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Spatio-Temporal Network Anomaly Detection by
Assessing Deviations of Empirical Measures

Ioannis Ch. Paschalidis, Senior Member, IEEE, and Georgios Smaragdakis

Abstract—We introduce an Internet traffic anomaly detec-
tion mechanism based on large deviations results for empirical
measures. Using past traffic traces we characterize network
traffic during various time-of-day intervals, assuming that it is
anomaly-free. We present two different approaches to characterize
traffic: (i) a model-free approach based on the method of types and
Sanov’s theorem, and (ii) a model-based approach modeling traffic
using a Markov modulated process. Using these characterizations
as a reference we continuously monitor traffic and employ large
deviations and decision theory results to “compare” the empirical
measure of the monitored traffic with the corresponding reference
characterization, thus, identifying traffic anomalies in real-time.
Our experimental results show that applying our methodology
(even short-lived) anomalies are identified within a small number
of observations. Throughout, we compare the two approaches
presenting their advantages and disadvantages to identify and
classify temporal network anomalies. We also demonstrate how
our framework can be used to monitor traffic from multiple
network elements in order to identify both spatial and temporal
anomalies. We validate our techniques by analyzing real traffic
traces with time-stamped anomalies.

Index Terms—Large deviations, Markov processes, method of
types, network security, statistical anomaly detection.

I. INTRODUCTION

A LTHOUGH significant progress has been made in
network monitoring instrumentation, automated on-line

traffic anomaly detection is still a missing component of modern
network security and traffic engineering mechanisms. Network
anomaly detection approaches can be broadly grouped into two
classes: signature-based anomaly detection where known pat-
terns of past anomalies are used to identify ongoing anomalies
(e.g., see [1], [2] for intrusion detection), and anomaly detection
which identifies patterns that substantially deviate from normal
patterns of operation [3]. Earlier work has showed that systems
based on pattern matching had detection rates below 70% [4],
[5]. Furthermore, such systems need constant (and expensive)
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updating to keep up with new attack signatures. As a result,
more attention has to be drawn to methods for traffic anomaly
detection since they can identify even novel (unseen) types of
anomalies.

In this work we focus on anomaly detection and in particular
on statistical anomaly detection, where statistical methods are
used to assess deviations from normal operation. Our main con-
tribution is the introduction of a new statistical traffic anomaly
detection framework that relies on identifying deviations of the
empirical measure of some underlying stochastic process char-
acterizing system behavior. In contrast with other approaches
[1], [2], [6], we are not trying to characterize the abnormal op-
eration, mainly because it is too complex to identify all the
possible anomalous instances (especially those that have never
been observed). Instead we observe past system behavior and,
assuming that it is anomaly-free, we obtain a statistical char-
acterization of “normal behavior.” Then, using this knowledge
we continuously monitor the system to identify time instances
where system behavior does not appear to be normal. The nov-
elty of our approach is in the way we characterize normal be-
havior and in how we assess deviations from it. More specifi-
cally, we propose two methods to characterize normal behavior:
(i) a model-free approach employing the method of types [7] to
characterize the type (i.e., empirical measure) of an independent
and identically-distributed (i.i.d.) sequence of appropriately av-
eraged system activity, and (ii) a model-based approach where
system activity is modeled using a Markov Modulated Process
(MMP). Given these characterizations, we employ the theory
of Large Deviations (LD) [7] and decision theory results to as-
sess whether current system behavior deviates from normal. LD
theory provides a powerful way of handling rare events and
their associated probabilities with an asymptotically exact expo-
nential approximation. The key technical results we rely upon
are Sanov’s theorem [7] in the model-free approach, a related
result for the empirical measure of a Markov process for the
model-based case, and Hoeffding’s [8] composite hypothesis
testing rule for assessing deviations from normal activity.

We note that the words “traffic” and “router” are purpose-
fully absent from the previous paragraph. Rather, we use the
generic term “system”. This is to indicate that our approach can
be easily adapted to identify anomalies in any trace of system
activity we would like to monitor (e.g., access to various appli-
cation ports, IP source-destination addresses, system calls, etc.).
In this paper, however, we focus on two case studies: (a) three
different representations (bytes, packets and flows) of sampled
origin–destination flow data from a backbone network, and (b)
the aggregate traffic that arrives to or originates from the border
router of some local area network (LAN) we wish to monitor.

Traffic has diurnal variations which are primarily due to
human activity. However, for relatively short time-scales (e.g.,
of about an hour), and especially during busy hours, stationary
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models can be appropriate. The model-free approach aggre-
gates traffic over short time intervals to which we will refer
to as time buckets. Although the correlation between samples
in short time scales is significant, it reduces rapidly between
aggregates over a time bucket. Hence, we consider the sequence
of traffic aggregates over a time bucket as an i.i.d. sequence
and employ the method of types to characterize its distribution.
Our model-based approach uses an MMP process to model
legitimate traffic during some time-of-day interval. Earlier
work has shown that MMP models can accurately characterize
network traffic [9], [10], at least for the purposes of estimating
important quality-of-service metrics.

We should point out that in both the i.i.d. and MMP settings
our goal is not to adopt the most sophisticated and accurate
traffic model; the quality of the model should be judged based
on whether it is useful in anomaly detection. There is no doubt
that there are much more detailed and complex models that pro-
duce traces that are, statistically, very similar to actual traffic
traces. On the other hand, it can be argued that low-dimensional
models (which are bound to be more inaccurate) are more desir-
able for anomaly detection because they tend to be more robust
to “normal” statistical fluctuations one expects in traffic. Our ex-
perimental results demonstrate that our characterizations, based
on low-dimensional models, do a respectful job in identifying
anomalies.

The proposed framework is general enough to also take into
account spatial information. By combining observations at dif-
ferent locations of a network we are able to construct multi-di-
mensional stochastic processes to characterize system behavior.
Both our model-free and our MMP approaches can work with
vector characterizations and identify spatio-temporal anomalies
(as both temporal and spatial information is preserved).

The methods we present are statistical; as a result, our ap-
proach has the potential of detecting novel anomalies, such as
previously unseen attacks. This is crucial for network security
as new types of attacks are constantly being engineered. A novel
feature of our approach is that it compares subtle distributional
differences between the reference traffic characterization and
observed traffic traces. As we will see, this is critical as it enables
us to detect attacks—including some short-lived ones or anom-
alies that traverse different locations of a network—that do not
result in significant changes in traffic volume. First or second
moments of traffic measurements would be too insensitive to
these types of attacks. A distinctive feature of our approach is
that it appears able to identify temporal and spatial anomalies in
short time-scales as opposed to techniques working over much
longer time-scales [3] or others that try to identify spatial anom-
alies [11]–[13] collapsing the temporal correlation of network
feature samples. As we will also describe later, the only infra-
structure requirement in order to deploy our method is a simple
counter.

As is common in other statistical anomaly detection ap-
proaches, we rely upon observing the system during an
anomaly-free period to learn what constitutes normal behavior.
Of course, one can never ensure that a trace of system activity
is anomaly-free. Yet, even in those cases that the reference trace
is “tainted” it is useful to know that the current activity is sta-
tistically different. Non-stationarity in system activity can also
cause problems to our approach as it may be responsible for

legitimate distributional differences between past and current
activity. However, as long as stationarity holds over relatively
short periods of time one could often update the reference
trace with more recent and relevant activity, thus, reducing the
possibility of misdetections and false alarms. In our work, the
time-scale over which measurements are available depends on
the application and is of secondary concern. All that is needed
is enough data to reliably characterize normal behavior. The
latter is a reasonable assumption when network activity is
continuously monitored. We report a number of experimental
results from applying our approaches to two different network
traces: (a) one week of sampled origin–destination flow data
from the Abilene backbone network [12], and (b) the 1999
MIT Lincoln Lab (DARPA evaluation) trace [5]. We are able
to detect a variety of anomalies such as attack and volume
anomalies (even short ones) within a few samples.

The rest of the paper is organized as follows. In Section II
we present our model-free method for anomaly detection. In
Section III, we provide the basic theoretical background of our
model-based method. In Section IV we extend the initial frame-
work incorporating spatial information. In Sections V and VI we
compare the two methods and validate our methodology using
real measurements with time-stamped anomalies. In Section V
we also report on the performance of our spatio-temporal frame-
work in large scale networks. In Section VII we review related
work and identify the major differences with our approaches.
We conclude in Section VIII.

II. A MODEL-FREE APPROACH

In this section we discuss our model-free approach and pro-
vide the structure of an algorithm to detect temporal network
anomalies. As noted in the Introduction we focus on traffic at
points of interest in the network, even though our approach is
general enough to be applied to any trace of system activity. We
assume that the traffic trace we monitor (in bits/bytes/packets/
flows per time unit), corresponding to a specific time-of-day in-
terval, can be characterized by a stationary model over a cer-
tain period (e.g., a month) if no technological changes (e.g., link
bandwidth upgrades) have taken place.

Consider a time series of traffic activity (say, in
bits/bytes/packets/flows per sample). Let the partial sum (or
aggregate traffic) over the time bucket starting at and
containing samples, namely, . The cru-
cial assumption we make is that is an i.i.d. se-
quence for some appropriate bucket size . This is a reason-
able assumption in many settings as temporal correlations tend
to become weaker over longer time intervals. In the Appendix
we provide some discussion and a methodology to determine an
appropriate .

We quantize the values of the partial sums mapping them
to the finite set of cardinality . For the
rest of the paper, we will be referring to as the underlying
alphabet. The quantization is done as follows: we let
be the range of values takes, divide it into subintervals

of equal length, and map to
for . To select the appropriate size of the al-

phabet we follow the approach of [10] and use the so called



PASCHALIDIS AND SMARAGDAKIS: SPATIO-TEMPORAL NETWORK ANOMALY DETECTION BY ASSESSING DEVIATIONS OF EMPIRICAL MEASURES 687

Akaike’s Information Criterion (AIC) [14]. In particular, is
set to minimize

where is the -likelihood of the model with respect to a
process realization. The key observation motivating the AIC is
that tends to favor models with a larger number of free pa-
rameters. The AIC removes this bias by introducing a penalty
for the number of free parameters; thus, the resulting is con-
sidered the most appropriate for the given trace (minimizing
modeling and estimation error). Once we have , elements of
the alphabet that are not observed in the trace are merged with
neighboring ones to obtain which is the final size of the
alphabet.

A. Large Deviations of the Empirical Measure

Combinatorial methods can be applied for the empirical mea-
sures of -valued process. Let be
the trace of the most recent partial sums using a bucket size

. We assume that the elements of are i.i.d., following a
law , where denotes the space of all proba-
bility measures on the alphabet . Let also, denote the sup-
port of the law , i.e., .

Define the type (empirical measure) of as

where is the indicator function of being of type .

Namely, is the fraction of occurrences of in the

sequence . Let .
The next theorem, which is due to Sanov, establishes a large

deviations result for (see [7, Sec. 2.1.10]).
Theorem II.1: For every let

where is the relative entropy of the probability vector
with respect to :

Then, for any set of probability vectors in

where denotes the interior of .
More intuitively, Theorem II.1 states that for a long trace

(i.e., large ) its empirical measure is “close to” with proba-
bility that behaves as

We will be referring to exponents such as as the exponen-
tial decay rate of the corresponding probability—in this case

.

B. Anomaly Detection

Theorem II.1 can be used to identify anomalies. Specifically:
1) From an anomaly-free trace construct the alphabet

and the empirical measure (law) induced
by this sequence.

2) For each time let be the trace
of the most recent partial sums using a bucket size .

Compute its empirical measure and let be
the result.

Based on Thm. II.1, approximates the prob-
ability that the trace is drawn from the probability law .
Thus, if is consistently low over some observed time in-
terval, we can conclude that the observed trace deviates from
the anomaly-free trace, which indicates an anomaly. In partic-
ular, we can identify an anomaly at time if

(1)

where is the length of the traffic trace we process,
is the number of partial sums we generate from this trace, and

is the detection threshold we use. The parameters
affect the performance of the above rule and can be tuned
experimentally. Although, this is a valid approach and yields
good results in all experiments we report later, tuning the rule’s
parameters can be costly. Clearly, the smaller the and the
larger the the smaller the misdetection probability (i.e., one
minus the probability of successfully identifying an anomaly)
and the larger the false alarm probability. Next, we present a
more formal anomaly detection rule that optimally resolves this
trade-off.

C. A Formal Anomaly Detection Test

Theorem II.1 rigorously identifies a distance metric—the ex-
ponent —between the two measures and , constructed
as specified in Steps (1) and (2) of Section II-B. The key ques-
tion we wish to answer is whether is generated from or
from some other law. This is known as a composite hypothesis
problem as one hypothesis (no anomaly) has a known law
while the alternative hypothesis is characterized by a family of
laws (all laws other than ). Hoeffding ([8]; see also [7]) has
suggested an optimality criterion for these problems and a rule
that is optimal. It is also well known, that the empirical measure

of is a sufficient statistic. In particular, Hoeffding’s
rule is

if
otherwise

(2)

and is optimal in the sense that it maximizes the exponential
decay rate of the misdetection probability over all tests with a
false alarm probability with exponential decay rate larger than .
That is, the parameter used in the test controls the false alarm
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probability and can be determined as where is
our tolerable false alarm rate. The remaining parameters
affect the rule’s performance and can be tuned experimentally.
Notice that we can compute consecutive by using a sliding
window of length . Thus, we generate a new decision with
every traffic sample based on the most recent -long trace. As
we will see, this enables us to detect anomalies very fast.

We proceed by presenting a model-based method, where the
i.i.d assumption is not a requirement, thus, it can be directly
applied to the time-series and not to the partial sums.

III. A MODEL-BASED APPROACH

The approach of Section II aggregated traffic over a time
bucket to yield an i.i.d. sequence. One potential disadvantage
of this aggregation is that it increases the response time to an
anomaly since data is being processed on the slower time-scale
of time buckets. In this section, the question we are seeking to
answer is whether it is possible to process data on the timescale
we collect them. To that end, and because the i.i.d. assump-
tion will no longer hold, we will impose some more structure
on the stochastic nature of the traffic time-series. In particular,
we will assume a Markovian structure as it is tractable and has
been shown to represent traffic well [9], [10], at least for the
purpose of estimating distribution-dependent metrics like loss
probabilities.

A. An MMP Model

We start again with a time series of traffic ac-
tivity during a small time interval (several hours) which we will
model as an MMP process. Such a process is characterized by
an underlying Markov chain with transition probability matrix

. To each state , , we associate
an interval of real numbers from which traffic activity
observations are drawn. That is, when the MMP is in state at
time then takes values in . (For the application we
are considering we do not need to specify how observations are
drawn from ; in general they can follow some proba-
bility distribution.) MMPs, when the state is “hidden”, are also
known in the literature as hidden Markov models (HMMs) [15].
We restrict ourselves to models in which the ranges of possible
observations corresponding to different states are disjoint. Thus,
an observation can be uniquely associated to an MMP state and
the state is no longer hidden.

To model the traffic trace as a MMP we let be the
range of all observations we make, split into subin-
tervals of equal length, and assign state , , to
interval . To select the appropriate number of states

we use the AIC as in Section II. Given , the transition
probabilities are obtained via maximum likelihood estima-
tion. Specifically, let denote a sequence of
states that the Markov chain visits. A maximum likelihood esti-
mator of the transition probabilities is given by

(3)

where denotes the fraction of transitions from to in
the sequence and the fraction of transitions out of .

We assume that is large enough to have for all .
As , with probability one (w.p.1). We
consider the constructed model to be reliable since it is the out-
come of a long period of anomaly-free observations. Different
models can be constructed for different time-of-day intervals
(business hours, evening hours, overnight, etc.).

B. Large Deviations of the Empirical Measure

Once we obtain the MMP model from an anomaly-free trace
we are interested in comparing ongoing traffic activity to the
model in order to identify potential deviations.

Assume that the MMP has an irreducible underlying Markov
chain with transition probability matrix . Let

denote the vector consisting of the rows of . As before, de-
notes a sequence of states that the Markov chain
visits with the initial state being . Consider the empirical
measures

where and is the indi-
cator function for the subset . Note that when
the empirical measure denotes the fraction of times that
the Markov chain makes transitions from to in the sequence

. Let now denote the set of
pairs of states that can appear in the sequence and
denote by the standard -dimensional probability
simplex, where denotes the cardinality of . Note that
the vector of ’s, denoted by ,
is an element of . For any , let

(4)

be its marginals. Whenever , let
. As before, we will be using the notation

. We
say that a probability measure is shift invariant
if both its marginals are identical, i.e., for all
. A large deviations result for is established in the next

theorem and is proven in [7, Sec. 3.1.3].
Theorem III.1: ([7]) For every let

if is shift invariant

otherwise

where is the relative entropy, that is,

Then, for any set of probability vectors in ,
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where denotes the interior of .
More intuitively, Theorem III.1 states that for a long trace

(i.e., large ) its empirical measure is “close to” with proba-
bility that behaves as

C. Anomaly Detection

As in the model-free method, Theorem III.1 can be used to
identify anomalies. Specifically:

1) From an anomaly-free trace obtain a MMP as outlined in
Section III-A. Let be the resulting transition probability
vector.

2) For each time let be the trace of
current traffic activity consisting of consecutive traffic
measurements. Compute its empirical measure and let

be the result.

Based on Thm. III.1, approximates the prob-
ability that the trace is drawn from the MMP with transition
probability vector . Thus, if is consistently low over some
observed time interval, we conclude that the observed trace does
not “appear drawn” from the reliable model, which indicates
an anomaly. For an automated anomaly detection rule one can
specify some parametric threshold rule and tune the parame-
ters using a “training” data set. For instance, we can identify an
anomaly at time if

(5)

where , and are the parameters affecting the rule’s per-
formance (detection and false alarm rates). Although, this is a
valid approach and yields good results in all experiments we
report later, tuning the rule’s parameters can be costly and can
lead to an arbitrary balancing of the detection and false alarm
rates. Next, we present a more formal anomaly detection rule
that optimally resolves this trade-off.

D. A Formal Anomaly Detection Test

As before, Theorem III.1 identifies a distance metric—the ex-
ponent —between the two Markov measures and , con-
structed as specified in Steps (1) and (2) of Section III-C. A gen-
eralized (to the Markov case) Hoeffding rule can now be used
to identify an anomaly. Such a generalization has been shown
in [16]. As in Section II-C, the composite hypothesis testing
problem is to determine whether is generated from or from
some other law. Hoeffding’s rule is

if
otherwise.

(6)

As before, determines the desirable decay rate for the false
alarm probability. The parameter should be large enough for
the asymptotics to be accurate, but as we will see, moderate
values of suffice.

We claim that both our approaches are general on-line
methods to compare an observed traffic trace with a model

that represents “typical” behavior. Many types of traffic anom-
alies can be detected such as attacks, worms, intrusion, port
scanning, network failures, or flash crowds. We proceed by
extending our framework, incorporating spatial information to
identify network anomalies.

IV. INCORPORATING SPATIAL INFORMATION

The approaches we discussed so far only exploit temporal
information. Yet, activity traces of interest can be collected in
many locations and attacks at one place may be precursors or
aftershocks of attacks elsewhere. Consider, for example, a worm
spreading in the Internet or an orchestrated distributed attack of
vulnerable computational resources in a single server.

We introduce spatial information in the previous models by
considering vectors of traffic activity at various locations of
interest in the network. More specifically, consider the traffic
activity time series , where now repre-
sents the rate of the network feature of interest (e.g., number
of bytes/packets/flows) during time slot at all network lo-
cations we would like to monitor. The methods we discussed
earlier—method of types and MMP model—readily extend to
this case as they do not depend on being a scalar. Of course,
and especially for large , one would now require longer traces
to estimate the set of parameters and the anomaly detection al-
gorithm would need longer samples to identify an anomaly. On
the other hand, by selecting a small number of network elements
as monitors, it is tractable to incorporate spatial information, as
we experimentally validate in the next sections. The only addi-
tional requirements in order to incorporate spatial information
in the manner suggested is that the network elements must be
synchronized and being able to exchange the time series of the
network features they monitor. This is a reasonable assumption
for currently manufactured routers, especially when time slots
are on the order of 1 minute.

We proceed by presenting spatio-temporal anomaly detec-
tion algorithms for both the model-free and the model-based
approaches.

A. Spatio-Temporal Anomaly Detection Algorithm Using the
Model-Free Method

We first select network elements or features we
want to monitor. As in Section II, we will work with

which denotes the trace of the
most recent partial sums at network element using a bucket
size , for . We use to
denote the trace of system activity at all network elements .

1) For each chosen network element or feature , apply Step
(1) of Section II-B in order to obtain the underlying al-
phabet and the empirical measure.

2) Create the underlying multi-dimensional alphabet
and

compute the associated empirical measure (law) from
past (anomaly-free) observations.

3) For each time consider the trace of the most re-
cent partial sums and compute its empirical measure which

yields , where the superscript indicates that
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this represents the fraction of occurrences of -letters in
the trace .

As in the scalar case, approximates the prob-
ability that the trace is drawn from the probability law .
We can use the exact same test of (2) to identify an anomaly
while controlling the desirable false alarm rate. As before, the
parameters can be selected to improve the performance of
the algorithm.

B. Spatio-Temporal Anomaly Detection Algorithm Using the
Model-Based Method

We first select network elements or features we want to
monitor and consider the time series of traffic activity

at each network element , . For
each such time series we split the range of values it takes into
subintervals following the procedure described in Section III,
thus, defining states. is selected using the AIC crite-
rion. Let denote the states for the th network el-
ement. Putting together the traces from all network elements
or features we form the trace with cor-
responding states , where is
the state of the th network element or feature. We have now
constructed a multi-dimensional process and we assume that
states evolve according to a Markov chain. We will use to
denote the state of this multi-dimensional Markov chain at time
. The anomaly detection algorithm outlined next is similar to

the scalar case discussed in Section III.
1) Using past (anomaly free) information compute the tran-

sition probability vector for the multi-dimensional
Markov chain.

2) For each time let be the se-
quence of states the multi-dimensional Markov chain visits
over consecutive time slots. Compute its empirical mea-
sure and let be the result, where the super-
script indicates that this is the empirical measure of the

-dimensional Markov chain we have constructed.
3) Then, approximates the probability that

the trace is drawn from the MMP with transition prob-
ability matrix . Use the rule in (6) to identify an anomaly,
where bounds the asymptotic decay rate of the false alarm
probability.

We remark that the proposed mechanism may not scale well
with the number of network elements. Nevertheless, it pro-
vides on-line anomaly detection for selected points of interest,
especially when the size of the alphabet (model-free anomaly
detection) or the number of states (model-based anomaly detec-
tion) is small; this turned out to be the case in our experiments,
as we comment on in the following sections.

V. EXPERIMENTAL SETUP I: THE ABILENE DATA SET

In this section, we validate our methodology against real
traffic traces from a backbone network. Our source of data is
the IP-level traffic flow measurements collected form every
point of presence (PoP) in the Abilene Internet2 backbone
network. Abilene is the major academic network, connecting
over 200 universities in the US, and peering with other research

Fig. 1. The Abilene backbone network and PoPs.

networks in Europe and Asia. Abilene has 11 PoPs resulting in
121 origin–destination flows (see Fig. 1).

The data we are using is sampled flow data from every router
of Abilene for a period of one week (April 7 to 13, 2003).
Sampling is random capturing 1% of all packets entering every
router. Three different representations (features) of sampled
flow data are used, a time-series of the number of bytes (B), of
packets (P) and of flows (F). In order to avoid synchronization
issues, the measurements are aggregated into 5-minute bins.
The issue of how packets are sampled is an important one
but we do not consider it here because, in most cases, packet
sampling is predetermined by the monitoring instrumentation.
We comment later on the effect of the sampling frequency to
our detection mechanisms.

A log with the anomalies that took place was also available.
Three different types of anomalies are present: DoS: distributed
denial of service attack against a single victim; SCAN: scanning
a host for a vulnerable port (port scan) or scanning the network
for a target port (network scan); APLHA: unusually high rate
point to point byte transfer. There are also some anomalies that
are labeled as unknown (UNKN). In total there are 270 anoma-
lies: 133 DoS, 81 SCAN, 32 ALPHA, and the rest are unknown
[12]. Origin–destination flows aggregate the traffic of thousands
of connections (in a period of 5 minutes), thus, traffic anoma-
lies of a destination may hide in the byte representation, but can
appear in other representations like the packet or flow represen-
tations. DoS anomalies were always present in the packet (P)
representation. This is expected as most DoS attacks bombard a
single destination with a huge number of packets. Instances of
DoS are not observed in the flow representation and may be ob-
served in the byte (B) representation. The SCAN anomalies are
observed only in the flow (F) representation. ALPHA anomalies
are characterized by spikes in the byte representation only. Fol-
lowing the above observations we can even characterize anom-
alies that are denoted as unknown.

A. Metrics of Interest

In order to validate the performance of our technique, we
use two metrics, that are pretty standard for anomaly detection
studies, namely the detection rate and the false alarm rate.
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Detection Rate is the proportion of anomalies identified by
the algorithm to the total number of existing anomalies. False
Alarms are erroneous anomaly decisions. The False Alarm Rate,
or the False Alarm Probability, is the proportion of anomaly
decisions according to the rule (2) [or (6), depending on the
model] in the set of all observation windows that were anomaly-
free.

B. Outline of the Technique

We apply both our methods to the different time-series (rep-
resentations of B/P/F) for the 121 origin–destination flows. In
order to avoid the effect of diurnal variation we consider 200
samples (each one representing the activity of 5 minutes) for
every day of the week. We use as reference the activity that has
been observed for the same time interval the previous day. For
the first day of the week, as we do not have information from
the previous day, we take as reference the network activity of
the second day.

We apply the model-free approach following the algorithm
described in Section II. We construct the alphabet of the three
representations and the corresponding probability law for every
day of the anomaly-free week. We then process the network
activity for the next day according to the rule (2). Working
with statistics of the autocorrelation function (see Appendix),
we found that and are good values for our
data set.

We also follow the approach of Section III to devise an appro-
priate MMP traffic model. Using this model, for every day of the
week and for every time sample we use the rule (6) to identify
an anomaly for an appropriately selected trace length .

On a notational remark, we denote an anomaly as ORIG-
DEST-xxxx, where ORIG is the ingress PoP, DEST is the egress
PoP and xxxx is the time point in the time series (from 1–2016)
of the related representation where an anomaly occurs.

C. Temporal Anomaly Detection Examples

In this section, we discuss the performance of our framework
and we compare the two proposed methods. Fig. 2 considers an
ALPHA anomaly in the Washington–New York origin–destina-
tion flow (byte representation). In the top graph of that figure we
plot the probability that the trace is drawn
from the anomaly free law when the model-free based method
is applied. Notice that we can set an appropriate threshold so
that when falls below that threshold we correctly iden-
tify an anomaly. The middle graph of Fig. 2 plots the exponent
of and compares it to various thresholds (
0.1%, 1%, 5%) that are set depending on our tolerance for false
alarms. Fig. 3 illustrates detection of the same anomaly with the
model-based method. Notice, that depending on the threshold
used in the middle graph we may or may not have a false alarm.
It is worth noticing that spikes in the traffic volume are not nec-
essarily identified as anomalies. In essence, both methods indi-
cate an anomaly only when a substantial distributional deviation
from the reference is identified. The same observations are valid
for other types of attacks, e.g., DoS (Fig. 4) and SCAN (Fig. 5).

Note that, except for Figs. 2 and 3, in all remaining figures
we plot the exponents and [cf. (2) and (6)]
to identify anomalies. Results using the probabilities and

Fig. 2. Model-free method. (top) Value of � . (middle) Value of � ���� �
used in (2). (bottom) Byte representation for the Washington–New York
origin–destination flow. The rectangle denotes an ALPHA anomaly.

Fig. 3. Model-based method. (top) Value of � . (middle) Value of � �� �
used in (6). (bottom) Byte representation for the Washington–New York
origin–destination flow. The rectangle denotes an ALPHA anomaly.

as anomaly indicators can be found in a preliminary study
[17]. Fig. 4 suggests that the model-free method may not always
pinpoint the time of the anomaly due to aggregation effect of
the partial sums and our use of a window of size . Of course,
smaller values of lead to faster response times, but, also,
larger modeling error due to increased correlation between con-
secutive elements of the time series . In the absence of any
information on when the anomaly occurs within this window
we can estimate its time as time units after the first time

exceeds . On the other hand, as seen in the figure,
the model-based method can identify when an anomaly occurs
more precisely. The disadvantage of the model-based method is
that the false alarms rate is higher for the same than that of the
model-free method which benefits from the averaging over the
time bucket .
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TABLE I
SETUP I: DETECTION AND FALSE ALARMS RATES FOR EACH TYPE OF ANOMALY, USING THE MODEL-FREE METHOD (WITH � � �� SAMPLES, � � � SAMPLES)

AND THE MODEL-BASED METHOD (WITH � � �� SAMPLES), FOR A DESIRABLE FALSE ALARM PROBABILITY � � 0.1%, 1%, 5%

Fig. 4. Comparison of the two methods. (top) Model-free method. (bottom)
Model-based method. The rectangle denotes a DoS anomaly.

Fig. 5. Comparison of the two methods. (top) Model-free method. (bottom)
Model-based method. The rectangle denotes a SCAN anomaly.

We summarize our results in Table I. Notice that (hence,
) can effectively control the false alarm rate; the

actual false alarm rate is on the same order or magnitude as .
We should also point out that the performance of our framework
is related to the sampling frequency, i.e., if we increase the sam-
pling frequency to one minute or even few seconds, we expect

the sensitivity of our detection mechanism (and hence, the de-
tection rate) to increase.

On the other hand, dealing with more samples will lead to a
larger alphabet (if the model-free approach is applied) or a larger
number of states (if the model-based approach is applied). In
practice, an appropriate sampling design for anomaly detection
applications using our proposed framework must take into ac-
count the sampling frequency and the dimensionality of the esti-
mated alphabet or MMP, respectively. Applying our framework
in this data set we were able to construct alphabets with small
cardinality (when the model-free approach was applied a typ-
ical size was three symbols) and small number of states (when
the model-based approach was applied a typical size was three
states). As we will argue in the next section this was beneficial
for spatio-temporal network anomaly detection.

D. Spatio-Temporal Anomaly Detection Examples

We next turn our attention to spatio-temporal anomaly detec-
tion. As was mentioned before, the size of the alphabet and the
number of states of the MMP for the Abilene data set is small
when only temporal information is considered. Thus, it is easy
to monitor subnets of PoPs (of low dimensionality ) by spec-
ifying the group of PoPs of interest and the role of each PoP
(origin or destination). We present results for two case studies
with different spatial characteristics. We apply our framework
to: (a) flows that originate (end) from (at) PoPs that are 1-hop
neighbors and (b) flows that originate (end) from (at) PoPs that
are many hops away from each other.

In the first case study, the flows originate (end) at the Sunny
Valley (SNVA) PoP with destination (originating from) the PoPs
in its vicinity. In Figs. 6 and 7, we illustrate instances of the iden-
tification of anomalies applying the model-free and the model-
based methods, respectively. The values of the parameters for
the two methods are obtained from the temporal anomaly de-
tection examples. Table II reports the detection and false alarm
rates we achieved. It is worth noticing that the detection rate
reached 100% and the false alarms rate was very low (lower
than the values when only temporal anomalies were studied).
This is due to two main reasons: (a) instantaneous high values
in the time-series of observations that do not necessarily indi-
cate attacks are smoothed due to time averaging, and (b) attacks
may have temporal and/or spatial correlation, so the rare events
are magnified when different locations are monitored.

In the second case study, we consider flows that origi-
nate from (end at) Los Angeles or Sunny Valley and end at
(originate from) New York or Washington. In other words we
examine flows that traverse a number of hops in the Abilene
backbone network, traveling from the East (West) Coast to
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TABLE II
SETUP I: DETECTION AND FALSE ALARMS RATES FOR EACH TYPE OF ANOMALY, USING THE MODEL-FREE METHOD (WITH � � �� SAMPLES, � � � SAMPLES)

AND THE MODEL-BASED METHOD (WITH � � �� SAMPLES), FOR A DESIRABLE FALSE ALARM PROBABILITY � � 0.1%, 1%, 5%

Fig. 6. Comparison of the two methods, incorporating both temporal and spa-
tial information. (top) Model-free method. (bottom) Model-based method, when
applied to the P representation of flows that originate from SNVA and end at
the neighboring PoPs: DNVR, LOSA and STTL. The rectangle denotes a DoS
anomaly.

theWest (East) Coast. Applying the same methodology as in
the first case study, we were able again to achieve very high
detection rate with very low false alarms rate (see Table II).
Although the PoPs are geographically apart it seems that the
origin or the destination of attacks may be far away especially
when the origin or the destination PoP (e.g., Los Angeles,
New York) route a large proportion of traffic in the network.
Although the space of possible combinations of origin or
destination PoPs is very large, all the combinations (of a small
number of PoPs—up to 4) we tested are in line with the results
presented above.

VI. EXPERIMENTAL SETUP II: THE DARPA
EVALUATION DATA SET

Next, we validate our method against the 1999 MIT Lincoln
Lab (DARPA Evaluation) data set [5] which has been widely
used for testing anomaly detection systems. The data set consists
of tcpdump data collected at the border router of a local area net-
work (LAN). Using the tcpstat tool, we estimate the aggregated
traffic per second from the packet headers of the packets served
by the border router. Thus, we simulate a simple bit counter that
counts the traffic volume served by the border router every one
second. As was mentioned in the previous section, not all anom-
alies can be identified from the byte representations, because of

Fig. 7. Comparison of the two methods, incorporating both temporal and spa-
tial information. (top) Model-free method. (bottom) Model-based method, when
applied to the F representation of flows that end at SNVA originating from the
neighboring PoPs: DNVR, LOSA and STTL. The rectangle denotes a SCAN
anomaly.

the aggregation of end-to-end flows in origin–destination flows.
For the case of one link though, the number of end-to-end flows
are mush less, thus, by observing the aggregated traffic of the
gateway link, we can more accurately identify network anoma-
lies inside the LAN. Please also notice that only temporal infor-
mation can be incorporated for this data set as only on router is
monitored.

Three weeks of training data were provided in the DARPA
Evaluation data set. The first and third weeks of the training
data do not contain any attacks. This data was provided to fa-
cilitate the training of anomaly detection systems. The second
week of the training data contains a selected subset of attacks
from the 1998 DARPA evaluation data set in addition to several
new attacks. In addition, two weeks of network based attacks in
the midst of normal background data were also provided. The
experimental setting includes different types of machines and
operating systems.

There are 201 instances of about 56 types of attacks dis-
tributed throughout these two weeks. In particular, the attack
events that either occurred or were attempted are the following:
Denial of Service (DoS): unauthorized attempt to disrupt the
normal functioning of a victim host or network; Remote to Local
(R2L): obtaining user privileges on a local host by a remote user
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TABLE III
SETUP II: DETECTION AND FALSE ALARMS RATES FOR EACH TYPE OF

ANOMALY, USING THE MODEL-FREE METHOD (WITH � � � SAMPLES,
� � �� s) AND THE MODEL-BASED METHOD (WITH � � �� s), FOR A

DESIRABLE FALSE ALARM PROBABILITY � � 0.1%, 1%, 5%

without proper authorization; User to Root (U2R): unauthorized
access to local superuser or administrator privileges by a local
unprivileged user; Surveillance or Probe (PROBE): unautho-
rized probing of a machine or network to look for vulnerabil-
ities, explore configurations, or map the network’s topology;
and Data Compromise (DATA): unauthorized access or modi-
fication of data on a local or remote host. On a technical note,
the aforementioned intrusion attacks (R2L, U2R), might be cor-
related with changes in traffic, e.g., ftp file transfer, or system
reboot, resulting in distributional changes in traffic. A detailed
taxonomy of the attacks is presented in [18].

Throughout our study, we also observed some anomalies
that we could not classify using the DARPA Evaluation report.
Trying to classify these anomalies, we found that some of them
are correlated with unusually high traffic volume; hence, we
will refer to them as volume traffic anomalies. The identifica-
tion of these types of anomalies is very important for traffic
engineering tasks such as network provisioning, monitoring,
pricing and mitigation of high traffic volume. A detailed study
including these types of anomalies appeared in [12] showing
their significance. It should be mentioned that persistent
high-volume traffic, or more generally changes in the first
and second moment can also be picked up by cruder methods
(e.g., monitoring the mean and variance). The advantage of
our approach is that it can identify all significant distributional
changes including the ones that may only be reflected in higher
moments.

We followed the same outline that was presented for the pre-
vious data set from Abilene. The first 36 000 seconds (from
08:00–18:00) of the outbound traffic of each day of the first
week were used to construct the alphabet and the MMP for the
model-free and model-based model, respectively. We then ob-
served the traffic of each day of the fifth week and we investi-
gated how this deviates from the reference traffic of the same day
of the first week. For the model-free method, the optimal values
were found to be and . For the model-based
method, the optimal trace length was . The performance
of both methods when applied to the DARPA data set is sum-
marized in Table III. As there are no representations of different
features in this data set, we provide the aggregate false alarms
rate for each method.

Coming back to the last comment of Section V-C, the perfor-
mance of both approaches has been improved, as more samples

Fig. 8. Model-free method. (top) Value of � ���� �—Monday, fifth week
(with attacks) between 2:00 pm–3:00 pm. (bottom) Outbound traffic—Monday,
fifth week (with attacks) between 2:00 pm–3:00 pm. The rectangle identifies
the time period there was an attack.

Fig. 9. Model-based method. (top) Value of � �� �—Monday, fifth week
(with attacks) between 2:00 pm–3:00 pm. (bottom) Outbound traffic—Monday,
fifth week (with attacks) between 2:00 pm–3:00 pm. The rectangle identifies the
time period there was an attack.

are used (see Figs. 8 and 9), but this comes at the cost of creating
larger alphabets or creating an MMP with more states.

VII. RELATED WORK

In this section we refer to the work most closely related to our
study. In [3], the authors used wavelet filters to detect anomalies
in network traffic including outages, flash crowds, attacks and
measurements failures. Our approach differs from that one in
the sense that we try to detect short-lived network traffic anom-
alies within a few samples. Namely, our method, as we imple-
mented it, does not investigate traffic anomalies occurring over
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long time-scales (hours or days); instead we focused on anom-
alies over relatively short time-scales. Moreover in our frame-
work the time-series is not restricted to be a scalar, thus can be
extended to investigate both spatial and temporal anomalies.

From a theoretical point of view, the authors in [19] studied
a number of information-theoretic measures for anomaly detec-
tion. Their study was also performed using the DARPA Evalua-
tion data set. Among other observations, they concluded that the
relative entropy can better measure the similarity between two
datasets. Both our approaches rigorously derive a rule on how to
compare two datasets. It turns out that the relative entropy plays
a critical role in both rules we derive.

The authors in [11]–[13] have introduced a framework to di-
agnose spatial anomalies, which is based on principal compo-
nent analysis to partition the high dimensional space where a set
of network traffic measurements live into disjoint subspaces cor-
responding to normal and anomalous conditions. Our method-
ology does not require whole network information and focuses
on rapidly identifying both temporal and spatial anomalies in
each origin–destination flow or link, by preserving both tem-
poral and spatial correlation of samples.

Very recently the authors in [13] used data mining and infor-
mation theory techniques to identify network anomalies. Their
methods take into account more information than the traffic
volume, including, the origin and destination address of each
flow, as well as source and destination ports using results from
netflow. As we commented in the Introduction our methods can
be easily adapted to handle such traces of activity as well. Our
methods are on-line, providing a rigorous way to identify anom-
alies using a fixed sliding window. All the other methods we
surveyed are off-line.

In [20], the authors proposed on-line techniques, based on
sketches, to identify change detection of individual IP-to-IP
flows. The main focus of our framework is on identifying
anomalies in the aggregated traffic, which requires a less
detailed summary of the network activity.

VIII. CONCLUSION

We introduced a general distributional fault detection scheme
able to identify a large spectrum of temporal anomalies from
attacks and intrusions to various volume anomalies and prob-
lems in network resource availability. We then showed how
this framework can be extended to incorporate spatial informa-
tion, resulting in robust spatio-temporal anomaly detection in
large scale operational networks. Although most of the proposed
anomaly detection frameworks are able to identify temporal or
spatial anomalies [21], we are able to identify both as we pre-
serve both the temporal and spatial correlation of network fea-
ture samples.

We provided two different approaches, a model-free and a
model-based one. The model-free method works on a longer
time-scale processing traces of traffic aggregates over a small
time interval. Using an anomaly-free trace it derives an asso-
ciated probability law. Then it processes current traffic and
quantifies whether it conforms to this probability law. The
model-based method constructs a Markov modulated model

of anomaly-free traffic measurements and relies on large de-
viations asymptotics and decision theory results to compare
this model to ongoing traffic activity. We presented a rigorous
framework to identify traffic anomalies providing asymptotic
thresholds for anomaly detection. In our experimental results
the model-free approach showed a somewhat better perfor-
mance than the model-based one. This may be due to the fact
that the former gains from the aggregation over a time-bucket
in addition to the fact that the latter one requires the estimation
of more parameters, hence, it may introduce a larger modeling
error. For future work, it would be interesting to analyze the
robustness of the anomaly detection mechanism to various
model parameters.

Since we monitor the detailed distributional characteristics of
traffic and do not rely on the mean or the first few moments we
are confident that our approach can be successful against new
types of (emerging) temporal and spatial anomalies.

Our method is of low implementation complexity (only an
additional counter is required), and is based on first principles,
so it would be interesting to investigate how it can be embedded
on routers or other network devices.

APPENDIX

The goal of this Appendix is to provide a methodology to
estimate the value of , i.e., the optimal size of bucket that
is sufficient to argue that the intra-bucket samples are corre-
lated and the inter-bucket samples are independent, as well
as present statistical tests to validate the key assumptions of
the model-free approach, namely, that the sequence of partial
sums is an i.i.d. sequence for some appropriate
bucket size .

A. Data Correlation

We start by empirically characterizing the correlation be-
tween elements of a traffic trace over a short
time-scale (this may depend on the sampling frequency 5
minutes in the Abilene data set, 1 sec in the DARPA dataset).
Early results in the networking literature advocate that traffic
is self-similar [22]–[24]. We will use the notion of long-range
and short-range dependence described below.

Let the autocorrelation function (ACF) be defined as

where is the mean value and is the variance of the time
series. We say that a process exhibits Long-Range Dependency
(LRD) if decays following a power law, that is, if there
exists a and a constant such that

The quantity satisfying is called the Hurst
parameter and ranges in (0.5,1) for a LRD series. Slower decay
of occurs for closer to 1 and implies longer-range
dependency (a rigorous estimator of is the so-called Abry-
Veitch estimator [25]). Short-Range Dependence (SRD), on the
other hand, implies that decays to zero exponentially
fast.
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Fig. 10. (Left): the autocorrelation function for 10 hours of the DARPA dataset.
(Right): typical autocorrelation function (for the origin–destination flow IPLS-
STTL in the byte representation, with observation window � � ��) from the
Abilene dataset, for various time lags.

We analyzed the Abilene Data set. We also analyzed the 1999
MIT Lincoln Lab (DARPA Evaluation) data set [5]. In each
case, for each given , we can form the sequence of partial sums

. To form an i.i.d. sequence we would like to select
a bucket size such that

We first attempted to find the value for the period of one
day in the DARPA data set. Our tests showed that this is not
possible. This is to be expected since traffic over long periods
exhibits diurnal variation (non-stationarity). On the contrary, for
smaller time periods (e.g., the first 10 hours of the same day),
the ACF coefficient gets very close to the bound (albeit, not
exactly below it) even for small lags of size close to 20 (see
Fig. 10 (left)). In fact, ACF decays even faster for smaller time
periods—less than 6 hours—where stationarity is a reasonable
approximation as the diurnal variation (24 hours cycle) is not
strong. In the Abilene dataset, the value of dropped
below the threshold mentioned above for (see Fig. 10
(right)) and sample sizes on the order of the observation window
we use for anomaly detection in Section V. To conclude, we
were able to find a value of in both datasets so that the inter-
bucket correlation is small, which suggests that the i.i.d assump-
tion over buckets of size is reasonable. As we noted in the
Introduction, the key question is not so much the extent of inter-
bucket correlation but whether the characterization we use is
useful for anomaly detection or not. Clearly, there may be situ-
ations where dependencies are so strong that one needs to use
a very large resulting in very slow response to anomalies. In
those situations, our Markovian characterization may be more
appropriate.

B. Stationarity of Partial Sums

In this section we study if the stationarity assumption is valid,
that is, if the partial sums have identical distribution
in time intervals of 10 hours or less. To that end, we first use the
well known Kolmogorov-Smirnov (K-S) goodness of fit test.

Given two independent and identical distributed series
and , , the K-S test provides an answer to
the question whether the two samples are drawn from the same
distribution or not. The test starts with the initial hypothesis ,
that the two samples are drawn from an identical distribution.
It calculates the empirical cumulative distribution functions of

both samples and evaluates the absolute maximum difference
between these two distribution functions. The test outputs

the limit distribution of under the hypothesis . Given a
threshold, on the limit distribution, the test outputs if the initial
hypothesis is valid or not.

In our setting, we used the sequence of partial sums and con-
structed a subsequence (e.g., containing the odd elements of
the sequence). We also constructed a second subsequence con-
taining the elements of the original sequence that are consecu-
tive (in time) to the elements of the first subsequence. This test
is general and can be employed by using as a starting point any
arbitrary point in the time series; it was able to identify station-
arity regions for persistent connections in [26].

We start from the original hypothesis indicating that the
two subsequences are identically distributed. We used the first
10 hours of the traffic for each day for the DARPA dataset. For
the Abilene dataset the threshold was quite high, but in both
cases, the K-S test validated .
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