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Abstract— The effectiveness of service provisioning in large- to hame some. Such services must cope with the typically
scale networks is highly dependent on the number and location yoluminousand bursty demand — both in terms of overall

of service facilities deployed at various hosts. The classical,
centralized approach to determining the latter would amount
to formulating and solving the uncapacitated k-median (UKM)
problem (if the requested number of facilities is fixed —k), or
the uncapacitated facility location (UFL) problem (if the number
of facilities is also to be optimized). Clearly, such centralized
approaches require knowledge of global topological and demand
information, and thus do not scale and are not practical for large
networks. The key question posed and answered in this paper
is the following: “How can we determine in a distributed and
scalable manner thenumber and location of service facilities?”.

In this paper, we develop a scalable and distributed ap-
proach that answers our key question through an iterative re-
optimization of the location and the number of facilities within
network neighborhoods. We propose an innovative approach to
migrate, add, or remove servers within limited-scope network
neighborhoods by utilizing only local information about the topol-
ogy and demand. We show that even with limited information
about the network topology and demand, within one or two hops,
our distributed approach achieves performance, under various
synthetic and real Internet topologies and workloads, that is
comparable to that of optimal, centralized approaches requiring
full topology and demand information. We also show that it is
responsive to volatile demand. Our approach leverages recent
advances in virtualization technology towards an automated
placement of services on the Internet.

Index Terms— Service deployment, server migration, content
delivery, facility location.

I. INTRODUCTION
Imagine a large-scale bandwidth/processing-intensive

vice such as real-time distribution of software updates a
patches [2], and content delivery that relies on distritiut%f
datacenters [3] or a cloud computing platform [4], [5], [6]au
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load and geographical distribution of the sources of demand
— due to flash crowd phenomena [7]. To deploy such services,
decisions must be made on the time scale of minutes to a few
hours based on: (1) the location, and optionally, (2) the lmem

of nodes (or hosting infrastructures) used to deliver teise.

Two well-known formulations of classid¢-acility Location
Theory[8] can be used as starting points for addressing deci-
sions (1) and (2), respectively. Thencapacitatedk-median
(UKM) problem prescribes the locations for instantiating a
fixed number of service facilities;, so as to minimize the
distance between users and the closest facility capable of
delivering the service. In thencapacitated facility location
(UFL) problem, the number of facilities is not fixed, haintly
derived along with the locations as part of a solution that
minimizes the combined service hosting and access costs.
Limitations of existing approaches:Even though it provides

a solid basis for analyzing the fundamental issues invoined
the deployment of network services, facility location theo

is not without its limitations. First and foremost, propdse
solutions for UKM and UFL are centralized, so they require
the gathering and the transmission of the entire topoldgica
and demand information to a central point, which is not
possible (not to mention practical) for large networks. ek
such solutions are not adaptive in the sense that they do not
allow for easy reconfiguration in response to local changes
in the topology and the intensity of the demand for service.
Moreover, over-reaction to local changes in demand using a

S’%ntralized solution may lead to costly service deployment

address these limitations we propose distributed vessio
UKM and UFL, which we use as means of constructing an
tonomic service deployment scheme.

A scalable approach to autonomic service deploymentiVe
develop a scheme in which an initial set of service facgitiee
allowed to migrate adaptively to the best network locations
and optionally to increase/decrease in number so as to best
service the current demand. Our scheme is based on devel-
oping distributed versions of the UKM problem (for the case
in which the total number of facilities must remain fixed) and
the UFL problem (when additional facilities can be acquired
at a price or some of them be closed down). Both problems
are combined under a common framework with the following
characteristics. An existing facility gathers the topglay its

local network neighborhood. The facility also monitors the
demand of the nodes that have it as closest facility. This is



the demand that the facility has to satisfy. It keeps an exactDefinition 1: (UKM) Given a node sef” with pair-wise
representation of the demand of nodes in its local netwodkstance functiond and service demands(v;), Yv; € V,
neighborhood and an approximate representation for all thelect up tok nodes to act as medians (facilities) so as to
nodes that are outside its neighborhood but have the facilininimize the service cost'(V, s, k):
as the closest one. The observed local topology and demand
information is then used to re-optimize the current logatio C(V,s, k) = Z s(v;)d(vj, m(v;)), 1)
(and optionally the number of) facilities by solving the UKM Vv €V
(or the UFL) problem in the local network neighborhood. wherem(v;) € F is the median that is closer 1g.

Reducing the amount of topological information that needs o the other hand, if instead @ one is given the costs
to be gathered and processed centrally at any point (i, ) for setting up a facility at node;, then the specifi-

at facilities that re-optimize their positions) is a plusr focation of the facility set” amounts to solving the following
scalability. On the other hand, reducing this harms thealleryncapacitated facility location problem:

performance as compared to centralized solutions thatdems  pefinition 2: (UFL) Given a node sel/ with pair-wise

the entire topological information. In this paper we exaingistance functiond and service demands(v;) and facility
this trade-off by developing a distributed facility loa@ii costsf(v,), Vu; € V, select a set of nodes to act as facilities

workloads. Our results show that even with limited infortagilities and servicing the demand:

mation about the network topology and demand, within one

or two hops, our distributed approach achieves performanceC(V,s, f) = Z flvy) + Z s(vj)d(vj, m(vy)), (2)
that is comparable to that of optimal, centralized appreach Vo, €F Vo, €V

requiring full topology and demand information. Our resu"wherem
also show that our distributed solutions allows an autoromi
service deployment to be responsive to volatile demand.
Addressing the distributed Software as a Service place-
ment problem: Our approach leverages recent advances
virtualization technology and flexible billing models suah
pay-as-you-go [4] as well as the availability of cloud reses
on the Internet [9], [10], [11] towards a fully automated

and scalable service deployment. In particular, it provide lll. DESCRIPTION OF THEARCHITECTURE

distributed solution for the placement of replicas of sefter ~ Large scale software systems, e.g., software update system
in the emerging field of Software as a Service (SaaS) thatsisch as Microsoft Windows Update [2] or applications such as
currently limited, typically, to centralized hosting. Apple iCloud and Google Apps, rely more and more on an on-
Outline: The remainder of this paper is structured as followslemand software delivery model, that is referred to as Soéw
Section Il provides a brief background on facility locationas a Service (SaaS). In SaaS, software and associated data
Section Il overviews the general architecture of our applo are hosted in cloud infrastructures. Thanks to the elagtidi

and provides the connection to the facility location theoryhe cloud, supported by virtualization, it is possible tpand
Section IV presents our distributed facility location apgch or shrink the software installation on-demand and minimize
to autonomic service deployment. Section V examines analytie overall cost [4]. Such software systems not only deliver
ically issues of convergence and accuracy due to approgima@itrabytes of data daily to millions of users, but also have
representation of the demand of nodes outside the lotalincorporate complex decision processes for customizing
network neighborhoods. Section VI evaluates the perfoomarthe delivered content to the peculiarities of differenents

of our schemes on synthetic topologies. Section VIl presentith respect to localization, previously-installed apptions,
results on real-world (AS-level) topologies. Section Mdbks compatibilities, and optional components, among otheos. F

at the effects of volatile demand and addresses technisahlability issues and to improve the end-user experieace,
challenges for the deployment of our approach. Section Bumber of replica of the software has to be installed in dif-
presents previous related work. Section X concludes therpaferent locations on the Internet [17]. We refer to the comple

(vj) € F'is the facility that is closer ta;.

For general graphs, both UKM and UFL are NP-hard
problems [12]. A variety of approximation algorithms have
been developed under metric distance using a plethora of
llgchniques, including rounding of linear programs [13}alo
search [14], [15], and primal-dual methods [16].

with a summary of findings. process of configuring, placing, and delivering softwaréhas
Software as a Service placement prohlérhe nature of this
Il. BACKGROUND ONFACILITY LOCATION problem goes beyond the dissemination of a single large file,
Let G = (V, FE) represent a network defined by a nodevhere a peer-to-peer approach is an obvious solution [18].
setV = {v1,vq,...,v,} and an undirected edge sé&. Moreover, it is unlikely that software providers are witjitto

Let d(v;,v;) denote the length of a shortest path betwedrust intermediaries with such processes. Rather, we Jaelie
v; and v;, and s(v;) the (user) service demand originatinghat such applications are likely to rely on dedicated otuair
from nodev;. Let F C V denote a set of facility nodes —hosts, e.g., servers offered for lease through third-pargylay

i.e., nodes on which the service is instantiated. If the nermbnetworks —a la Akamai or PlanetLab, or the newest breed of
of available facilitiesk is given, then the specification of theirCloud Computing platforms e.g., Amazon Web Services.
exact locations amounts to solving the following uncapaed We propose alistributed solution to address the Software
k-median problem: as a Service placement problem. We believe that the use of



level topology withinr hops. This can be achieved through
() wose standard topology discovery protocols, e.g., CAIDA Skitte
gt () v oo (http://www.caida.org/tools/measurement/skitter).
Senice Host (GSH), Communication: Each GSH has also to be aware of all the
GSH that participate in the service and its stathisr SB. This
is easily achieved by having a bootstrap server of the servic
where periodically all the GSHSs report their status. Théusta
of each GSH is also communicated to all the other GSHs
through a broadcast message. Summaries about the network
location and assignment of clients, and client demands toave
Fig. 1. A snapshot of the operation of a service that utiliaes proposed pe exchanged between neighboring GSHs. GSHs are neighbors
architecture to dynamically deploy servers in a distributiedid environment. if they are at most network hops away, whereis a parameter
o N ) ~ . of the system. Periodically, GSHs that belong to the same
our distributed facility location approach presents €igant  neighhorhood exchange information about the current ddman
advantages in terms of optimizing the operational cost apflcision rounds: Through a leader election protocol each
efficiency of deploying such applications, and improve engjjorking GSH becomes leader and makes a local decision,
user experience [19]. In the remainder of this section, Y§ solving a local UKM or UFL, on which neighboring
present the general architecture of our approach and mavids gy (including itself) should be iWmode. This decision
mapping from the aforementioned software distributioniser s then communicated to the bootstrap server and to all the
to our abstract UKM and UFL problems. other GSHs via broadcasting. The details of the algorithen ar
Our architecture relies on the observation that cloud rgresented in Section IV. As we will show in Section V, a
sources are available today in many locations on the lgtable set of GSHs is selected in no more than a logarithmic
ternet [4], [9], [10] and that these resources can be rgumber of rounds to the size of the network times the ratio of
served on-demand by utilizing recent advances of virtughe maximum to minimum distance of pair of nodes. We also
ization technology and open standards, such as OpenStggkw in Section V how we can bound the number of rounds
(http:/lwww.openstack.org). In our architecture we cdesi before convergence. Our experiments, see Sections VI and VI
the availability of a set of network hosts upon which specifishow that in practical settings this may require only a small
functionalities may be installed and instantiated on demafumber of rounds (iterations of our algorithm, presented in
that is also recommended by major network providers [11gection IV), typically between 5 and 20 for AS-level Interne
We use the termGeneric Service Hos(GSH) to refer to graphs. Our experiments also show that the first roundssyield
the software and hardware infrastructure necessary to hgfdst of the cost reduction.
a service. For instance, a GSH could be a well-provision@§nchronization: To avoid instabilities that can cause lack of
Linux server, a virtual machine (VM) slice similar to thaiconvergence, we assume that all the GSHs are synchronized.
used in PlanetLab or a set of resources in a Cloud Computigis can be easily achieved by using the standard Network
platform (e.g., an Amazon Machine Image (AMI) in theTime Protocol (NTP). Each GSH should also be aware of
context Amazon Web Services). the demand of its clients and their location in the network.
A GSH may be in Working \(§ or Stand-By 6B) mode. This can be easily achieved by maintaining and analyzing the
In Wmode, the GSH constitutes a service facility that isonnection logs. Synchronization of GSH is necessary but no
able to respond to client requests for service, whereas sufficient condition. The sufficient condition is that, atcka
SB mode, the GSH does not offer the actual service, bpbint of time, only one node is solving the distributed fegil
is ready to switch towif it is so directed. Switching toN location problem (see Section IV-C).
might involve the transfer of executable and configuration Figure 1 illustrates a snapshot of the operation of the afore
files for the service from other GSHs or from the servicmentioned software distribution when utilizing our propds
provider. Thus, the set of facilities used to deliver a servs architecture. Nodes 2, 4, 5, 6, 7, 8, and 11 serve GSHs. Nodes
precisely the set of GSHs Wmode. By switching back and 5 and 8 are ilWmode and all the others i8B mode. Node 5
forth between W mode anfiB mode, thelocation as well as serves the demand of nodes 2, 3, 4, 6, and 11 that are within
the numberof facilities used to deliver the service could bel hop away. It also serves the demand of nodes 1, 9, 10, and
controlled in a distributed fashion. In particular, a GSHVih 14 that are closer to node 2 (a node with GSH), as well as
mode monitors the topology and the corresponding dematié demand of nodes 15, 16, 17, and 18 that are closer to
in its vicinity and is capable of re-optimizing the locatiomode 11 with GSH, and node 12 closer to node 6 (a node
of the facility. Third-party Autonomous Systems (AS) mayith GSH). Node 5 has to periodically solve the UKM or
host the GSHs of service providers, possibly for a fee. ldFL problem to decide either to migrate the server to node
particular, the hosting AS may charge the service provid2r 4, 6, or 11 in order to minimize the service deployment
for the resources it dedicates to the GSHSs, including tlad operational cost as well as to better serve the volatile
software/hardware infrastructure supporting the GSHs el wdemand. It does so by taking into account the total demand
as the bandwidth used to carry the traffic to/from GSHs ih serves, the source of the demand and the local view of
Wmode. The implementation of the above-sketched scendti@ network topology. Node 5 can also well decide that more
requires each GSH to be able to construct its surrounding AiBstances of the service are needed in the neighborhoosl, thu

that acts as a facility

SB: Stand-by mode,
W: Working mode




it can change the mode of any of the facilities 2, 4, 6 or 1The sub-graph included within the dotted line annotates the
from SB to Why solving the UFL problem. Clients of thering for node 5. Nodes 2, 3, 4, 6, and 11 are all border nodes
service should be able to locate the facility closest torit] afor 5 for =1 and they constitute the skin of theball. Nodes

it requires a GSH to be able to inform potential clients of the, 4, 6 and 11 are candidate facilities (GSHsSB mode).
service regarding itWor SB mode. Both of these could beWhenr = 2, the 2-balls of node 5 and 8 can be merged to
achieved through standard resource discovery mechanisens shape a nev2-shape because facilities 6 and 7 are common.
DNS re-direction [20], [21] (appropriate for applicatibevel

implementations of our distributed facility location appch) B. Notations

with appropriate TTL values [22] or proximity-based anycas o, gistributed approach will be based on an iterative
routing [23] (appropriate for network layer implementasd. q¢hod in which the location and the number of facilities (in

We show in Section VIII-C that the performance of our schen}ﬁe case of UFL only) may change between iterations
degrades gracefully as re-direction becomes more immrecis We make use of the following notations to explain our

distributed algorithm. Most of the notations are supepsed
by m, the ordinal number of the current iteration. LigtC V'

LOCAL INFORMATION . I~
, , o , denote the set of candidate facility nodes and@”) C H the
In this section we develop distributed versions of UKM anget of facility nodes at thenth iteration. Letv™ denote the

UFL by utilizing a limited horizon approach in which GSHs " 4 (m) . .
have exact knowledge of the topology of their local topolog@ﬂfball of facility nod!avz. (L2§ Us C(E? ote t(tlne)nng of faC|_I|.ty
The domain W;™ = V" (JU;™ of a facility

within  hops, exact knowledge of the demand of each clieApde vi- T! _ o
or node in the local topology, and approximate knowledge 8P4€ consists of its-ball and the surrounding E'n)g' Fr?m) the
the aggregate demand from nodes in thball outside this Previous definitions it is e(is),y to see tHat= V' U%:; ’
local topology. For the rest of the paper we are using tphereV™ = U, cpen V™ andU™ =, cpom U™
terms GSH and candidate facility interchangeably. If theHGS

is in Wmode we refer to the node that hosts the GStégan C. The Distributed Algorithm

IV. DISTRIBUTED FACILITY LOCATION SCHEME WITH

facility, or simply facility. Our distributed algorithm starts with an arbitrary initial
batch of facilities, which are then refined iteratively thgh
A. Definitions relocation and duplication until a (locally) optimal sobrt
We start by formally defining the local network neighboris reached. In a nutshell, the algorithm starts with theahit
hoods of a facility, that we will refer as-balls. set of facilities, and iteratively runs local UKM or UFL by

Definition 3: (r-ball) An r-ball of a facility is a sub-graph re-evaluating the--balls of the facilities one by one. Once a
that includes all the nodes that are reachable withimops facility is evaluated, it is marked as processed. When all the
and all physical edges that connect any of these nodes. facilities are processed, the algorithm examines if theoset

Naturally, ther-balls of two different facilities can overlap. facilities remains the same. If it is not, it continues ewaiing
For optimization reasons, we can joirballs that overlap to all the r-balls in the same manner until the set of facilities is
create a larger graph that we referashape. If more than the same with the one in the last iteration. Formally, itimies
two r-balls overlap then there should be at least one commtfre following steps:

facility for all r-balls. Initialization: Pick randomly an initial setF'(® C H of
Definition 4: (r-shape) Anr-shape is the union of two ko = |F()| to act as facilities. LetF = F(© denote

or more r-balls that overlap and have at least one comme@ntemporary variable containing the “unprocessed” faedit

facility. from the current batch. Also, IsF~ = F(*) denote a variable

As mentioned before, exact information about the topologyontaining this current batch of facilities.
and demand is maintained for the nodes in theall. Ap- Iteration m: Pick an unprocessed facility; € 7 = F(™
proximate information is maintained for the demand of nodesd process it by executing the following steps:
outside ther-ball that is served by the facility. To achieve the 1) Construct the topology of its surroundingball by using
demand of those nodes outside thdalls, their demand is an appropriate neighborhood discovery protocol (see [84] f
attached to the particular node that is closer to them andsigch an example).
within the r-ball of the facility. We refer to them as border 2) Test whether its-ball can be merged with the-balls
nodes and all the nodes that are potentially border nodefsother nearby facilities (see Section IV-A). LgtC F(™)
constitute the skin of the-ball. denote a set composed of and the facilities that can be
Definition 5: (r-border node and-skin) An r-border node merged with it.J induces an-shapeG; = (V;, E;), i.e., the
is any node that i3 hops away from a facility. The set of sub-graph ofy composed of the facilities of, their neighbors
border nodes constitute theskin of ther-ball of a facility. ~ up to distance-, and the edges between them. We can place
Definition 6: (r-ring) The r-ring of a facility is the set of constraints on the maximal size oshapes to guarantee that it
nodes outside the-ball that it serves. The demand of eaclis always much smaller tham i.e., we do not want to end up
node in the ring is attached to its closesborder node. solving the centralized problem. In our algorithm, we riestr
In Figure 1 we provide a setting where we annotate nodgsat nor-shapes contains more half of the total nodes.
according to the introduced definitions. The sub-graph in- 3) Re-optimize ther-shapeG ;. If the original problem is
cluded within the dashed line is theball of node 5 forr=1. UKM, solve the|.J|-median within the--shape by considering



all the candidate facilities in the-shape. This can producefew facilities, each one has to serve a potentially large lmerm
new locations for thd.J| facilities. If the original problem of nodes, e.g., of ordeD(n)), and thus the rings are typically
is UFL, solve the UFL within ther-shape by considering much larger than the correspondingshapes. Note that is

all the candidate facilities in the-shape. This can produceintentionally kept small to limit the size of the individual
new locations as well as change the number of facilities, i.ee-optimizations. Re-optimizing the arrangement of fde#
make it smaller or larger thapy|. In both cases the local re-within anr-shape without considering the demand that flows-
optimization is conducted by using one of the UKM or UFLin from the ring would, therefore, amounts to disregardiog t
solutions (the details regarding the optimizationre$hapes much information (as compared to the information considlere
are given in Section IV-D). Numerical results can be obtdindy a centralized solution). Including the nodes of the rimig i
by using Integer Linear Programming (ILP) formulations][13the optimization is, of course, not an option, as the ringlman
and local search heuristics [15] for solving UKM and UFlarbitrarily large O(n)) and, therefore, considering its topology
within r-shapes. Since both perform very closely in all ouvould contradict our prime objective — to perform facility
experiments [25], [26], we don't discriminate between tlve.t location in a scalable, distributed manner.

4) Remove processed facilities, both the originand the  Our solution for this issue is to consider the demand of the
ones merged with it, from the set of unprocessed facilitiggng implicitly by mapping it into the local demand of the
of the latest batch, i.e., sef = F\ (J(F ). Also update nodes that constitute the-skin. This intermediate approach
F(m) with the new locations of the facilities after the rebridges the gap between absolute disregard for rtiimg,
optimization. and full consideration of its exact topology. The details of

5) Test for convergence. IfF # § then some facilities the mapping are as follows. Let denote a facility inside an
from the latest batch have not yet been processed, so perforshapeG ;. Let v; € U denote a node in the corresponding
another iteration. Otherwise, if the configuration of faigis ring, having the property that; is v;’s closest facility. Let
changed with respect to the initial one for the latest bateh, v, denote a node on the-skin of G;, having the property
F(m) o F= then form a new batch by setting = F(™) thatv; is included in a shortest path fromy to v;. To take
and 7~ = F(" and perform another iteration. Else (ifinto consideration the demand from while optimizing the
F(m) — F=) then no beneficial relocation or elimination-shapeG;, we map that demand onto the demandgfi.e.,
is possible, so terminate by returning the (locally) optimave set:s(vy) = s(vy) + s(v;).
solution F("™), Note, the assignment of nodes demand is done after each

Our distributed algorithm guarantees that all the users dfeoptimization. We do require synchronization of individ
connected to one facility and the demand of each userual facilities to avoid parallel re-optimizations. Fatylitime
satisfied. In this paper we focus on the UKM and UFL witlsynchronization is easy to achieve using the Network Time
unsplittable demands (high DNS TTL values or anycast). Witfrotocol (NTP). Before optimizing artshape, a lock message
our approach it is possible to assign a user and its dematigh an identifier is sent by the facility of the-shape to
to more that one facility if we considered the related fagili all other facilities. This indicates that for this round shi
location problems with splittable demands [14]. It is expedc node is the candidate leader. When the re-optimization is
that fractional assignment of demand can provide evenbetfi®ished an unlock message is sent by (one of) the new facility
results as the load in servers can be better balanced (low DWg the same identifier to all the other facilities. No fieth
TTL values). Our solution is general enough to address alggormation exchange is required between nearby fadlitie
the case of capacitated facility location (CFL) [13] wheaele because each facility can monitor the demand it serves. Our

facility can satisfy a maximum number of users or demandalgorithm is robust to mapping error, non-stationary desipan
and imperfect redirection of users to facilities as we will

o elaborate in Sections V-B and VIII.

D. Optimizingr-shapes

As discussed in Section II, the input of a UKM problem V- A MOREDETAILED EXAMINATION OF DISTRIBUTED
is defined completely by a tupléV, s, k), containing the FACILITY LOCATION
topology, the demand, and the number of allowed medians.The previous section has provided an overview of the basic
A UFL problem is defined by a tupléV,s, f), similar to characteristics of the proposed distributed facility toma
the previous one, but with facility creation costs instedd @pproach. This section sheds light to some important albeit
a fixed constraint on the number of allowed facilities. Fa thmore complex properties of the proposed solution.
optimization of anr-shape, we se¥’ = V;, andk = |J| (for
the case of UKM) orf = {f(v;) : Yu; € V;} (for the case A. Convergence of the lterative Method
of UFL). We start with the issue of convergence. First we show

Regarding service demand, a straightforward approatttat the iterative algorithm of Section IV-C converges in a
would be to sets = {s(v;) : Yv; € V;}, i.e., retain in finite number of iterations. Then we show how to control the
the re-optimization of the-shape the original demand of theconvergence speed so as to adapt it to the requirements of
nodes of ther-shape. Such an approach would, nonethelessactical systems.
be inaccurate since the facilities within arshape serve the Proposition 1: The iterative local search approach for dis-
demand of the nodes of theshape, as well as those in thdributed facility location converges in a finite number of
corresponding ring of the r-shape. Since there are typicall iterations.
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Fig. 2. Analysis of the migration of a facility from X to Y.

Proof: Since the solution space is finite, it suffices
show that there cannot be loops, i.e., repeated visits tsaime
configuration of facilities. A sufficient condition for this that

the cost (either Equation (1) or (2) depending on whethel W, ) + ¢(C, z) — ¢(B, ¥) — ¢(C, y)
are considering distributed UKM or UFL) be monotonicaly

decreasing between successive iterations, d(®), > ¢(m+1),

(0}
¢(B,x) +c(C,z) + c(A, D)

(

for migration are:

c(4,y) < c(4,P) 4)
¢(B,y) > c(B, V) ®)

Using Equation (5) in Equation (3) we obtain:
c¢(B,x) 4+ ¢(C,z) > ¢(B,¥) + ¢(C, y) (6)

Applying Equations (6) and (4) to the differene€™ —
™+ "we can now show the following:
o) _ mr1) _

) - (c(A,y) +¢(C,y) +C(B7\I,)) _

) + (c(A, B) — (A, y)) >0

Below, we show that this is the case for the UKM appliegnich proves the claim also for thWe(m) + Wém+1) case

to r-shapes with a single facility. The cases of UKM applieg, ;s completing the proof.

to r-shapes with multiple facilities, and of UFL follow from
straightforward generalizations of the same proof.
Suppose that during iteration + 1 facility vg is processed
and that between iteration andm + 1, vg is located at node
x, whereas after iteratiom + 1, vy is located at nodey. If
z =y, thenc™ = ¢(m+1) For the case that # y, we need
to prove thate(™) > ¢(m+1),
For the case in whichi\™ = W™ it is easy to show

[ |

We can control the convergence speed by requiring each
turn to reduce the cost by a factor of in order for the turn
to be accepted and continue the optimizing process; i.eepac
the outcome from the re-optimization of arshape at thenth
iteration, only ifc™) > (14 a)c(™*Y., In this case, where an
at leasto. improvement is achieved at each turn, the following
proposition describes the convergence speed.

Proposition 2: The iterative local search approach for

that ¢ > ¢("*+1). Indeed, since the facility moves fromgistributed facility location converges O (log,.,n -

x to y it must have been that this reduces the cost of thg,,

domain of vy, i.e., c(W™) > (W™, which implies
c™ > ¢(m+1) since no other domain is affected.

The case in whichiv{™ # W™ is somewhat more
involved. It implies that there exist sets of nodés B: AU
B#0, A={zeV:z¢g W™ z2ec W™} andB =
{(zeV:izeW ™, »¢ W™ Ais actually the set of
nodes that were not served by facility before them + 1
iteration and are served after the+ 1 iteration. Similarly, B
is the set of nodes that were served by facititybefore the
m + 1 iteration and are not served after the+ 1 iteration.
let C = {z€V:ze W™ 2e W™} be the set
of nodes that remained in the domain @f after its move

from x to y (Figure 2 depicts the aforementioned sets). Since

W(,(m) = BUC (B,C disjoint) and the re-optimization of
Wem) moved the facilityvy from z to y, it must be that:

¢(B,x) 4+ ¢(C,x) > ¢(B,y) + ¢(C,y) 3)

where¢(B, z) denotes the cost of servicing the nodeskf
from z (similar definitions forc(C, x), ¢(C, y)).

(s(v))/min(s(v))) steps.
Proof: Let¢(®, ¢(M) ¢* denote the initial cost, a locally
minimum cost obtained at the lasb/th) iteration, and the
minimum cost of a (globally) optimal solution, respectivel
Here we considel to be the number of “effective” iterations,
i.e., ones that reduce the cost by the required factor. Tia¢ to
number of iterations can be a multiple &f up to a constant
given by the number of facilities. Since we are interested in
asymptotic complexity we can disregard this and focus\tn
For m < M we have required that™ > (1 + a)c(™+D),
or equivalentlyc(®) > (14 a)™c™). Thus when the iteration
converges we have:

0 > (1 +oz)Mc(M) =

0 0
M S 10g1+a m S 10g1+0¢ T

()

¢(™) is upper bounded by the number of node times the
maximum distance to median times the maximum demand,
i.e., O(n? - max(s(v))). c”) is lower bounded by the number

Let & denote the set of facilities that used to service thef nodes times the minimum distance to median times the min

nodes ofA before they entered the domain of at m + 1.

demand, i.e.Q(n - min(s(v))).

Similarly, let ¥ denote the set of facilities that get to service Substituting in Equation (7) gives the claimed upper bound

the nodes of3 after they leave the domain of atm+1. From
the previous definitions it follows that the necessary ctiowls

for the number of iterations. Thus, the number of iteratisns
bounded bylog; qn - maz(s(v))/min(s(v)). [ |



ER BA

o
@

coverage
1N o
ES o
coverage

n=200 ——

radius r radius r

Fig. 3. Example of a possible facility migration from nodgto nodev;  Fig. 4. Average coverage of a node for different size of ER BAcgraphs.
with respect to a particular node € U;.

B. The Mapping Error and its Effect on Local Re.Manner over the depicted domaify,(r, j,u) corresponds to
the length difference of the two different routes betweedeno

Optimizations i ]
P . . . . . u (point A) and nodev; (point D). Therefore,
In this section we discuss an important difference be-

tween solving a centralized version of UKM or UFL (Def-
initions 1, 2) applied to the entire network and our case

where these problems are solved within asshape based Note that for those cases in which the anglbetweenAC

on the demand that results from a fixed mapping of the rirghd C'D, is 0 or T, |AB| + |BD| = |AD|, and therefore,
demand onto the skin. In the centralized case, the amount@zf(r, j,u) = 0. For any other value op, AB, BD and AD
demand generated by a node is not affected by the particid@frespond to the edges of the same triangle and therefore,
configuration of the facilities within the graph, since alides | AB| + |BD| — |AD| > 0 or A;(r, j,u) > 0.

in the network are included and considered with their oBYin  Based on Equation (9), it is possible to derive an upper

service demand. In our case, however, the amount of demagfiind regarding the total mapping ereg(r) for this partic-

generated by a skin node can be affected by the particulagr environment. In [25, Appendices E, F], we prove that:
configuration of facilities within the-shape. In Figure 3 we

illustrate why this is the case. Nodeon the ring has a shortest Aq(r) < 2723 (R2 — 12) (10)
path to facility nodev; that intersects the skin af;’s r-ball - ’

at point B, thereby increasing the demand of a local nod¢here R is the radius of the particular domailiy;.

at B by s(u). As the locations of the facilities may change According to Equation (10), the upper bound ftxg(7) is
during the various steps of the local optimizing procesg.(e.close to0, whenr — 0 or »r — R. We are interested in those
the facility moves fromC to D, see Figure 3), the skin nodecases where the-ball is small. This corresponds to small
along the shortest path betweerand the new location of the values ofr for the particular (two-dimensional continuous)
facility may change (node/poidf in Figure 3). Consequently, environment. Therefore, a small radiusn addition to being

a demandmapping erroris introduced by keeping the map-preferable for scalability reasons has the added advamtfige
ping fixed (as initially determined) throughout the locatiofacilitating the use of a simple and practical mapping with
optimization process. Let\;(r,j,u) denote the amount of small error and expected performance penalty. Indeed,dn th
mapping error attributed to ring nodewith respect to a move following sections we show that small values feryield

of the facility from v; to v; under the aforementioned fixedboth fast and accurate results in different network graptts a
mapping and radius. Then theiotal mapping errotintroduced demands.

in domain; under radiug- is given by:

Ai(r,j,u) = |AB| + |BD[ - [AD|. )

. VI. SYNTHETIC RESULTS ONER AND BA GRAPHS
Ai(r) = Z Z Ai(r, j,u). 8) _ _ o - )
v €Vi weU, 0570 In this section we evaluate our distributed facility looati
Vi approach on synthetic Eid-Renyi (ER) [27] and Baradsi-

The mapping error in Equation (8) could be eliminated bflbert (BA) [28] graphs generated using the BRITE genera-
re-computing the skin mapping at each stage of the optimizitor [29]. For ER graphs, BRITE uses the Waxman model [30]
process i.e., for each new intermediate facility configunrgt in which the probability that two nodes have a direct link is
Such an approach not only would add to the computationB{(u,v) = « - e~%(#L) whered is the Euclidean distance
cost but — most important — would be practically extremelyetweenu and v, and L is the maximum distance between
difficult to implement as it would require the collection ofany two nodes. We maintain the default values of BRITE
demand statistics under each new facility placement, @alaya = 0.15, 5 = 0.2 combined with an incremental model
the optimization process and inducing substantial ovethein which each node connects ta = 2 other nodes. For
Instead of trying to eliminate the mapping error one coulBA graphs, i.e., random scale-free graphs using a prefaftent
try to assess its magnitude (and potential impact) on th#tachment mechanism, we also use incremental growth with
effectiveness of the distributed UKM/UFL. m = 2. This parameterization creates graphs in which the

The example depicted in Figure 3 helps derive an expressimmmber of (undirected) links is almost double the number of
for the mapping erron\;(r, j,u), assuming a two-dimensionalvertices (as also observed in real AS traces that we use later
plane where nodes are scattered in a uniform and continuaushe paper).



e JUKM - ER n=400 dUKM, teraons - ER =400 of service demand(v) = 1,Vv € V. To ensure scalability,
sl géaﬁﬁé";i?%ﬁﬁﬁi . Gk 2 we don't want our distributed solution to encounteshapes
that involve more than0% of the total nodes, and for this we
limit the radius tor = 1 andr = 2, as suggested by the node
coverage results of the previous section. We let the fractio
! A ] of nodes that are able to act as facilities (i.e., serviceshos
s P i take values:/n = 0.1%, 0.5%, 1%, 2%, and5%. We perform
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18 clrandom)Ic(UKH) M The plots on the left-hand-side of Figure 5 depict the cost of
217 c(dUKM(1))/c(UKM) -—--m-— 70 | dUKM(2) —2- ] A A
B SHAUKMEZ)ie(URM) —= . ] our dUKM(r) approach normalized over that of the optimal but

centralized UKM, with the plot on top for ER graphs and the
plot on the bottom for BA graphs. We also plot the normalized
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cost ratio with respect t

. " cost of open uniformly at randomk facilities, denoted as
10 e ] random For both ER and BA graphs, the performance of our
et distributed solution tracks closely that of the centralizme,
k with the difference diminishing fast asand k are increased.

Fig. 5. The relative performance between random and UKM, thi€N(r), The normalized performance for BA graphs converges faster
UKM, and the number of iterations for the convergence of th&ElJfor » =

1 andr = 2, and different facility densitieg/n = 0.1%, 0.5%, 1%, 2%, (i.e., at smallerk for a givenr) to ratios that approach 1.

and5% under ER and BA graphs. This owes to the existence of highly-connected nodes (the so
) . called “hubs”) in BA graphs — building facilities in few of ¢h
A. Node Coverage with Radius hubs is sufficient for approximating closely the performanc

Figure 4 depicts the fraction of the total node populatiat thof the centralized UKM. The two plots on the right-hand-
can be reached in hops starting from a certain node in ERside of Figure 5 depict the number of iterations needed for
and BA graphs, respectively. We plot the mean andasié dUKM(r) to converge. A smaller value of requires more
percentile confidence interval of each node under differeit¢rations as it leads to the creation of a large number oflsma
network sizes: = 400, 600, 800, 1000, representing typical sub-problems (re-optimizations of many smedhapes). BA
populations of core ASes on the Internet as argued later @iaphs converge in fewer iterations, since for the sameevalu
The figures show that a node can reach a substantial fradtiorob BA graphs induce larger-shapes. Again, it is the hubs
the total node population by using a relatively smalln ER that create large-shapes. Even under a smalla hub will
graphs,r = 2 covers2% — 10% of the nodes, whereas= 3 be close to the facility that re-optimizes its location, ahis
increases the coverage 10% — 32%, depending on network Will bring many of the hub’s immediate neighbors into the
size. The coverage is even higher in BA graphs, where2 r-shape. We conclude that less re-optimizations are needed
coversi%—15%, whereas = 3 covers20%—50%, depending in BA graphs than in ER graphs when the number of nodes
again on network size. These observations are explained dd demand profile are the same. The cost of opening fasilitie
the fact that in larger networks the density of nodes withinuniformly at random is much higher than this of our distréalit
hops varies in BA and ER graphs. In BA graphs, owing to tHéKM. This supports our argument that distributed UKM yields
preferential attachment, it is expected that the densityooies significant cost reduction in both ER and BA graphs.
that are reachable within hops increases as the population
of the nodes increases. On the other hand, in ER graphs
density of the nodes within hops does not increase as fas
as in BA graphs as the node population increases. In order to evaluate the performance of distributed UFL of
radiusr, henceforth referred to as dURL)( we need to decide
. how to set the facility acquisition cosfgv;) which constitute
B. Performance of Distributed UKM part of the input of a UFL problem (see Definition 2). This

In this section we examine the performance of our digs a non-trivial task, essentially a pricing problem forwetk
tributed UKM of radiusr, hereafter referred to as dUKM)( services. Although pricing is clearly out of scope for thégpr,
when compared to the centralized UKM utilizing full knowl-we need to use some form ¢fv;)’s to demonstrate our point
edge. For the rest of the paper, unless otherwise mentiontt, as with UKM, the performance of the distributed vemsio
all the nodes in the network are candidate facilities. Thaf UFL tracks closely that of the optimal but centralized UFL
set of facilities (F| = k, where ' € V, see Section Il) (obtained by solving the ILP). To that end, we use two types
and the service cost in UKM can be obtained by solvingf facility costs: uniform where all facilities cost the same
an Integer Linear Program (ILP). In this work we use thendependently of location (i.e.f(v;) = f, Vv; € V) and,
TOMLAB/CPLEX ILP solver. For the ILP formulation of the non-uniform where the cost of a facility at a given node
k-median problem see [13]. Note that the solution of ILEepends on the location of that node. The uniform cost model
yields the optimal cost. We fix the network sizeso= 400 is more relevant when the dominant cost is that of setting up
(matching measurement data on core Internet ASes that we thee service on the host, whereas the non-uniform cost model
later on) and assume that all nodes generate the same am@untore relevant when the dominant cost is that of operating

.ePerformance of Distributed UFL



7000 e 7000 cun-en Also we observe a tendency for lower costs when starting the

oo | VAL E 6000 dﬁ%{?ié distributed algorithm with a higher number of initial faitigs.

sooo | 4R 05F = R — Under the non-uniform (degree-based) cost model, both dUFL

WRAE O i and UFL open facilities in 2-8% of the total nodes, depending
on the example.

- We also evaluate the performance of dUFL under uniform

1000 0 %0 o o Tor o0 o 1000 facility cost f; the cost is set at a value that leads to building

" " the same number of facilities as the corresponding degree-

Fig. 6. Cost comparison between random, dUfjlgnd UFL, forr = 1 and xample. Both th istri n ntraliz F i
r = 2, and different network sizes under ER and BA graphs and @domsed based exa ple. Both the distributed and centralized URdbu
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3000 2000

2000 1000 gt

facility cost f(v;) = d(v;) oG the same number of faC|I_|t|es, and the_pe_rformance_ of (_JIUFL is
very close to the centralized one, as is illustrated in Fagur

1000 :UFL,unllorm(aulltycost-ER 2000 ;JUFL,unwormfacmlycosl-BA Agaln, We emphaSIZe that Our goal here IS not to evaluate
3500 ggig(éé i 6000 gg%&i o performance under different pricing scheme, but rathehtovs

2000 , 5000 ; that the performance of distributed UFL tracks well that of
o — o ' the centralized, optimal approach. Moreover, under bost co
2000 7 models, the random placement of facilities yields high .cost
1000 /’“’y/d The number of iterations for dUFL(r) to converge is similar
00 500 600 700 800 900 1000 %o 500 600 700 0 900 1000 to this of the dUKM(r), for the same graph (ER or BA, and size
o 7 Cost o et dom. d d”UFL . . of graph), in both the case of degree-based and the uniform
B e anto 121y cOSL The number of ierations can be significanty
facility cost. reduced, especially for large graphs, if no migration takes
place unless the service cost is decreased by a fact@s
the facility (implying that this operating cost is proportal discussed in Section V-A.
to the desirability of the host, which depends on topoldgica
location). The later cost model is general enough to capture \/||. ReEsULTS FORREAL AS-LEVEL TOPOLOGIES

the congestion associated with each facility. . . L
9 : . Y . . To further investigate the performance of our distributed
For the non-uniform case we will use the following rule;

we will make the cost of acquiring a facility proportional toapproach and to better support our sketched application sce

) ) ) - ... nario described in the introduction, we include in this sett
its degree, I.e., proportional to the number of direct lilks | o070 ke on real AS-level maps under non-nifor
has to other nodes. The intuition behind this is that a highP P

: ) Service demand from different clients. We choose the ABHev
connected node will most likely attract more demand from . :

. . . {0 evaluate our approach as many infrastructure providens s
clients, as more shortest-paths will go through it and, ,thus

building a facility there will create a bigger hot-spot, an(ﬁns content distributors, data-centers and cloud providezs

. Jocated within an AS that peers with other ASes [33], [34],
therefore the node should charge more for hosting a service. =" """ . T T .

. . ar ;maintaining a highly distributed hosting infrastrueun a
Note, as sketched in the Introduction, a node may correqund

to an AS that charges for allowing network services to bard9¢ number of ASes [17], [35], [9] to better satisfy enaus

installed on its local GSH. In [31],[32] the authors showegeema.md and _clont.rol their op_erational cost. We assume that a
that the “coverage” of a node increases super-linearly Wiﬁ?ndldate facility is present in each AS.
its degree (or alternatively, the number of shortest pdihas t
go through it). We, therefore, use as facility coity;) = A. Description of the AS-level Dataset
d(v;)'*t*e, whered(v;) is the degree of node; € V andag We use the relation-based AS map of the Internet obtained
is the skewness of the degree distribution of the gréphn  using the measurement methodology described in [36]. The
order to estimate the value of;, we use the Hi)|(| estimator: dataset includes two kinds of relationships between ASes.
dgﬂ,ﬁ”) = 1/%%m, Where:4y,, = 3% log X(;fl), X() Customer-Provider: The customer is typically a smaller AS
denotes the-th largest value in the sampl&,, ..., X,,. We that pays a larger AS for providing it with access to the rest
prefer the Hill estimator since it is less biased than lineaf the Internet. The provider may, in turn, be a customer of an
regression for fitting power-law exponents. even larger AS. A customer-provider relationship is modele

In Figure 6 we plot the cost of dUFL(1), dUFL(2), and cenusing a directed link from the provider to the customer.
tralized UFL, in ER and BA graphs under the aforementiond®eer-Peer;: Peer ASes are typically of comparable sizes and
degree-based facility cost. For dUFL, we present threeslinkave mutual agreements for carrying each other’s traffier-Pe
for each radiug:, corresponding to different initial number ofpeer relationships are modeled using undirected links.
facilities used in the iterative algorithm of Section IV-@Gle Overall the dataset includes 12,779 unique ASes, 1,076
useko = 0.5-F, F, and2- F', whereF' denotes the number of peers and 11,703 customers, connected through 26,387 di-
facilities opened when applying the corresponding cemtzdl rected and 1,336 undirected links. Since this AS graph is not
UFL. As evident from the results, the cost of dUFL is closeonnected, we chose to present results based on its largest
to that of UFL (around 5-15% for both types of graphs). Asonnected component, which we found to include a substantia
with dUKM, the performance improves withand is slightly part of the total AS topology at the peer level: 497 peer
better for BA graphs (see the explanation in Section VI-BASes connected with 1,012 undirected links. There are small
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rolglegéh ’\élér:jgesr iﬁfdcéjcsrfgg Aosrgzrnumber of iterations for the convergence of the dUKM, fo= 1 and
accordin pto rank 9 r = 2, and different facility densitieg/n = 0.1%, 0.5%, 1%, 2%, and
9 ' 5% in the AS graph.

The cost of random, top-degree, dUKiland UKM, and the Fig. 10. The cost of dUKM(1) and

MW distributed algorithm in the AS
graph as the number of iterations in-
creases.

connected component2-§ ASes) that are formed by smallln Figure 10 we plot the cost of dUFL(1) as the number of
regional ISPs with peering relationships. We verified thdg t iterations increase. We notice that only two or three iternst
component contains all the 20 largest peer ASes reportae sufficient to get the cost reduction that is close to the
in [36]. Since it would be very difficult to obtain the realoptimal but centralized UKM.
complex routing policies of all these networks, we did not We also compare with the only distributed facility location
consider policy-based routing, but rather assumed shortegork we are ware of, the one by Moscibroda and Wattenhofer
path routing based on the connected component. [38], henceforth refereed adW. This work explores a trade-
We exploit the relationships between ASes in order to deriedf between the amount of communication and the resulting
a more realistic (non-uniform) service demand for the peapproximation ration. The authors showed that it is possibl
ASes that we consider. Our approach is to count for each péemchieve arO(,/zi(mp)'/vF log(m + n)) approximation in
AS the number of customer ASes that have it as providé€d(n) communication rounds (in our algorithm this refers to
either directly or through other intermediary ASes. We theterations), where the message size is boundedbpg n)
set the service demand of a peer AS to be proportional ltds, m is the number of facilitiesp is the number of clients,
this number. In Figure 8 we plot the demand profile of peand p is a coefficient that depends on the cost values. We
ASes (in decreasing order using log-log scale). As evideptesent the performance of MW algorithm in Figure 10. The
from this plot, the profile is power-law like (with slight performance of the MW algorithm is poor, especially when the
deviation towards the tail), meaning that few core ASesycarnumber of rounds is small. This is expected as WM algorithm
the majority of the demand that flows from client ASes. liries to approximate the solution of the centralized facili
the sequel we present performance results in which nodesation with a minimal number of rounds of communication
correspond to peer ASes that generate demand that folloavsl minimal message size.
the aforementioned power-law like profile. We seek to idgnti

the peer ASes for building service facilities. C. Distributed UFL on the AS-level Dataset

Table | presents the performance of dUFL and random
B. Distributed UKM on the AS-level Dataset opening of facilities on the AS-level dataset. Again, it is

The plots on the left-hand-side of Figure 9 show the cost ¥gified that dUFL is very close in performance to UFL, even
random, top-degree, dUKM(1), dUKM(2), and the centralize{@" small values ofr (within 4% for » = 2, under both
UKM, under the AS-level graph. Top-degree is a heuristexamined facility cost models). The cost of randomly open
where k facilities are placed at ASes with the highest pedfcilities is, in some cases, more than six times the cost of
degree and requires full knowledge of the AS-level topologiHT distributed UFL. The top-degree heuristic yields lovstco
which is difficult to get as links may be missing [37]. oupnder the degree-based cost model but not under the uniform
manual investigation shows that the footprints of ASes wifPSt model. Notice also that the number of facilities in_the
high peer degree are concentrated in different geographi€gSe of random and top-degree placement has to be estimated
locations. Clearly, even for small valuesfthe performance Offline. We also noticed that again a small number of rounds
of our distributed approaches track closely that of theroati 1S Sufficient to reduce the dUFL cost close to this of the
but centralized approach. The random opening of faciliti€@timal but centralized UFL. The performance of MW is far
again yields high cost. On the other hand, the top-degr@@_m optimal (R:l_O rc_>unds) but improves the initial cost with
heuristic yields low cost that is approximately 15-20% leigh Minimal communication cost.
than this of the dUKM and centralized UKM.

Regarding the number of iterations needed for convergence, VI!I. N ON-STATIONARY DEMAND AND IMPERFECT
the same observations apply as with the synthetic topapgie REDIRECTION
i.e., they increase with smaller radii. The substantialeben Up to now, our performance study has been based on
fit from knowledge of only local neighborhood topologiemssuming (1) stationary demand, and (2) perfect redinectio
(“neighbors of neighbor”) has been observed for a numbef each client to its closest facility node. The stationary
of applications, including [24] which has also investightedemand assumption is not justified for relatively large time
and quantified implementation overhead in an Internetrgetti scales (hours or days), and perfect redirection can beregbe
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dUFL(1) | dUFL(2) | top-degree| random | MW . . . .
degree | 1.22 104 135 667 620 50%, as it is shown in Figure 11 (right). Last, we looked at
-based | (1.20) (1.03) (1.35) (6.68) | (6.28) churn at the AS level by counting the number of new ASes
uniform | 1.01 1.01 1.80 6.35 6.01 joining and existing ASes leaving the torrent over time [40]
(1o1) | (1.01) | (1.80) (6:33) | (6.04) Formally, we definedthurn(t) = m, whereU,
TABLE | is the set of ASes at time ands is the set difference operator.
MEAN (MEDIAN) COST RATIO BETWEEN DUFL(r), TOP-DEGREE RANDOM, MW, | Figure 12 we plot the evolution of churn. One can observe
AND UFL IN THE AS-LEVEL TOPOLOGY. that AS-level churn is quite high, ranging from 6% to 11%,
Non-stationary demand, number of downloads Non-stationary demand, number of downloads, most popular AS Wlth no speCIfIC pattern Thls Serves Our purpose WhICh IS to
8000 ——— 280 ——————— study the performance of dUFL under non-stationary demand.

)
3
S

~
o
=]
=3

bN

S

B. Distributed UFL under Non-stationary Demand

We consider a distributed server migration scheme given
by dUFL with radiusr = 1. The pricing model for starting
000 140 a server at an AS is the aforementioned degree-based one of
16:00 24:00 08:.00 16:00 24:00 08:00 16:00 24:.00 08:00 16:00 24:00 08:00 . .
time (GMT) time (GMT) Section VI-C. The evaluation assumes an AS-level topology
Fig. 11. The number of concurrent downloads from all ASes anthf Obtained from Routeviews. The demand originating from each
the most popular AS in the torrent of an on-line multi-playemgaat each A gt each particular point in time is set equal to the value we
measurement point. . . .
obtained from measuring the downloads going to the torrént o
costly to implement or too difficult to enforce due to faults othe game client. We compare the cost of UFL, dUFL(1), with
excessive load. In this section we look at the performané@s of two static placement heuristics: static-min andista
of distributed facility location scheme when dropping th&ax. Static-min is a simple heuristic that maintains the esam
aforementioned assumptions. First, we present a measntenféacement across time. The number of maintained facilisies
study for obtaining the non-stationary demand correspundi€qual to the minimum number of facilities that UFL opened
to a multi-player on-line game and then use this workload tB the duration of the experiment. This is used as a baseline
derive a performance comparison between dUFL and UFr the performance of an under-provisioned static placgme
Then, we assume that mapping a client to its closest faci:%f;efvefs according to minimum load. Static-max captures
node has to incur some time lag and study the performarif€ cost of an over-provisioned placement according to peek

implications of such an imperfect redirection scheme. load. Obviously, static-max suffers from a high purchasst co
of buying a maximum number of servers (in this case 100),

) ) whereas static-min suffers from high communication cost to

A. Measuring the Demand of a Popular Multi-player Gameeach the smaller number of used servers (in this case 70).

We used the Mininova web-site to track all requests for We report the average cost in the duration of the experiment
joining a torrent corresponding to a popular on-line multid2 hours) for each one of the aforementioned policies. For
player game. By tracking the downloads of the game cliemach policy we repeated the experiment 100 times to remove
which is possible to do due to the use of BitTorrent, we cahe effect of the initial random opening of facilities. In
obtain a rough idea about the demographics of the load putBigure 15 we plot the resulting average costs along Wit
the game servers, to which we do not have direct access. Jégcentile confidence intervals. One can see that dUFL(1)
then use this workload to quantify the benefits of instaimigat achieves 4 to 7 times lower cost compared to static-min
game servers dynamically according to dUFL. Hereafter, vead static-max. Looking at the close-up, it can also be seen
use the term facility and server interchangeably. that dUFL(1) is actually pretty close, within 10-20%, of the

More specifically, we connected periodically at 30-minutperformance of the centralized UFL computed at each point
intervals to the tracker serving this torrent, over a totabtion in time. Taken together, these results indicate that dUFL(1
of 42 hours. At each 30-minute interval, we got all the IPs gfields a high performance also under non-stationary demand
participating downloaders by issuing to the tracker mldtip Next, we quantify the number of server migrations required
requests for neighbors until we got all distinct downloadeby dUFL(1), between consecutive intervals, to track therefd
at this point in time. In Figure 11 (left) we plot the numbenon-stationary demand. In Figure 13 we plot the percentage
of concurrent downloads at each measurement point. Oyerafl servers that are migrated, henceforth referred as nugrat
we were able to capture a sufficient view of the activity of theatio, along with95'" percentile confidence intervals based
torrent and detect expected profiles, e.g., diurnal vanativer on 100 runs. Evidently, migrations are rather rare, typjcal
the course of a day. In total, we saw 34,669 unique users &#-3%, after the servers stabilize from their initial ramdo
the population varied from 6,000 to 8,000 concurrent usefssitions, to where dUFL(1) will have them at each point in
i.e., the population variance was close to 25%. time. In Figure 14 we show the number of utilized servers over

Moving on, we used Routeviews dataset [39] to map eatime when applying our distributed algorithm (dUFL(1)) end
logged IP address to an AS. The variance in the numbmon-stationary demand. The number of utilized serveresari
of concurrent users from a particular AS was even highdot throughout the experiment, but the migration ratio hesdw
Focusing on the most popular AS, we found out that thevo consecutive intervals is small. There are two noticeabl
variance in the number of concurrent users was as high eseptions, at around 16:00 GMT and 08:00 GMT, when churn
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Non-stationary demand, churn Non-stationary demand, dUFL(1), migration of servers
0.12 T T T T T 0.06 T T T T

Non-stationary demand, dUFL(1), number of utilized servers

0.1 0.05 84

82

0.08 0.04

80

churn

0.06 0.03

78

migration ratio

0.04 76

0.02 74 -

number of utilized servers

72

L L L L L 0
ge:oo 24:00 08:00 16:00 24:00 08:00 16: 70 . . . . .
time (GMT) time (GMT) 16:00 24:00 08:00 16:00 24:00 08:00
Fig. 12. Churn evolution in the AS-level in the Fig. 13. Migration ratio of dUFL(1) in the Fig. 14. Number of“'ﬂetﬁ?%)d servers over time
torrent of a popular on-line multi-player game at torrent of a popular on-line multi-player game at when applying dUFL(1) under non-stationary de-
each measurement point. each measurement point. mand.

Non-stationary demand, performance comparison

140000 - . . N . Non-stationary demand, effect of lag
10
120000 H %
8 8
100000 | Bep
c static-min —s—
5 4 [static-max ——
i < dUFL(1) ——
% 80000
@) 2r 3
60000 fstatic-min —— o 1 0 ° ;‘g’ ® 20
staticmax. - LTl o Fig. 16. Normalized cost of static-min, stati d dUF It t
dUFL 1) ——— ° i:sz 9. . ormalized cost Oof static-min, static-max an respec
40000 r nglz i wnw 221 to the cost of UFL in the torrent of a popular on-line multiy#a game under
/ 1OW?EOG 24:00 08:00 15;:;4&800 Varlous Ievels Of Iag
20000 | e
= L L ceased to be optimal due to one or several migrations. Since
16:00 24:00 08:00 16:00 24:00 08:00 we assume that migrations occur at fixed time intervals, we
time (GMT) measure the lag in terms of number of such intervals (1 facili
Fig. 15. Average cost of static-min, static-max, dUFL(1), el in the ~Migration at each interval). Notice that under the existeofc
torrent of a popular on-line multi-player game at each measurepmint.  |ag, even with stationary demand, the optimization is ngén

aranteed to be loop-free as the server that is about tataigr

is high (up to 7%). This is to be expected as the evening pe% till active (see Section V-A). We solve this by stoppihg t

hour (in different parts of the globe) starts at the grourai thiterative re-optimization if it reaches a certain high nenbf
time. These results suggest that dUFL(1) is relatively wmterations

to demand changes and can typically address them withou}n Figure 16 we plot the cost ratio between dUFL(1)

massive numbgrs of migrations that are of course costly é'?]d dUFL and theéd5"" percentile confidence interval under
terms of bandwidth and management. Of course, the num &hious levels of lag that range from 0 up to 20 As expected,

of migrations can be reduced further by trading performani:gg puts a performance penalty on dUFL. The degradation,

with laziness in triggering a migration. however, is quite smooth, while the performance always re-
mains superior to static-min and static-max.

C. The Effect of Imperfect Redirection

We now move on to dropping the assumption that clients are IX. RELATED WORK
always redirected to their closest facility, which prettyich There is a rich literature on facility location theory. Ini-
implies that there are no performance penalties for thentauetial results are surveyed in the book by Mirchandani and
server migrations. In many cases it has been shown thatgperférancis [8]. A large number of subsequent works focused on
redirection is indeed feasible using route triangulatiord a developing centralized approximation algorithms [13]4][1
DNS [21]. In this section, however, we relax this assumptioflL5], [16]. The authors of [41] have proposed an alternative
and study the effects of imperfect redirection. We do so #pproach for approximating facility location problems dxdis
cover cases in which perfect redirection is either too gdstl on a continuous “high-density” model. Recently, geneealiz
implement, or exists, but performs sub-optimally due tdtéau tions of the classical centralized facility location pretsl have
or excessive load. appeared in [42], [43]. The first mention of a distributed
To this end, we assume that there exists a certain amounfaility location algorithm is by Jain and Vazirani [16] vidi
lag between the time a server migrates to a new node and tteemmenting on their primal-dual approximation method, but
time that the migration is communicated to the affectechtie they do not pursue the matter further. To the best of our
During this time interval, a client might be receiving seevi knowledge, the only work in which distributed facility Idgan
from its previously closest facility which, however, maywha has been the focal point seems to be the recent work of



13

Moscibroda and Wattenhofer [38]. This work explores a tradéexibility of billing models, such as pay-as-you-go, todsrma
off between the amount of communication and the resultiriglly automated Internet-scale service deployment.

approximation ration. The authors showed that it is possibl
to achieve a non-trivial approximation with constant numbe

communication rounds where the message size is bound?ﬁ.

The online version of facility location, in which requestiee
one at a time according to an arbitrary pattern, has been
studied by Meyerson [44] that gave a randomized onliné?)
O(1)-competitive algorithm for the case that requests arrives
randomly and a)(log n)-competitive algorithm for the case
that arrival order is selected by an adversary. Andreev .et a[I4]
[45] very recently proposed approximation algorithms tece
locations for sources in a capacitated graph such that a give
set of demands can be satisfied simultaneously, with the goal
of minimizing the number of locations chosen. Their solutio )
is centralized. Oikonomou and Stavrakakis [46] have pregos
a fully distributed approach for service migration — theirm
results, however, are limited to a single facility (represey
a unique service point) and assume tree topologies. [8]

Several application-oriented approaches to distributrd s 9
vice deployment have appeared in the literature, e.g., ng-
mamoto and Leduc [47] (deployment of multicast reflectord),0]
Rabinovich and Aggarwal [48] (deployment of mirrored web-
content), Chambers et al. [49] (on-line multi-player netkvo 11
games), Cronin et al. [50] (constrained mirror placement),
Krishnan et al. [51] (cache placement), Qureshi et al. [5 2
(energy cost-aware server selection), and Frank et al.((58]
demand server deployment in microdatacenters). The afofs]
mentioned works are strongly tied to their specific appidcet
and do not have the underlying generality offered by they
distributed facility location approach adopted in our work
Relevant to our work are also the works of Oppenheimer ép!
al. [54] on systems aspects of a distributed shared platform
for service deployment, Aggarwal et al. [55] on automateld6]
data placement for geo-distributed cloud services, Weéredel

. . 7]

al. [56] on decentralized server selection for cloud sesjc
and Loukopoulos et al. [57] on the overheads of updatiritg]
replica placements under non-stationary demand.

[19]
X. CONCLUSION

We have described a distributed approach for the problem[%?]
placing service facilities in large-scale networks. Werooene [21]
the scalability limitations of classic centralized apprioes
by re-optimizing the locations and the number of facilitiegzl
through local optimizations which are refined in severatite[23]
ations. Re-optimizations are based on exact topologicdl 3[?4]
demand information from nodes in the immediate vicinity
a facility, assisted by concise approximate represemtadio [25]
demand information from neighboring nodes in the wider d?z's]
main of the facility. Using extensive synthetic and traceeh
simulations we demonstrate that our distributed approach
is able to scale well by utilizing limited local information[27]
without making serious performance sacrifices as compar;
to centralized optimal solutions. We also demonstrate dhat
distributed approach yields a high performance under ndg?l
stationary demand and imperfect redirection. Our approaﬁg]
leverages recent advances in virtualization technologlytha
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