ensure we would capture a fresh Shodan scan
result for each endpoint to compare our scan results against.
We applied these templates sequentially, meaning that at each
point in time we only scanned one vulnerability for all avail-
able endpoints. We configured Nuclei to analyze 150,000
endpoints in parallel (async mode). It took 1.5 hours on av-
erage to complete the scan of all available endpoints for one
CVE, and about 3 days and 4 hours to finish scanning for all
selected CVEs. Once the scans for all 37 CVE templates were
completed, we let our scanner rest for 24 hours before resum-
ing the process from Step 2. This procedure was repeated 5
times during our data collection period. Note that our Nuclei
scans did not lead to crashes or service malfunctioning in an
additional experiment that we report in Section 5.

Step 4. Analyze Scan Data: Any scan is a snapshot in time.
If the scan result of Nuclei is different from that of other
scanners, this might be caused by a difference in timing. In
between the scans, the situation at the endpoint might have
been changed, e.g., it might be patched. To address this tim-
ing factor, we conducted consecutive Nuclei scans to ensure
consistent results. By verifying that subsequent Nuclei scans
produce stable outcomes, we minimize the likelihood that dis-
crepancies with other scanners are caused by sudden changes
at the endpoint itself. Following the completion of our Nu-
clei data collection, we retrieved scan data from Shodan,
ONYPHE, and LeakIX for all endpoints in our superset, col-
lected within the same time frame as the Nuclei scans. These
datasets were then systematically compared to evaluate the
level of agreement across scanners.

4 Measurement Results

In this section, we present the results of our measurements
that aim to assess the reliability of CVE detections of scanning
services, including Nuclei, Shodan, ONYPHE, and LeakIX.

4.1 Scan Performance
Each of the 104,930 endpoints in our set is scanned 5 times
with all 37 CVE templates. Thus, in total, we collected
19,412,050 scan records. Figure 2 illustrates the statistics
across these scans, visualizing the number of scanning records
that have ZMap-detected not reachable results5 and the Nuclei
detection outcomes, which are categorized into cases where

5On average, each scan contains 28,250 unresponsive endpoints, account-
ing for 26.58% of the total IP addresses.
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Figure 2: Summary of scanning records by scan.

some error occurred and cases with a clear outcome (CVE
and No CVE).

We present the categorization of scan records for each CVE
in Figure 3. This figure illustrates the overall composition of
scan results for each CVE across the entire scanning period,
including the number of records where ZMap identified end-
points as unresponsive, the instances where Nuclei returned
errors (indicating indeterminate CVE status), and the records
where Nuclei successfully completed the scan and returned a
result of CVE detected or not detected. As shown in the figure,
all CVEs share a very similar amount of ZMap “unavailable
endpoint” records (141,251 scanning records). For the major-
ity of CVEs, the predominant outcome category is “No CVE,”
with an average of 353,338 records per CVE falling into this
category. The highest count of “No CVE” detected records
is observed for CVE-2020-7247, with 383,310 records, while
CVE-2018-18778 has the fewest, with 69,933 records.

Interestingly, Nuclei error accounts for only a small fraction
of all results, an average of 25,629 records per CVE. How-
ever, specific CVEs, such as CVE-2018-18778 (a vulnerability
in ACME mini_httpd) and CVE-2020-5902 (a vulnerability
affecting F5 BIG-IP-related products), exhibit a disproportion-
ately large number of Nuclei error records, with 313,464 and
263,972 records, respectively. This indicates that Nuclei could
not conclusively determine the presence of these CVEs due to
issues such as fallback failures. CVE-2018-18778 also encoun-
tered errors related to malformed HTTP responses or incorrect
status codes, while CVE-2020-5902 experienced errors asso-
ciated with the failure to parse the response header. While the
number of scan records indicating a detected CVE presence
is relatively small compared to other categories, these records
provide critical insights into the vulnerability landscape as ob-
served by Nuclei. The most frequently detected CVE among
our superset of endpoints is CVE-2015-1635, a vulnerability
related to Microsoft Windows that carries a CVSS score of 10
(HIGH), underscoring its prevalence and severity. Of the 37
CVEs evaluated, seven have more than 10,000 scan records
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Figure 3: Categorization of CVE scan records by failure types and detection outcomes in ZMap and Nuclei scans.

indicating a confirmed CVE presence.
From the 19,412,050 scan records, we dropped the scan

records with ZMap: endpoint not available and Nuclei: Er-
ror. Then, we conducted a detailed analysis for each CVE to
determine the number of endpoints with consistent vulnera-
bility detection results versus those with inconsistent results.
Visualized in Figure 11 in Appendix C, the distribution of
consistent and inconsistent results across CVEs shows that
only a small fraction of endpoints exhibit inconsistencies.
To ensure accurate analysis, we exclude endpoints with in-
consistent results due to their fluctuating vulnerability status.
Such variability makes it difficult to draw reliable conclu-
sions or compare them with data from other scanning sources,
as these endpoints may change their status over time, and
different scanners may yield varying results. In total, we col-
lected 13,196,431 scan records with consistent scan results
for 81,681 endpoints.

4.2 Agreement between Shodan and Nuclei
We further queried Shodan for data on whether the endpoints
from our superset were vulnerable to any of the 37 selected
CVEs during the same period as the Nuclei scans (July 28 to
August 17, 2024). To align Shodan’s data format with that of
the Nuclei scan results, we transformed Shodan’s aggregated
data, which tags multiple CVEs to a single endpoint, into
a detailed dataset. Specifically, each endpoint with multiple
CVE tags was expanded into individual scan records, each
comprising the IP address, port, and a single CVE tag. In total,
we obtained 40,087 scan records for 34,351 endpoints.

We now analyze to what extent our Nuclei scans agree with
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Figure 4: Percentage of endpoints classified as vulnerable or
non-vulnerable by Nuclei and/or Shodan for payload-detected
CVEs.

Shodan on the vulnerability status of an endpoint. We present
the results for Shodan’s payload-based scans separately from
the banner-based ones since those methods are very different,
and the latter is seen as less reliable.

Figure 4 shows the Nuclei results for all Shodan’s payload-
based detections. The results show noticeable variation in
agreement across different CVEs. Some CVEs exhibit high
agreement between Shodan and Nuclei (areas marked in red).
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Figure 5: Percentage of endpoints classified as vulnerable or
non-vulnerable by Nuclei and/or Shodan for banner-detected
CVEs.

In others, Nuclei confirms the detections of Shodan, but finds
many more vulnerable endpoints that Shodan missed (orange).
Finally, for other CVEs Nuclei contradicts the detections of
Shodan, finding no vulnerability (blue).

For 11 out of 17 CVEs (65%), we find that Nuclei does not
substantially contradict the Shodan results, with less than 10%
of the Shodan detections not confirmed by Nuclei. That said,
for 10 CVEs, Nuclei finds many more vulnerable endpoints
than Shodan: a factor of 2-36 more vulnerable endpoints
depending on the CVE. Across all results, Nuclei reports
13,275 more detections than Shodan. This raises the ques-
tion of whether Shodan verified results suffer from a large
false-negative rate. Since there is no ground truth, we cannot
ascertain that this is the case. The alternate explanation is that
the Nuclei detections are incorrect.

These differences seem unrelated to whether the template is
validated or not. There are three validated templates (marked
by a single asterisk at the beginning of the CVE-ID). In the
first case, Nuclei confirms Shodan’s detections but discovers
a factor of 10 more vulnerable endpoints (CVE-2021-41277).
The second case reports a majority of consistent results (CVE-
2021-43798), while the third case reports overwhelmingly
contradictory results, where Nuclei disagrees for almost all
endpoints with Shodan’s detection for CVE-2022-36804.

We further investigate the underlying factors contributing
to the varying levels of detection agreement among these three
CVEs. For CVE-2021-41277, it is a vulnerability in Metabase
with GeoJSON map support that allows potential local file
inclusion via specific path queries, such as path with string:
/api/geojson?url. Similarly, CVE-2021-43798 is a directory
traversal vulnerability affecting Grafana services, detectable
by probing paths including string: /public/plugins/<“plugin-

id”>/ (Nuclei template for this CVE uses “alertlist” as the
plugin-id). Nuclei scans for these CVEs both rely on target-
ing paths associated with default service configurations. In
contrast, detecting CVE-2022-36804 in Bitbucket requires
access to a public repository or read permissions for a private
repository. As noted by Bitbucket Support, temporary mitiga-
tion involves globally disabling public repositories: “If you’re
unable to upgrade Bitbucket, a temporary mitigation step is
to turn off public repositories globally...” [6]. Nuclei’s tem-
plate attempts to access the latest project within the targeted
repository; however, the detection rate may be low because
vulnerable services can be quickly mitigated by disabling pub-
lic repository access. This makes confirming the presence of
the vulnerability challenging, despite its high severity (CVSS
8.8). We speculate that the disagreement for this CVE is due
to differing detection methods used by the two scanning tools.

Next, we compare Shodan’s banner-based CVE detections
with Nuclei detections (Figure 5). In this comparison, almost
all Nuclei templates were validated (as marked by an aster-
isk at the beginning of each CVE-ID) except one template
(CVE-2021-34473). The first thing we can see is that Nuclei
disagrees with the bulk of the Shodan detections (marked by
the blue area). Only for 3 out of 21 CVEs is there a meaningful
degree of agreement, meaning that Nuclei confirms some por-
tion of Shodan’s banner-based detection: CVE-2021-21311,
CVE-2017-12635, and CVE-2022-36804. For 18 out of 21
CVEs, Nuclei contradicts over 95% of the Shodan banner-
based detections. While it is well-known that banner-based
detections are less reliable, these findings suggest that they
consist almost completely out of false positives.

There are two CVEs (CVE-2022-36804 and CVE-2021-
34473) where Shodan conducts both types of scans: payload-
based and banner-based. So its search engine reports two
separate sets of scan results for each CVE: one labeled as ver-
ified and one as unverified. Stunningly, we find zero overlap
in endpoints between the verified and unverified results. So
even Shodan’s own scans contradict completely the unverified
CVE detections.

Now, one might reasonably expect that banner-based detec-
tions are noisy. Indeed, this is why Shodan explains they “can
have significant false positives [...] They should be seen as a
starting point for further investigation”. In other words, their
value is that some fraction of them will be true positives. Fol-
lowing this logic, Shodan’s own “verified” detections should
fall within the set of “unverified” detections. Yet, as said, not
a single banner-based detection contains the actual vulnerabil-
ity, even according to Shodan’s own scans. We see the same
pattern for our Nuclei detections. Yet that is not what we see.
The bulk of the Nuclei detections are not detected by Shodan’s
banner-based scans (the areas in orange), so they are not a
subset of the banner-based detections. This means that the
banner-based detections do not seem a useful “starting point
for further investigation”. For researchers using Shodan’s un-
verified CVE detection as data, the problem is arguably even



worse. The doubts about data quality seem to render these
detections unusable for scientific research.

Overall, banner-based detection appears to be highly prob-
lematic, likely due to several limitations inherent in using
version information to identify CVEs. These errors can
arise from inaccuracies in mapping banner information to
CPE strings [37], incorrect associations between CPEs and
CVEs [44], or backporting practices where patched services
are built on older software versions [48], all of which con-
tribute to inaccurate CVE identification.
Take-Away. In sum, for Shodan payload-based detections,
defenders might face massive underreporting of vulnerable
endpoints, while for Shodan banner-based detections they face
massive overreporting. Given that payload-based methods are
more reliable than banner-based, it seems the overwhelming
majority of banner-based detections are false positives. Even
Shodan itself confirms this implicitly, since for two CVEs
their verified and unverified detections have no overlap what-
soever, which means their own results imply a 100% false
positive rate. This corroborates our finding from Nuclei that
banner-based detection is extremely unreliable. In the Discus-
sion (Section 6), we will reflect on the implications of these
findings for both security professionals as well as academic
researchers relying on these detections.

4.3 Comparison with ONYPHE

We now extend our comparison by including ONYPHE [35],
a competitor of Shodan. ONYPHE focuses on the CVEs in the
CISA KEV (Known Exploited Vulnerabilities) Catalog [12].
This means they prioritizing CVEs that are exploited at scale.
They employ both banner-based (tag:vulnerableversion)
and payload-based (tag:vulnerable) methods to identify
vulnerable endpoints, covering a total of 115 CVEs.6 One
important limitation to acknowledge is that the superset is de-
rived from Shodan hits, i.e., endpoints scanned by Shodan for
specific CVEs. However, ONYPHE conducts scans based on a
substantially different set of CVEs, focusing on those deemed
critical and actively exploited through their proprietary threat
intelligence. Also, ONYPHE targets specific ports, resulting
in limited overlap between their scans and Shodan’s scans.

We plot the comparison between our Nuclei results and the
ONYPHE results in the same way as in our Shodan compari-
son. Figure 6 presents the results. The pattern looks remark-
ably similar. For 8 out of 10 CVEs, our scans do not contradict
ONYPHE’s detections. Less than 5% of the detections are

6Unlike Shodan, ONYPHE performs weekly scans for their targeting
115 critical CVEs. We contacted ONYPHE and they generously shared
their detection results with us, after we provided them with our superset of
104K endpoints and CVE list. These detections were collected in the same
period where we performed our experiments: July 28 to August 17, 2024.
This dataset contains a total of 16,714 detections across 1,053 endpoints.
They contain results from both banner-based and payload-based vulnerability
detection methods employed by ONYPHE. These are detailed in Table 4 in
Appendix A.
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Figure 6: Percentage of endpoints identified as vulnerable or
non-vulnerable by Nuclei compared to ONYPHE.
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Figure 7: Percentage of endpoints identified as vulnerable by
Shodan compared to ONYPHE.

not confirmed by Nuclei. Yet, just as with Shodan, for those 8
CVEs Nuclei detects substantially more vulnerable endpoints:
ranging from 1.1 to 104 times more (as measured by dividing
the area marked in orange by the areas in red and blue). Also,
for CVE-2023-27350, we find no detections in Nuclei, while
ONYPHE found three. The same result occurred in the com-
parison to Shodan, where Nuclei found none, while Shodan
found 51 vulnerable endpoints (Figure 4). This strongly sug-
gests that this Nuclei template is not valid. Since this pattern
is consistent across both Shodan and ONYPHE, it raises the
question of whether our detection has a higher false positive
rate. Perhaps a commercial provider is more likely to report
conservatively and avoid false positives to its clients? Still,



since companies rely on these services for attack surface mon-
itoring, our findings do confirm the urgency of investigating
the potential for high false negative rates in future work.

We performed a direct comparison between ONYPHE
and Shodan by analyzing all of Shodan’s results alongside
ONYPHE’s CVE detection data during the same scanning
period and against the same superset IP list. Both platforms
identified scan results for 10 common CVEs. The results are
depicted in Figure 7. Surprisingly, the same pattern emerges,
where both services see a large amount of false negatives in
the other service. For 8 out of 10 CVEs, both services agree
on fewer detections than they disagree on. The portion of the
detections that both services agree on (the red area) is a bit
higher than the portion of detections agreed between Nuclei
and each of the services separately, but disagreement is still
the dominant pattern.
Take-Away. Overall, three datasets exhibit varying levels of
agreement depending on the CVE and the detection methods.
Even among the two commercial services, each sees a signifi-
cant amount of false positives and false negatives in the other
service. This raises serious concerns about the accuracy of
vulnerability detection in attack surface monitoring services.

4.4 Comparison with LeakIX
To further enhance our analysis, we incorporated comparisons
with LeakIX [26], a platform designed to identify leaks and se-
curity issues through its plugin-based framework. We queried
all endpoints in our superset and filtered the results to include
only scans conducted within the same timeframe as the Nu-
clei scans. This process produced a dataset consisting of 102
CVE detections spanning 46 unique endpoints.

We compare Nuclei with LeakIX (Figure 8), Shodan with
LeakIX, and ONYPHE with LeakIX. As all comparisons
exhibit similar trends, the detailed results of the Shodan-
LeakIX and ONYPHE-LeakIX comparisons are provided
in Appendix B. For all intersected CVEs, LeakIX reported
CVEs for fewer than 20% of the endpoints. The average agree-
ment of CVE detections between LeakIX and the other three
scanning datasets is 1.86%. We attribute this low level of
agreement to LeakIX’s primary focus on detecting security
flaws beyond CVE identification, which likely leads to fewer
CVEs being reported than by other scan services.

Take-Away. Disagreement between scanners remains the
dominant trend. As LeakIX primarily focuses on broader
security risks, it generates relatively few CVE-related reports.
Consequently, its level of agreement with the other three scan
services is significantly low.

5 Ground Truth-Based Evaluation

This section evaluates the CVE detection performance of the
four scan services – Nuclei, Shodan, ONYPHE, and LeakIX –
using controlled environments as ground truth data.
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Figure 8: Percentage of endpoints identified as vulnerable by
Nuclei compared to LeakIX.

5.1 Docker Environment Deployment

We selected 10 CVEs7, comprising five Shodan payload-
based CVEs and five Shodan banner-based CVEs. For each
CVE, we deployed Docker containers with two vulnerable ver-
sions and two non-vulnerable versions. Additionally, for three
CVEs, we included patched or mitigated versions that retain
the same version information as their corresponding vulnera-
ble versions. Specifically, for CVE-2015-2080, we included
a patched version from the official release. For CVE-2022-
36804 and CVE-2024-23897, we followed official guidelines
to apply mitigations to the vulnerable software, resulting in
one non-vulnerable (mitigated) version for each. Note that
CVE-2021-41773 affects only one vulnerable version, Apache
2.4.49. Consequently, this version was included as the sole
vulnerable case for the CVE. Since the default configuration
of Apache 2.4.49 is not impacted by the vulnerability, we also
included this configuration as the non-vulnerable (with default
setting) version. In total, we deployed 43 Docker containers
of the corresponding software, comprising 19 vulnerable and
24 non-vulnerable versions. Table 5 in Appendix D lists the
selected CVEs, along with their associated software versions.

Docker containers were deployed locally to evaluate Nuclei
templates for one week. Simultaneously, the same containers
were hosted on a separate machine with public IP addresses,

7Our selection prioritized CVEs detectable by at least two scan services
for which we were able to run Dockerized environments. From 17 Shodan
payload-based CVEs in our list, we included three CVEs that have buildable
Docker environments. Additionally, we incorporated two Shodan payload-
based CVEs—CVE-2015-2080 and CVE-2024-23897—that were initially
excluded due to Nuclei template malfunctions. These two CVEs were chosen
because they have buildable Docker environments, and one (CVE-2024-
23897) is tracked by all three commercial scan services. We further selected
five CVEs from 20 Shodan banner-based CVEs in our list. Among these,
CVE-2023-46604 is also tracked by all four scan services.



enabling commercial scan services to scan them over the
same duration. Each container was assigned a unique public
IP address and configured to operate on default ports.

5.2 Performance Metrics Evaluation
Following the 7-day exposure of Docker instances, we col-
lected scan data from each service and computed their perfor-
mance metrics, including true positives (TP), false positives
(FP), true negatives (TN), false negatives (FN), accuracy, re-
call, precision, and F1 score, as summarized in Table 2.

The evaluation for each scan service is based on its ability
to provide accurate CVE detection for the CVEs that it ac-
tually tracks. In the Nuclei and Shodan cases, we evaluated
them with 19 vulnerable and 24 non-vulnerable Docker in-
stances for 10 CVEs they both track. Whereas since ONYPHE
detects only 2 out of the 10 selected CVEs, the evaluation is
only based on these CVEs, encompassing a total of 9 Docker
instances. LeakIX was excluded from the evaluation as we
were not able to identify the LeakIX probes in our infrastruc-
ture, yet it provided three detections for CVE-2024-23897. It
did not detect any of the other CVEs however.

Table 2: Evaluation of CVE detection performance across
Nuclei, Shodan, and ONYPHE.

Metric Nuclei Shodan ONYPHE

True Positive 15/19 12/19 4/4
False Negative 4/19 4/19 0/4
True Negative 24/24 16/24 4/5
False Positive 0/24 2/24 1/5
No Detection 0/43 9/43 0/9
Accuracy 90.70% 82.35% 88.89%
Precision 100.00% 85.71% 80.00%
Recall 78.95% 75.00% 100.00%
F1 Score 88.24% 80.00% 88.89%

5.2.1 Nuclei

During the 7-day period, we executed Nuclei scans on local
Docker instances every 10 hours. Simultaneously, we contin-
uously monitored the Docker instances and network traffic to
ensure stability, observing no crashes or service malfunctions
as a result of these scans. Nuclei successfully identified 39 out
of 43 Docker instances, with exceptions for the 4 vulnerable
instances associated with CVE-2015-2080 and CVE-2024-
23897 due to template malfunction. For CVE-2023-46604,
Nuclei exhibited minor inconsistencies in detection. Specifi-
cally, for two of the vulnerable Docker instances, 5% of scan
records reported no CVE found, while 95% accurately de-
tected the CVE. Despite this inconsistency, we classify Nu-
clei’s detection of these instances as True Positive results, as
the error rate is negligible and does not significantly affect the
overall evaluation. We report it because it does illustrate that

even under relatively controlled conditions, stochastic events
can cause incorrect scan results.

5.2.2 Shodan

During the experiment, we initiated on-demand scan requests
twice: on the 2nd day and on the 5th day. For the 5th day, for
undiscovered endpoints, we specified IP addresses and ports.
Alongside, we queried the scan results daily using Shodan’s
host search interface to monitor the detection status of each
endpoint. The collected scan results were analyzed to eval-
uate Shodan’s CVE detection performance throughout the
experiment period. As shown in Table 2, Shodan correctly
detected more than half of the vulnerable (12 out of 19) and
non-vulnerable (16 out of 24) Docker instances.

For the two False Positive results, Shodan incorrectly as-
signed CVE detections to non-vulnerable versions that shared
the same version information as the vulnerable versions.
These errors occurred for one payload-based CVE (CVE-
2015-2080) and one banner-based CVE (CVE-2021-41773).
The incorrect detection for the payload-based CVE is partic-
ularly noteworthy, as it raises concerns about the reliability
of CVE detection results provided by black-box commercial
CVE detection mechanisms.

For the four False Negative cases, Shodan failed to provide
correct CVE results for three banner-based CVEs (CVE-2017-
12635, CVE-2018-1000861, and CVE-2023-46604) and one
payload-based CVE (CVE-2022-36804). These failures oc-
curred for two reasons: Shodan either failed to provide the
correct CVE tags despite correctly identifying the software
version information of the endpoints (for both banner-based
CVE-2017-12635 and CVE-2018-1000861), or it failed to de-
tect the services running on the default open ports (for one
banner-based CVE-2023-46604 and one payload-based CVE-
2022-36804). Although Shodan indicates it tracks these CVEs,
the scanner did not reliably report the correct CVE informa-
tion from the collected banner data or detect the appropriate
services running on the open ports.

Regarding scan frequency, Shodan demonstrated an incon-
sistent scanning rate across endpoints, despite on-demand
scans being requested uniformly for all endpoints. For ex-
ample, among four Docker instances running Apache HTTP
Servers (for CVE-2021-41773) on port 80, one endpoint was
scanned five times, whereas the others were scanned only
once or twice. In another case, we deployed nine contain-
ers with different Jenkins software versions (for CVE-2024-
23897 and CVE-2018-1000861) configured with ports 8080
and 50000 open. Over the 7-day period, port 50000 received
a total of 28 scan results, while port 8080 received only 10.
Notably, for three instances deployed for CVE-2022-36804,
where Shodan does payload-based detections, the service con-
sistently reported ‘No information available’ throughout the
entire experiment. This emphasizes the importance of under-
standing the scanning schedule of the Shodan scanner and its



role in capturing the real-time attack surface on the Internet.

5.2.3 ONYPHE

As ONYPHE employs a network-neutral scanning approach
for host discovery, it does not accommodate on-demand scan
requests. Within the 10-CVE evaluation set, ONYPHE em-
ploys banner-based methods to detect the two CVEs (CVE-
2024-23897 and CVE-2023-46604). Among the 4 vulnerable
and 5 non-vulnerable instances, ONYPHE correctly identi-
fied 8. Due to the use of banner-based detection methods,
ONYPHE incorrectly identified the only non-vulnerable (mit-
igated) version of CVE-2024-23897 as vulnerable.

Beyond the nine Docker instances included in the previ-
ous evaluation, ONYPHE also discovered eight additional
instances and associated them with correct but different CVEs
outside of our evaluation. For example, ONYPHE correctly
identified the presence of CVE-2024-23897 for three instances
we deployed to test CVE-2018-1000861.8

5.2.4 LeakIX

We contacted LeakIX on the second day of our experiment
to request scans of our endpoints, as their platform does not
support on-demand scan requests. As detailed in Table 5,
LeakIX tracks CVE-2022-36804, CVE-2024-23897, and CVE-
2023-46604. However, the limited probing activity of LeakIX
during our experiment period resulted in CVE detection re-
sults being available only for CVE-2024-23897. Specifically,
it correctly identified two vulnerable instances and one non-
vulnerable (non-mitigated) instance. Given the limited data
points, conducting a comprehensive evaluation of LeakIX’s
CVE detection capabilities is not feasible. It highlights the
significant influence of scanning activity levels on effective
attack surface monitoring.

5.2.5 Take-Away.

Overall, the payload-based detection employed by Nuclei
templates achieved the highest accuracy. Both Shodan and
ONYPHE also demonstrated accuracy and precision rates ex-
ceeding 80%, effectively detecting the majority of vulnerable
and non-vulnerable instances across our 43 deployed Docker
instances. However, both Shodan and ONYPHE exhibited
cases where banner-based CVE detection methods produced
False Positive results, supporting our earlier observation that
banner-based detection is unreliable. Of course, our small-
scale evaluation cannot confirm that banner-based detections
are sometimes so unreliable to the extent of producing only
false positives.

8Shodan detected CVE-2024-23897 for two instances associated with
CVE-2018-1000861. However, Shodan did not provide CVE detection results
for the remaining two instances, due to no scan data for port 8080.

5.3 Scanning Traffic Characteristics and
Implications for CVE Detection

During the experiment, we received, on average, 6,767 pack-
ets per day from Shodan, and 19,225 packets from ONYPHE.
The traffic is collected in raw PCAP files and filtered to con-
tain only traffic from Shodan, ONYPHE, LeakIX, or the local
Nuclei scans.9 From the PCAP files, we extract all tcp ses-
sions, which we use to identify requests and responses.

During the experiment, we counted the number of unique
requests and replies made by a scanning service against our
infrastructure. I.e., if we observe that a service uses a dif-
ferently crafted request to test our infrastructure not spotted
before, the corresponding number is increased.

Table 3 reports the results for Shodan, ONYPHE, and Nu-
clei,10 showing a substantial difference in scanning behavior
between Nuclei and Shodan/ONYPHE, especially in the num-
ber of unique request packets that we observe. While our
infrastructure exposes multiple CVEs, the number of unique
requests performed by Shodan and ONYPHE is low, and we
did not observe any CVE-specific scanning behavior. For
instance, for port 61616, Shodan only completed a TCP hand-
shake and grabbed a banner without any further requests. This
leads to misclassifications of services that appear vulnerable
but are already patched, and vice-versa.

Shodan and ONYPHE mainly differ in how they handle
certain ports. For port 8080, ONYPHE only requests the web-
page and sends non-HTTP traffic afterwards and appears to
focus on identifying responses that could indicate vulnerabili-
ties tied to specific CVEs. In contrast, Shodan’s methodology
is strictly confined to HTTP path requests on port 8080. For
port 80 we see the opposite, where Shodan sends non-HTTP
requests. However, we cannot identify whether these requests
are aimed at specific CVEs, or used in the fingerprinting of
malware services. We identify for at least two of the requests,
binary requests containing the string Gh0st, that is aimed at
identifying a malware Command and Control server [39]. For
Nuclei, we observe many requests that do either not adhere to
a protocol specification or are very clear attempts to trigger
a vulnerability (e.g., a path-traversal attempt). We do not see
such clear evidence for other scanning services. On all ports
apart from 80 and 8080, Shodan and ONYPHE have only sent
requests to identify the service.
Take-Away. Overall, our analysis shows that Shodan and
ONYPHE scale their scans through the entire Internet, and do
not extensively probe individual hosts. The number of unique
requests made to potentially vulnerable hosts is therefore
limited, leading to more False Positive and False Negative

9We identified Shodan scans by mapping IP addresses to domain names
associated with shodan.io. Scanning IP ranges for ONYPHE were obtained
from their official website (http://hina.probe.onyphe.net/ip-ran
ges.txt), while LeakIX scanning IPs were sourced from their platform
(https://scan.leakix.net).

10As LeakIX did not extensively contact our infrastructure, we omit the
results for this service in our analysis.

http://hina.probe.onyphe.net/ip-ranges.txt
http://hina.probe.onyphe.net/ip-ranges.txt
https://scan.leakix.net


Table 3: Unique requests (Req.) and replies (Rep.) per scanner
over the duration of the experiment. LeakIX traffic is omitted
because it only targeted one port at the time of the experiment.

Port Nuclei Shodan ONYPHE

Req. Rep. Req. Rep. Req. Rep.

80 113 88 8 14 3 18
3000 177 116 3 3 4 7
5984 83 133 2 4 3 10
7990 680 299 2 6 - -
8080 1774 560 8 32 11 130

50000 - - 5 19 1 1
61616 1 1 - ∗ 1 1 1
∗Shodan collected a banner for port 61616 and did not
send any request payload.

classifications compared to Nuclei.

6 Discussion

Many countries are adopting more stringent cybersecurity
regulations. In the EU, for example, NIS2 (Network and In-
formation Security Directive 2) [19] requires patch manage-
ment policies to be implemented by all medium to large-sized
organizations operating in sectors deemed essential or impor-
tant. This will increase the demand for vulnerability tagging
services. Already, such services are very widely used by or-
ganizations to monitor their attack surface for vulnerability
management programs.

One example is market leader Shodan’s Monitor service,
which lets defenders register their IP ranges to be monitored
for security-relevant events, like the presence of CVEs. A
related use case is when oversight bodies or sectoral CERTs
(computer emergency response teams) rely on these services
to support their constituents. In the US, CISA relies on Shodan
and other tools for vulnerability scanning as part of the “Cyber
Hygiene services” it offers to other federal agencies [11] [1].

While the promise of Shodan is to “gain complete visibility
into what you have connected” [40], in practice the profes-
sionals relying on these services will expect some inaccuracy.
Yet they have no way of gauging its performance. As far as
we know, there has been no independent testing of the CVE
detections of multiple industry attack surface monitoring ser-
vices. Our study found different patterns for payload-based
versus banner-based scans. Starting with the evaluation of
the payload-based detections, we observed that our measure-
ments confirmed the bulk of the detections of Shodan and
ONYPHE, though less so for LeakIX. To illustrate: Only
10% of the Shodan detections were not corroborated by our
findings. However, our scans found many more vulnerable
endpoints than the other services – signaling the problem of
false negatives. For example, compared to Shodan, for 10
out of 17 CVEs, we found a factor of 2-36 more vulnerable

endpoints. This raises questions about the promised “com-
plete visibility”. Even if clients take that with a grain of salt,
they are unlikely to expect this level of potential inaccuracy.
For enterprise clients, the question is how critical false nega-
tives are for their use case. If they rely on Shodan detections
for keeping their attack surface secure, false negatives are
omissions that leave vulnerabilities in place, until they are
detected via other solutions – or are compromised. In terms
of false positives, our analysis suggests that the rate is low for
payload-based detection, which avoids burdening IT staff.

The situation is quite different for banner-based detections.
For 18 out of 21 CVEs, Nuclei contradicts over 95% of the
Shodan banner-based detections. Shodan says that these “un-
verified” detections are known to contain “significant false
positives,” yet their value is to serve as a “starting point for
further investigation”. Our results severely question this use
case. Nearly all of our CVE detections fall outside of Shodan’s
banner-based detections. So investigating the noisy Shodan
CVE tags won’t lead you to discover the vulnerabilities in
your attack surface. Shodan’s own detections provide even
stronger evidence for the extremely low quality of banner-
based detections: we found zero overlap between the Shodan
banner-based and payload-based detections for the same CVE.
This means if you give these detections to your analysts as
starting points for further investigation, then you are wasting
scarce and costly resources. Of course, we should be care-
ful when generalizing these specific findings, since we only
analyzed small set of CVEs that were collected using banner-
based methods. Shodan collects thousands more. While our
findings are cause for concern and further investigation, it is
likely that some banner-based detections are more accurate
and might still have value.

We have focused our analysis on Shodan, but these pat-
terns are not unique to that service. We confirmed them by
an analysis of ONYPHE’s CVE detections for the same set
of endpoints. Even when comparing the two commercial ser-
vices directly, each sees a significant amount of false positives
and false negatives in the results of the other service. Our
ground-truth evaluation also confirms that these services face
the similar issues, with LeakIX being a bit of a special case
operating with a different approach.

The limited overlap among the results of Nuclei, Shodan,
ONYPHE, and LeakIX is reminiscent of a different area that
has seen a lot of industry and academic effort: threat intel-
ligence. Numerous studies have looked at the indicators of
compromise (IoCs) that are provided by different commercial
and free sources. A consistent finding in that literature has
been that there is very little overlap among the IoCs detected
by each provider [27]. This even holds true for the high-end
market leaders who claim to be tracking the same threat actors
groups. One study found an overlap of less than 4% in the
IoCs detected by these firms [8]. In other words, every threat
intelligence provider sees only a limited slice of the attacker
ecosystem. This has led to an industry practice where enter-



prises feel the need to acquire, on average, seven different
threat intelligence services, to have a bit more confidence in
their coverage [36]. We certainly found significantly higher
overlap among the CVE tagging services than is found among
threat intelligence providers, but it does seem a single service
might not be sufficient for adequate attack surface monitoring.

Overall, vulnerability monitoring services play an increas-
ingly important role. The concerns that are raised by our
findings are not meant to imply these services should be aban-
doned. They are indispensable in light of increasingly com-
plex IT infrastructures and perennial problems like ‘shadow
IT’. Rather, we argue for improved transparency about per-
formance and for awareness among practitioners and regu-
lators about what these services actually provide. Our find-
ings also argue for a strong commitment to improvement.
Community-wide efforts to adopt state-of-the-art solutions
and standardization will improve the quality of vulnerability
tagging. Regulatory intervention may be required to give in-
centives to adopt best practices and improve the quality of
vulnerability tagging, e.g., via certification under the EU’s
Cyber Resilience Act. Cyber insurance companies might also
help establish which vulnerability tagging services are more
accurate, based on their claims data around breaches.

Finally, our findings also serve to caution academic re-
searchers. Hundreds, if not thousands, of papers rely on
Shodan for detection of one kind or another. Though the CVE
tags do not seem to be widely used in papers, our findings
also question the use of banner metadata for CVE detection
– which is a much more widespread practice (e.g., [43, 48]).
There would be great value in a future study to better under-
stand under what limited conditions banner-based detection
is accurate enough for scientific purposes.

7 Limitations

Our study faces several limitations. First and foremost, we
have no ground truth on the presence of the CVEs at the
endpoints. This limitation is faced by all research on Internet-
wide scans for vulnerabilities. Only direct contact with the ad-
ministrators of the affected systems would get closer to ground
truth [18], but that obviously does not scale. So, the best any-
one can do is to provide white-box implementations of scan-
ning methods that can be independently validated, replicated,
and compared against the results of other toolchains.

A second limitation is that our evaluation is based on 37
CVEs. While this set contains variation in terms of the af-
fected services and severity of the vulnerabilities (CVSS
scores range: 5.3 — 10.0, average: 8.9), there may be other
factors that become visible if the comparison is based on a
larger set of CVEs.

Another limitation is that we can only speculate about why
results for some CVEs were very similar between Nuclei,
Shodan, ONYPHE, and LeakIX, while for others they were
wildly different. We do know that small changes in the scan-

ning templates can make a significant difference (Section 3.1).
This issue is implicitly present in every vulnerability scan-
ning study, though rarely surfaced. Future work might do
sensitivity analysis to quantify the impact of certain changes.

Finally, payload-based scanning methods may not always
accurately determine the absence of a CVE. Even if a scan
does not detect a CVE, the vulnerability could still be present
(e.g., the software is unpatched). However, other security mea-
sures, such as application firewall rules or network configura-
tions, might prevent the payload from reaching the vulnerable
code path. This potential discrepancy highlights that a “no
CVE” result does not necessarily confirm the absence of a vul-
nerability but rather indicates that it was not detectable given
the current conditions. Future work should assess the impact
of these external factors on vulnerability scan assessments.

8 Conclusion

Enterprises, government agencies, and academics increasingly
rely on attack surface monitoring services to assess the risk
level of Internet-facing computing infrastructures. However,
such reports are typically used as ground truth without scruti-
nizing their accuracy. In this paper, we perform independent
experiments to assess the trustworthiness of such attack sur-
face monitoring services. We compare the reports of a market
leader in attack surface monitoring, the Shodan Search En-
gine, with the reports of our synchronous experiments that use
carefully crafted Nuclei templates tailored to target requests
based on specific vulnerability checks and payloads for a
given vulnerability. Our analysis shows that for banner-based
detections, Shodan users face massive overreporting. It is also
noticeable that 52.07% of the vulnerable endpoints identified
by our experiments were not reported by Shodan. Also, ac-
cording to our study, for payload-based detections, Shodan
users are massively under-reporting vulnerability hosts. Our
work shows that the above-mentioned shortcomings do ex-
ist when comparing our results with different vulnerability
detecting services, ONYPHE and LeakIX. Furthermore, dis-
crepancies in CVE detection results among these commercial
scanners, coupled with their inconsistent scanning frequen-
cies, undermine the trustworthiness of their CVE reports.

Our findings have significant implications for industry
users, policymakers, and security researchers, as they chal-
lenge the trustworthiness of vulnerability reports used for op-
erational and regulatory decisions. With this study, we would
like to make the different stakeholders aware of the limita-
tions of current attack surface monitoring services and open a
debate on concrete steps needed to advance and standardize
such services based on best current practices and community
efforts to make them more trustworthy in the future.



Ethical Considerations

This research adheres to the Menlo Report’s ethical principles
of Respect for Persons, Beneficence, Justice, and Respect for
Law and Public Interest [23].

Respect for Persons: We respected individual privacy by
scanning only publicly accessible systems without collecting
personally identifiable information (PII). Our research project
involves processing sensitive information about vulnerable
systems. We obtained approval from our Institutional Review
Board (IRB), which also required a Data Management Plan
to ensure the data was stored on a secured server with access
limited to the researchers involved.

Beneficence: To maximize benefits and minimize harm,
we first examined all selected Nuclei templates and ruled
out any presence of malicious exploits or otherwise harmful
payloads. Additionally, during our ground truth experiment,
we confirmed that Nuclei scans do not lead to crashes or
service malfunctions of the containers running vulnerable and
non-vulnerable software.

As it is infeasible for Internet-wide scans to obtain prior
consent from system owners, we did adopt the prior research
best practice of running a web page on port 80 of our scanning
source IP address. The page allowed system owners to identify
and contact us. The page explained our scan purpose and
provided contact information for opting out of future scans.
We did not receive any opt-outs or complaints.

Scans were conducted with minimal impact; on average,
each endpoint is probed once every 90 minutes. While scans
might trigger alerts that network operators have to deal with,
we assess this impact as modest, since they experience thou-
sands of daily scans. Also, our dataset consists completely
of endpoints present in the Shodan search engine. In other
words, the operators of these networks have not blocked or
opted out of Shodan scans. Given that our scans are based on
the same techniques as Shodan, we assume that our five scan
runs do not add a substantial additional burden.

We considered notifying the owners of the endpoints we
detected as vulnerable but that are not tagged as vulnera-
ble in Shodan. In the end, we decided against it for two rea-
sons. First, our findings show that each scan approach (Nuclei,
Shodan, ONYPHE) yields substantially different results. In
the absence of ground truth, it is not clear which of the Nu-
clei detections we can completely trust. Sending out potential
false positives undermines the effectiveness of the vulnera-
bility notification ecosystem as a whole. Of course, the issue
of potential false positives affects Shodan and ONYPHE as
well. But those services do not proactively send out vulnera-
bility notifications. Network operators have to solicit this data
from the service itself. Second, it is critical that vulnerability
notifications are based on fresh scan results. Notifying about
scans that are more than 24 hours old is already seen as bad
industry practice and not helpful. We discovered the discrep-
ancy between our detections and Shodan’s detections more

than a week after the scans were completed. To then notify
the endpoint owners would require additional scans to obtain
fresh results. This would increase the impact on the network,
which we also wanted to minimize.

In the end, the benefit of this research is to support net-
work operators, CSIRTs and others who rely on commercial
scanning services by providing independent insights on their
accuracy and value for network defense.

Justice: We ensured a fair distribution of risks and ben-
efits by focusing on publicly accessible enterprise systems
and disseminating findings to benefit the broader community,
including researchers and system owners.

Respect for Law and Public Interest: While we followed
best practices established in prior research, we agree with [21]
that strictly speaking this kind of work operates in a legal ‘grey
zone’ because of the many jurisdictions and unclear frame-
works. Our research is set up to comply with the EU General
Data Protection Regulation (GDPR). Some earlier jurispru-
dence has considered all IP addresses a form of personally-
identifiable information (PII), but this has been superseded by
new jurisprudence. Since we scanned for enterprise software
on servers, we do not collect PII, except for some edge cases.
The GDPR does provide legal grounds for collecting PII for
statistical purposes, provided that the processing adheres to
the principles of lawfulness, fairness, transparency, and data
protection safeguards as outlined in the regulation.

Open Science Policy Compliance

In Section 3, we describe in detail our methodology. This
knowledge can be used to obtain the initial set of vulnerable
endpoints. So as we provide the exact list of CVEs and the ex-
act dates of data collection, the interested readers can extract
the same set. Although for some CVEs with a large number
of vulnerable endpoints, we took a subset of them, we do not
expect this to change our final results as the subsets were
selected randomly. Unfortunately, we cannot share the exact
set of endpoints used in this study because the corresponding
hosts might be put in danger of being compromised.

This study used three public information sources about vul-
nerable hosts: Shodan, ONYPHE, and LeakIX. Given the set
of picked endpoints and the selected dates, one has enough
details to extract the information about the identified vulnera-
bilities there. We cannot share this set for the same reasons as
in the previous case. Additionally, we share updated Nuclei
templates and Docker environment files used in Section 5 as
artifacts.11 Using the described methodology, the interested
readers can verify the correctness of these files. At the same
time, it is impossible to validate the results of our scanning be-
cause of the agile Internet and the impossibility of performing
the scan in the past.

11The updated Nuclei templates and Docker environment files are available
at https://doi.org/10.5281/zenodo.14732150

https://doi.org/10.5281/zenodo.14732150
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A CVE Information

In this section, we present the 37 selected CVEs used in this
study, as detailed in Table 4. For each CVE, we provide the
CVE ID, CVSS score, application type, Nuclei template vali-
dation status, and the detection methods employed by each
scanning service.

B Comparisons with LeakIX

This section presents the comparative scan results for Shodan
with LeakIX in Figure 9 and ONYPHE with LeakIX in Fig-
ure 10.
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Figure 9: Percentage of endpoints identified as vulnerable by
Shodan compared to LeakIX.
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Figure 10: Percentage of endpoints identified as vulnerable
by ONYPHE compared to LeakIX.

C Consistency in Nuclei CVE Detection

This section presents the distribution of consistent and in-
consistent Nuclei scan results across CVEs in Figure 11.
Notably, CVE-2018-18778 and CVE-2020-5902 exhibit the
lowest number of consistently responsive endpoints, primar-
ily due to a significant portion of their scan records being
categorized as Nuclei: Error (see Figure 3). Among all the
CVEs, the Nuclei templates for CVE-2017-15715, CVE-2016-
3088, CVE-2020-7247, CVE-2020-9402, CVE-2023-46604,
and CVE-2023-27350 did not identify any CVEs.

D Docker Environment Information

In this section, we list the 10 selected CVEs used as ground
truth data to evaluate the CVE tag performance of scan ser-
vices, including Nuclei, Shodan, ONYPHE, and LeakIX, as
summarized in Table 5. For each CVE, we provide details on
the corresponding vulnerable and non-vulnerable software
versions utilized in this assessment.
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Table 4: Selected CVEs Details. CVSS3 – CVSS 3 score (asterisks mean that CVSS2 score is used since the CVSS3 is
unavailable); Application – vulnerable application/service; Shodan Detection – if the corresponding CVE is verified on Shodan
(✔- verified, ✘- unverified); Nuclei Detection – if the corresponding Nuclei template is validated (✔- validated, ✘- not validated);
ONYPHE Detection – CVE detection methods adopted by ONYPHE (★ - payload-based, ✩ - banner-based); LeakIX Detection –
Plugin names used by LeakIX.

CVE-ID CVSS3 Application Shodan
Detection

Nuclei
Detection

ONYPHE
Detection

LeakIX
Detection

CVE-2015-1635 10* Microsoft Windows ✔ ✘ - -
CVE-2017-7269 9.8 Microsoft Internet Information Services ✔ ✘ - -
CVE-2019-11510 10 Pulse Secure Pulse Connect Secure ✔ ✘ ★ -

CVE-2019-1653 7.5
Cisco Small Business RV320 and RV325
Routers ✔ ✘ - -

CVE-2019-19781 9.8
Citrix Application Delivery Controller and
Gateway ✔ ✘ ★ -

CVE-2020-5902 9.8 F5 BIG-IP ✔ ✘ ★ -

CVE-2021-21972 9.8
VMware vCenter Server and VMware
Cloud Foundation ✔ ✘ ★ -

CVE-2021-26855 9.8 Microsoft Exchange Server ✔ ✘ ★ ✩ ExchangeVersion
CVE-2021-34473 9.8 Microsoft Exchange Server ✔✘ ✘ ★ ✩ ExchangeVersion
CVE-2021-41277 7.5 Metabase ✔ ✔ - -
CVE-2021-43798 7.5 Grafana (Open Source) ✔ ✔ - -
CVE-2022-36804 8.8 Atlassian Bitbucket Server and Data Center ✔✘ ✔ - BitbucketPlugin
CVE-2023-23333 9.8 SolarView Compact ✔ ✘ - -
CVE-2023-27350 9.8 PaperCut ✔ ✘ ✩ PaperCutPlugin
CVE-2023-35078 9.8 Ivanti Endpoint Manager Mobile (EPMM) ✔ ✘ ✩ MobileIronCorePlugin
CVE-2023-35082 9.8 Ivanti Endpoint Manager Mobile (EPMM) ✔ ✘ ✩ MobileIronCorePlugin
CVE-2023-39143 9.8 PaperCut NG and PaperCut MF ✔ ✘ ✩ PaperCutPlugin
CVE-2012-1823 7.5* PHP ✘ ✔ - -
CVE-2014-3704 7.5* Drupal core ✘ ✔ - -
CVE-2016-3088 9.8 Apache ActiveMQ ✘ ✔ - -
CVE-2017-12635 9.8 Apache CouchDB ✘ ✔ - -
CVE-2017-15715 8.1 Apache httpd ✘ ✔ - -
CVE-2018-1000533 9.8 klaussilveira GitList ✘ ✔ - -
CVE-2018-1000861 9.8 Jenkins ✘ ✔ - -
CVE-2018-12613 8.8 phpMyAdmin ✘ ✔ - -
CVE-2018-18778 6.5 ACME mini_httpd ✘ ✔ - -
CVE-2018-7600 9.8 Drupal ✘ ✔ - -
CVE-2019-3396 9.8 Atlassian Confluence Server ✘ ✔ - -
CVE-2020-7247 9.8 OpenSMTPD ✘ ✔ - -
CVE-2020-9402 8.8 Django ✘ ✔ - -
CVE-2021-21311 7.2 Adminer ✘ ✔ - -
CVE-2021-28169 5.3 Eclipse Jetty ✘ ✔ - -
CVE-2021-34429 5.3 Eclipse Jetty ✘ ✔ - -
CVE-2021-40438 9 Apache HTTP Server ✘ ✔ - -
CVE-2021-41773 7.5 Apache HTTP Server ✘ ✔ - -
CVE-2021-42013 9.8 Apache ✘ ✔ - -
CVE-2023-46604 9.8 Java OpenWire protocol marshaller ✘ ✔ ✩ ApacheActiveMQ
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Figure 11: Classification of endpoints by consistent and inconsistent responses and their vulnerability status over time.

Table 5: Docker-Buildable Software Versions for CVE Assessment. The CVE detection methods employed by the scan
services reuse the notations defined in Table 4. Versions marked with ∗ are also affected by CVE-2024-23897, but excluded from
CVE tag evaluation to simplify the analysis. † indicates mitigated vulnerabilities, and ‡ indicates patched vulnerabilities.

CVE-ID Shodan
Detection

Nuclei
Detection

ONYPHE
Detection

LeakIX
Detection

Vulnerable
Version

Non-vulnerable
Version

CVE-2021-41277 ✔ ✔ - -
metabase:v0.40.0
metabase:v0.40.4

metabase:v0.40.5
metabase:v0.40.7

CVE-2021-43798 ✔ ✔ - -
grafana:8.0.1
grafana:8.2.0

grafana:8.0.7
grafana:8.2.7

CVE-2022-36804 ✔✘ ✔ - BitbucketPlugin bitbucket-server:7.0.0
bitbucket-server:7.7.0

bitbucket-server:7.6.17
bitbucket-server:7.17.10
bitbucket-server:7.0.0†

CVE-2015-2080 ✔ ✘ - -
jetty:9.2.3.v20140905
jetty:9.2.7.v20150116

jetty:9.2.30-jre8-openjdk
jetty:9.3.30-jre8-openjdk
jetty:9.2.3.v20140905‡

CVE-2024-23897 ✔ ✘ ✩ JenkinsVersionPlugin jenkins:2.441
jenkins:2.426.2

jenkins:2.442
jenkins:2.426.3
jenkins:2.441†

CVE-2021-21311 ✘ ✔ - -
adminer:4.7.8
adminer:4.7.7

adminer:4.7.9
adminer:4.8.1

CVE-2017-12635 ✘ ✔ - -
couchdb:2.1
couchdb:1.6.1

couchdb:3.4.2
couchdb:3.1.2

CVE-2023-46604 ✘ ✔ ✩ ApacheActiveMQ activemq:5.18.0
activemq:5.18.2

activemq:5.18.3
activemq:5.18.6

CVE-2018-1000861 ✘ ✔ - -
jenkins:2.138.1∗

jenkins:2.138.2∗
jenkins:2.426.3-lts
jenkins:2.427∗

CVE-2021-41773 ✘ ✔ - - httpd:2.4.49
httpd:2.4.62
httpd:2.4.57
httpd:2.4.49 (Default)
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