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Abstract—Big data analytics platforms have played a critical
role in the unprecedented success of data-driven applications.
However, real-time and streaming data applications, and recent
legislation, e.g., GDPR in Europe, have posed constraints on
exchanging and analyzing data, especially personal data, across
geographic regions. To address such constraints data has to be
processed and analyzed in-situ and aggregated results have to
be exchanged among the different sites for further processing.
This introduces additional network delays due to the geographic
distribution of the sites and potentially affecting the performance
of analytics platforms that are designed to operate in datacenters
with low network delays. In this paper, we show that the three
most popular big data analytics systems (Apache Storm, Apache
Spark, and Apache Flink) fail to tolerate round-trip times more
than 30 milliseconds even when the input data rate is low. The
execution time of distributed big data analytics tasks degrades
substantially after this threshold, and some of the systems are
more sensitive than others. A closer examination and under-
standing of the design of these systems show that there is no
winner in all wide-area settings. However, we show that it is
possible to improve the performance of all these popular big
data analytics systems significantly amid even transcontinental
delays (where inter-node delay is more than 30 milliseconds) and
achieve performance comparable to this within a datacenter for
the same load.

Index Terms—Wide-area analytics, big data analytics, geo-
distributed systems, networked systems.

I. INTRODUCTION

B IG DATA analytics platforms [1], [2], [3], [4], [5], [6]
have played a critical role in the unprecedented success of

data-driven applications. Such platforms are typically deployed
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in server clusters and datacenters to support applications that
analyze big data ranging from personal data to Web visit logs
and purchase histories [7], [8]. As the data-driven applica-
tions become more complex and sophisticated, the source of
data can be volatile and the traffic volume too high to be
handled in a single datacenter. For example, a global adver-
tisement campaign may take as input the tweets of the global
population of Twitter users to place advertisements. In such
scenarios, the data cannot be forwarded to a single datacenter,
as it adds delays that many applications cannot tolerate [9] or
yields drops in sales [10].

Moreover, in recent years, there are additional constraints
on how to exchange and analyze data, especially personal data,
across different regions. For example, the European Union
General Data Protection Regulation (GDPR) [11] requires the
user to give consent for her data to be processed or exchanged
with other systems, or stored and processed in other countries
and infrastructures that cannot guarantee a level of privacy pro-
tection as in the European Union. Similar privacy regulations
are now in effect in other regions [12], [13], e.g., in California
(California Consumer Privacy Act (CCPA) [14]), Canada [15],
Israel [16], Japan [17], and Australia [18]. Accordingly, there
is an increasing need to analyze data that are received at
different geographic locations (sites) in-situ to comply with
regulations thus complicating continental or global analytics
tasks. Hence, to support such superior analytics tasks, results
have to be aggregated and shared with other sites. In such
scenarios, input data can be modeled as an infinite stream of
data that arrives at a processing site. It has to be analyzed fast,
and aggregated results have to be exchanged with all the other
processing sites towards fulfilling the intended task in a timely
fashion. Recall that the intermediate results (which have signif-
icantly lower volume than the raw data) have to be exchanged
among all sites until the task is completed. Thus, the slowest
exchange of data dictates the overall time to execute the task.

Data Stream Processing (DSP) systems, such as Storm [1],
Spark [3], and Flink [5] have been evolved over the years
offering efficient and reliable solutions in a datacenter environ-
ment to process streams of data. How easy is it for these DSPs
that are proven exceptionally robust and thriving in the data
center to adapt in the wide-area setting? Should we develop
new systems or is it enough to properly understand and tune
the existing ones to achieve performance in the wide-area
environment close to this within a datacenter?

In this paper, we show that the above three popular imple-
mentations of DSPs fail to tolerate round-trip times of more
than 30 milliseconds even with a low input data rate. Both the
throughput as well as the execution time degrades substan-
tially after this threshold. Indeed, 30 milliseconds is a rather
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high round-trip delay in a datacenter environment; the archi-
tecture of such systems was designed and optimized for very
low round-trip times (less than 10 milliseconds). In the past,
streaming systems, e.g., Jetstream [19] and AWStream [20],
were developed to improve the performance of streaming
applications in the wide-area environment by introducing
novel architectures for distributed server log processing, and
video-related applications such as augmented reality, pedes-
trian detection, and monitoring log analysis, respectively.

In our study, we show that in many settings, it is sufficient
to deploy and operate one of the three popular DSPs in the
wide-area environment. This is preferable, because (i) these
systems are already in use at datacenters and can better inter-
operate with others deployed at other sites, and (ii) it does not
require retraining of data engineers and programmers that are
already familiar with the programming and operation of these
systems. Although there is no clear winner in all topologies
and operational settings we consider in this study, some of
the three DSPs are significantly more sensitive than others in
different settings with regards to pairwise site delay, number of
sites, and data load. A closer examination and understanding
of the differences in the architecture and implementation of
each DSP shows that, in many settings, the performance of
some of them can be improved, and be comparable with that of
a datacenter where the inter-node delays are minimal. Indeed,
we showcase that it is possible to reduce the execution time of
stream analytics queries that rely on geographically distributed
DSPs by orders of magnitudes by tuning some of the param-
eters. Surprisingly, this is even the case amid transcontinental
delays.

In this paper, we show that it is possible to achieve
performance comparable to the datacenter environment (where
RTT is close to 0 msec) when operating existing DSPs with
inter-node delays of tens of milliseconds and a small load.
This is possible by adequately tuning already popular and
widely used big data analytics platforms rather than uti-
lizing experimental systems that require huge investments
for installation, debugging, and personnel training. We hope
that our insights will help towards realizing delay-resistant
geo-distributed analytics.

Our contributions can be summarized as follows:
• We study three popular big data analytics systems (DSPs),

namely, Apache Storm, Spark, and Flink, and we com-
ment on the fundamental inherent limitations of each
architecture in wide-area network settings.

• We study the sensitivity of each system on network delay
and we derive characteristic delays beyond which each
system has performance issues. We also confirm our find-
ings by evaluating emulations of DSPs in Europe, U.S.,
and around the Globe.

• We propose ways to tune each and every system to
achieve performance in the wide-area setting compara-
ble with that of a datacenter despite the geo-distributed
site deployment.

• We report that there is no single winner DSP in all set-
tings, however, significant improvements are possible for
all the systems we consider in our study.

The remainder of this paper is organized as follows.
Section II surveys geo-distributed data analytics. The

architectures of distributed stream processing systems come
in Section III and we report the impact of the network delay
on big data analytics in Section IV. Section V discusses
the system- and network-related parameters of DSPs while
Section VI reports the results of our evaluations. Finally,
Section VII concludes our work.

II. RELATED WORK

We categorize geo-distributed data analytics into two sub-
categories: (i) Wide-area batch processing [21], [22], [23],
[24], [25] and (ii) Wide-area stream processing [19], [20], [26],
[27], [28], [29], [30], [31], [32]. We also discuss related work
that characterizes the dynamics of wide-area network latency
and investigates the impact on the the performance of DSPs,
as well as related work on the streaming benchmarks for DSPs
in category (ii) that we will focus on in this work.

Wide-Area Batch Processing: In this case, the input data is
available prior to the query execution. The goal is to sched-
ule the query execution to either minimize the execution
response time or wide-area network (WAN) bandwidth usage.
WANalytics [25] is a system that pushes the computations
to edge datacenters to optimize the workflow execution and
minimize WAN bandwidth usage while replicating data when
needed. Iridium [22] achieves low-latency query execution by
optimizing the placement of tasks and data while dealing with
the capacity of WAN links. CLARINET [21] and Tetrium [23]
consider query optimization for WAN bandwidth availability
and resource heterogeneity, respectively. These research works
are not suitable for stream processing scenarios that focus on
the response time of each input data rather than a batch of
data. The work in [24] proposes a framework to balance the
associated costs like bandwidth, storage, computing, migra-
tion, and latency with processing data across geo-distributed
datacenters. The work of [33] focuses on multi-path routing
optimization for the flows of data analytic jobs to better utilize
the inter-datacenter links’ capacity. SDTP [34] considers the
dynamicity of the network bandwidth and computation par-
allelism to optimize job response time. However, the work
of [35] showed that it is possible to put regulation on the data
movement in geo-distributed datacenters. All the above works
assume that the size and location of data are available before
the query execution. Thus, query execution can be planned,
accordingly taking into account the available resources. In
summary, none of these works deal with the volatility of input
data in real streaming applications that we consider in our
study.

Wide-Area Stream Processing (WASP): In WASP scenar-
ios, the input data comes from many resources like sensors or
Internet of Things (IoT) devices and the data has to be pro-
cessed in-situ due to several constraints like privacy and WAN
limitations. In such scenarios, the computing resources are
also geographically distributed across datacenters to process
the input data. The streaming query is continuous, i.e., input
data is continuously fed to DSPs and it has to be processed
immediately [36]. AWStream [20] adapts the performance of
the system to network changes using different degradation
functions aiming at low-latency and high accuracy query exe-
cution. For example, if the network suffers from congestion
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it decreases the input data rate. Sol [29] improves the overall
resource utilization of query execution in Apache Spark by
adapting the system performance to network conditions such
as latency and bandwidth. It proposes a federated execution
engine that is aware of underlying network conditions. For
instance, by decoupling computations from communications,
Sol can scale down the task’s CPU requirements to meet the
available communication bandwidth of bandwidth-sensitive
applications. Nevertheless, non of these works consider the
popular DSPs to understand the impact of high gradually
increasing WAN link latency on the performance of those
systems in geo-distributed settings. Li et al. [27] consider the
WAN bandwidth limitation to minimize the query execution
time using a flexible routing mechanism for micro-batches in
Apache Spark. Sana [28] tries to find the shared operations
among queries in a multi-query scenario to run them only
once by considering WAN bandwidth. This way, it aims to
achieve high throughput and low latency during the query exe-
cution. However, the above works consider Apache Spark for
the performance evaluation while ignoring the other popular
stream processing systems, e.g., Apache Storm and Apache
Flink. The work in [31] proposes a query execution mech-
anism adaptive to network conditions while considering the
quality/accuracy of the results. JetStream [19] considers the
WAN bandwidth limitations when running the query. It strives
to achieve this by making a trade-off between the quality of
the query reply and the system performance. Despite consid-
ering WAN bandwidth limitations, JetStream is not a popular
stream processing system in use. Kumar et al. [26] study the
trade-off between WAN delay and traffic using a TTL-based
mechanism for windowed aggregation. The performance of
this system is just studied for Apache Flink and one network
topology. However, the contribution of this paper considers
more systems and networks.

WAN Link Measurements: Several studies have shown that
the WAN latency varies over time [37], [38], [39]. The mea-
surement of the Amazon AWS [38] shows that it is common
for flows to change the path in intervals of 10 seconds.
Consequently, the traffic flows experience diverse performance
due to the path changes and delays. The work in [37] pro-
poses a tool to localize the performance degradation of cloud
services due to the WAN latency of Azure whose datacenters
are globally distributed. SWAN [39] is a system that improves
the efficiency of inter-datacenter WAN to carry more traffic
by coordinating the different services of providers.

Streaming Benchmarks for DSPs: The Yahoo! stream-
ing benchmark [40] generates streams of data to measure
the throughput and latency of three widely used engines,
namely, Apache Spark, Apache Storm, and Apache Flink.
Karimov et al. [41] propose a benchmark for the three
widely used stream processing engines like those of Yahoo!
benchmark to measure the performance of each system for
windowed operations, i.e., windowed aggregations and win-
dowed joins that are two main operations used to monitor
user feeds from different sources. Lopez et al. [42] study the
performance of the open-source stream processing systems for
node failure scenarios. All the above benchmarking works
focus on the performance of the systems where latency is

Fig. 1. Big data platform computational model distributed across several dat-
acenters. The user submits analytics job to the global manager to be processed
by the computing resources on each datacenter connected through WAN links
with diverse delay and bandwidth.

negligible or not an issue. Hence, none of the studies that
used the above benchmarks assess the performance of DSPs
in scenarios where the performance bottleneck is the latency,
as is the case in the WAN environment.

III. BIG DATA ARCHITECTURES

In this section, we present the general computational
architecture adopted by three of the most popular big data
analytics systems, namely, Apache Storm [1], [2], Apache
Spark [3], [4], and Apache Flink [5], [6]. We also discuss the
implementation differences among the three systems. Each of
the systems follows a master-slave architecture where the mas-
ter node executes the tasks on a set of worker (slave) nodes.
We use the term “worker” for a node that executes streaming
tasks. Each worker offers a set of task slots, i.e., access to the
available resources such as CPU and memory, to execute tasks.
The number of available task slots depends on several fac-
tors, e.g., the amount of resources or the number of currently
running tasks per worker.

A. Big Data Computational Model

Big data platforms are distributed in nature, as they span
multiple racks in a datacenter, multiple datacenters within a
country or around the globe. The datacenters are connected via
WAN links having different properties like delay and bandwidth,
see Fig. 1. Each of the datacenters runs the same compute
daemon. In this model, the input is streaming data that comes
from different resources and is fed to the closest datacenter
for processing. There is also a global manager that receives
the user data analytic jobs– consists of an input, query, and
an output– as input. Then, it translates them into platform-
specific executable tasks. Each task is a basic unit of execution
and the execution plan for a set of tasks can form a Directed
Acyclic Graph (DAG). Each DAG has a set of vertices and
edges in which each vertex represents an operation such as
map or reduce, and each edge refers to an operation applied on
a data tuple. Then, the global manager allocates resources to
execute the query in the stream of data that is processed in each
datacenter. Each query is a request for the results of processed
information. For example, a query can ask for the number of
clicks on a specific item over a window of 10 seconds on
a retailer Website. The manager schedules the execution of
the query based on the query requirements and the, typically
heterogeneous, available resources at each datacenter. Examples
of such available resources are CPU cores and memory. In the
above setting, response time is the time that the system takes
to execute the query. However, for the streaming scenarios
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Fig. 2. Architecture and computate components for Storm, Spark, and Flink (2-node deployment).

response time specifies the time taken by the system to process
an event or tuple (depending on the nature of the application).
Furthermore, in this model, the incoming streaming data on each
datacenter is first processed locally and then the intermediate
results are exchanged among all sites or transferred to a central
location for responding to a user query. Thus, the delays of
the WAN links negatively impact the response time of query
execution which yields an increase of the overall response time.
In addition, the heterogeneity of the involved resources and
the input data plays an important role:

WAN Heterogeneity: For datacenters that are geographically
distributed, WAN links are typically the bottleneck, due to high
delay, asymmetry of bandwidth, or congestion [22].

Compute Heterogeneity: Each datacenter has heterogeneous
computing resources to run the streaming queries. There are
several reasons for heterogeneity like the local computational
requirements, the computational installations and technology,
the level of investments, constraints imposed by energy, cool-
ing, and the size of the datacenter [23]. Furthermore, the
availability of resources to execute the streaming queries
depends on the currently running tasks.

Input Data Rate Heterogeneity: The input data rate can vary
in a streaming scenario depending on the number of users or
sessions that has a significant impact on the generated data rate
by a stream processing platform. Depending on the generated
data rate the system uses the compute resources to execute the
streaming queries and subsequently the WAN links capacity
to transfer the processing results.

We summarize that depending on the nature of big data
applications, network-related parameters such as delay play a
significant role. For example, when a huge amount of data
should be transferred from one datacenter to another one,
the cost of data transmission through WAN links is more
important [24]. While for delay-sensitive application scenarios
such as business transactions, the latency parameter dictates
the performance metric. However, we conclude that WAN
links delay plays the dominant role in the big data streaming
scenarios.

B. Apache Storm

Apache Storm [1] is a distributed computing system that
processes the streams, i.e., an unbounded sequence of data
tuples in a stateless manner, of data without keeping any
information, e.g., state, about them. Fig. 2(a) shows the com-
putation components of Storm architecture. Apache Storm has
a master node, called Nimbus, and a set of worker nodes, each
one called Supervisor. Apache Zookeeper [43] manages
the Storm cluster and stores the states of master and workers.

Query Execution: The user submits the query to the master
node that creates the corresponding Storm topology consisting
of the DAG of the query. Each Storm topology shows the
processing logic of the query and links between the worker
nodes to show how the streams of data to be processed. The
master generates the tasks and distributes them to the workers
for execution. The worker executes the tasks and uses the Netty
framework [44] to exchange the intermediate data.

C. Apache Spark

Apache Spark [3] is designed for both batch processing
applications and streaming applications. For streaming appli-
cations, there is a streaming engine that generates a stream of
data from data in a batch form. Fig. 2(b) illustrates the com-
putation components of Spark architecture. The architecture
consists of a master node and a set of workers. There is a
driver program residing inside the master node which dynam-
ically creates a SparkContext for each Spark application.
SparkContext performs the main functionalities of Spark
to run the user applications. Furthermore, it allows the appli-
cations to access the Spark cluster. The Spark driver has other
components like DAG-and task schedulers which are in charge
of translating the user-written code to a set of tasks to run them
on the workers. Each Spark worker has a taskExecutor
being in charge of executing the tasks.

Query Execution: To run a query in Spark, the user sub-
mits the query to the master node. The master node creates
a Resilient Distributed Dataset (RDD) to start the task execu-
tion. RDD is the fundamental data structure, i.e., an immutable
collection of objects, of Spark and distributed among different
nodes in the Spark cluster. Spark translates the RDD trans-
formations into a DAG. Then, Spark submits it to the DAG
scheduler that computes a DAG of stages, i.e., a physical unit
of execution, for each task and finds the minimal execution
schedule for each job. Then, it submits the job to the task
scheduler, which is in charge of sending them to the cluster,
running them, and retrying if there are failures. To execute the
task, the SparkContext and driver interact with the Spark
cluster manager to select a set of workers. Each worker runs
its task executor which has a set of task slots. Each task slot
can run a set of specific tasks. The workers of Spark use the
Netty framework [44] for data exchange.

D. Apache Flink

Apache Flink [5] is a real-time stateful stream processing
system. It supports both stream and batch processing appli-
cations. The input data is generated as the stream of events
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in Flink. Fig. 2(c) presents the computation components
of Flink architecture. The architecture has a master node
and a set of workers. The master node in Flink context
is called JobManager while each worker is known as a
taskManager. Each worker has a set of task slots to run
a pipeline of parallel tasks. A pipeline consists of multiple
parallel tasks such as Map/Reduce [45].

Query Execution: The user submits the query to the mas-
ter for the execution on the cluster. The JobManager receives
the query in a JobGraph form, i.e., similar to DAG concept
in Storm and Spark. Each JobGraph is a data flow represen-
tation in a graph form that has operators and intermediate
results. Each operator has properties such as the code to
execute and the parallelism. Also, Flink adds the necessary
libraries to the JobGraph to execute the task. The Flink sched-
uler checks the available pool of task slots provided by the
workers to run the tasks. The Flink scheduler submits the
scheduled tasks through the master to workers. The workers
execute the tasks based on the plan given by the master. The
workers of Flink use the Netty framework [44] for inter-worker
communications such as exchanging the intermediate results.

E. Comparison

In this section, we briefly compare the main features offered
by each DSP. All systems follow a master-slave architecture.

Processing Model: Apache Storm has a pure stream proces-
sor without batch capabilities. It can process real-time data for
real-time applications like fraud detection. Apache Spark sup-
ports both batch and stream processing. Spark can be deployed
as a stand-alone cluster and with Hadoop clusters. The stream-
ing task in Spark is executed as mini-batches. To do so, Spark
receives a stream of data and buffers them into the memory of
workers. Then, the Spark engine runs short tasks, which are
in order of tens of milliseconds, to process the batches and
produce the output results to other systems. This kind of mini-
batch processing is suitable for many applications. However,
Spark is not the best choice for real-time applications like
fraud detection. Apache Flink has a unified framework for
stream and batch processing. Data records are immediately
shipped from the producer to the receiver after collecting them
into network buffer [46]. Flink processes events based on their
entry timestamp to the system which helps the system to main-
tain their orders. It uses the orders to identify events in case
of late arriving to take a suitable action [47].

Storm and Flink have different processing semantics to
run the streaming tasks and keep the state of the system.
Spark and Flink provide exactly-one processing semantic of
the tasks meaning that each incoming event affects the final
results exactly once, while Storm provides at least one pro-
cessing semantics. This semantic ensures that even in the
case of failure, i.e., the machine or the software, there is
no duplicate data or data that needs to be processed more
than once. However, Storm with Trident API [48] achieves
exactly-once processing semantics but it comes with an extra
cost like latency because it is built on top of the Storm
core library. Both Flink and Storm can provide low-latency
execution depending on the WAN. However, Spark streaming
response time depends on the batch interval.

Message Delivery Semantics: Storm guarantees at-least-one
delivery of messages in the system meaning that if the fail-
ure happens in the system Storm may deliver a message
twice. Storm uses record-level acknowledgments that mean
each worker checks the acknowledgment of the receiver for
the task execution to commit the processed record. The num-
ber of record acknowledgments in Storm by default is 2.
Spark offers exactly one message delivery which means that
the system assures that no data is lost. This is also the case
even if there is a failure in the Spark cluster. Flink provides
exactly-one delivery of events by maintaining checkpoints
at regular intervals. Maintaining checkpoints allows Flink to
recover the state and positions of data in the stream. For
WAN scenarios, the second message delivery slightly affects
Storm response time and causes higher execution latency since
the communication channel is affected by long Round-Trip
Times (RTTs).

Fault Tolerance: The Storm daemons, Nimbus, and the
Supervisors are stateless and fail-fast. This means that Storm
will try to restart them in the case of failure. Spark provides
fault tolerance using RDDs. To do so, Spark tracks the data
lineage information and automatically rebuilds them upon fail-
ure. Then, the retrieved data is replicated among the workers
of the cluster. Flink uses checkpoint and state snapshots to
achieve fault tolerance. Flink uses a variant of the Chandy-
Lamport algorithm for this purpose in which it checks the
data streams for the marker checkpoint to keep the internal
state of the system. Upon receiving the marker Flink commits
all the processed records.

The above differences affect the performance of each system
under stress or loss of messages due to drop of packets in
the network, e.g., when there is congestion, multiple hops, or
when sites are far apart. All three DSPs leverage the Netty
framework differently for data exchange among the worker
nodes. Depending on how the job schedulers of each DSP
employs Netty, we may see a different impact on the execu-
tion latency of the queries in WASP scenarios. Therefore, job
schedulers play a critical role in DSPs and we will detail them
in Section V-A.

IV. DELAY SENSITIVITY

In this section, we investigate the impact of network delay
on the performance of big data analytics systems. We first
present in detail the benchmark we utilize as well as the
experimental testbed. Then, we report what is the impact of
network delay on the performance of (the vanilla version) the
three popular DSPs we consider in our study, namely, Apache
Storm, Apache Spark, and Apache Flink under different
topologies.

A. Benchmark

The Yahoo! streaming benchmark [40] is a popular stream-
ing benchmark that has been used in other research studies
related to the performance evaluation of big data analytics
platforms [28], [31], [32], [36], [49]. The benchmark mea-
sures the performance of DSPs, e.g., Apache Storm, Apache
Spark, and Apache Flink. The main idea of this benchmark is
to emulate an advertisement analytics pipeline in the DSPs and
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Fig. 3. The extended advertisement analytics pipeline of the Yahoo!
streaming benchmark [50].

assess the performance of the various systems. The query of
the benchmark simulates a number of advertising campaigns
in which each one gets a set of advertisements. Each advertise-
ment/event has the following fields: user_id (UUID), page_id
(UUID), ad_id (UUID), ad_type (string), event_type (string),
event_time (timestamp), ip_address (string).

The event generator of the benchmark generates events with
a timestamp tinitial and truncates them to a specific number to
determine their belonging campaign. Additionally, each event
carries a timestamp that specifies the last timestamp, i.e., tlast ,
it is updated by a DSP. The benchmark computes the event
latency after processing the event by a DSP. To do so, it first
calculates the difference of tlast and tinitial . Then, it deducts
the obtained value from window duration, i.e., 10 seconds, to
write as the latency of processed events [32].

The main task of the benchmark is to read data from Apache
Kafka [51] and identify the relevant events. Then, it com-
putes the number of viewed events and their execution time
in 10 seconds time window. Finally, the results are stored in
Redis [52]. Kafka and Redis are the performance bottlenecks
in this benchmark. These bottlenecks are eliminated in the
extended version of the benchmark [50] in which Kafka and
Redis operations are shifted to the outside of the computa-
tion parts of the benchmark (Fig. 3). The Yahoo! streaming
benchmark emulates the common streaming pipeline of most
streaming analytics scenarios where they get streams of data,
perform computations, and produce the results [40]. We make
our source code publicly available here.1

B. Experimental Testbed

Our testbed consists of 22 VMs, and each equipped with
AMD Opteron Processor 6272 running at 2.1 GHz with 16
cores. We use a dedicated VM for the master and run the
experiments for scenarios with an equal number of workers,
i.e., 2, 4, and 8, with 8 GB of RAM. The Kafka VMs have
the same CPU but 16 GB of RAM. In addition to the number
of VMs for the workers, we use a dedicated VM for Redis,
up to 11 VMs to run Apache Kafka to generate the desired
input data, and one VM for Apache Zookeeper [43]. We apply
the recommendations of Yahoo! benchmark [40] to set the
values of the parameter in each DSP. We use 6.7GMB of heap
memory for the workers in Storm, Spark, and Flink as this is
the maximum usable heap in our worker VMs. We also use 6
task slots per taskManager in Flink. All the Kafka VMs are
connected to the workers with a link without applying RTT.
All the workers have connectivity to each other and also to
the master VM. We use a set of Kafka VMs to generate the
desired input data rate.

We report the 99th percentile execution latency of the query
by varying different parameters as the slowest completion

1https://mostafaei.bitbucket.io/Publications/WASP/

dictates the performance of the overall execution time [53].
The execution latency is measured as the difference between
the time that an event is emitted at the sink and the time it
was generated by the data generator [36]. We use Debian traf-
fic control (tc) queuing disciplines tool [54] to apply inter-node
delays. The goal of experiments is to understand the impact
of inter-node RTTs on the performance of the DSPs without
putting a massive amount of data into the network. The former
case demands high link bandwidth and more computations that
are out of the scope of this work. The recent report by Akamai
shows that the available bandwidth of public clouds is less than
10 Mbps [55]. Therefore, we avoid over-utilizing the available
WAN links bandwidth. Each experiment lasts 1,500 seconds
and is repeated 5 times and in total we run more than 1,000
hours of experiments. We report the average of runs since the
differences among the repetitions are very small and invisi-
ble in the figures. We first measure the performance of each
DSP using the vanilla version. Specifically, we set the record
acknowledgment of Spark to 2 and the batch interval of Spark
to 3k msecs.

C. Full Mesh Topology Delay Sensitivity

To understand the delay sensitivity of different big data ana-
lytics systems, we first investigate a topology that is under
our control, namely, the symmetric full mesh topology. This
topology has the advantage that we can change the parame-
ters of pairwise workers delay, the data rate, and the number
of workers on demand, and thus, assess the impact of differ-
ent parameters on the delay sensitivity. The nodes in the full
mesh topology are placed at the same distance from each other
resulting in the same RTT delay.

We first assess the performance of the three DSPs on the
full mesh topology by varying the RTT from 0 to 100 msecs,
and for topologies with 2, 4, and 8 workers. The data input
rate is moderate at 22k events/second since all DSP can pro-
cess this rate similar to a datacenter cluster with 2 workers.
Also, each Kafka VM can generate events up to 15k events
per second without putting additional delay by Kafka to the
events before processing by the DSPs but for the first set of
experiments, we use less load to avoid any possible side-effect
of Kafka. We use 2 Kafka VMs for data generation, and each
one generates 11k events/second. The aggregated bandwidth
for the generated events can be achieved even without violating
the bandwidth limitations of the WAN links of public clouds.
The default record acknowledgment, i.e., 2, is used for Storm,
while the Spark experiments have been conducted using 3k
msecs of batch interval. We call this setting vanilla version
of DSPs and the detail of tuned configurations are reported
in Section V-B.

We report the 99th percentile execution response time
(latency) for all three DSPs in Fig. 4. With increasing RTT
the results show that the latency in Storm increases, espe-
cially when the RTT is around 30 msecs. The latency of Spark
and Flink increases very slowly with the RTT. However, the
latency of Flink is about one order of magnitude smaller than
the latency of Spark. The increase in the number of nodes from
2 to 4 seems to have a minimal impact on the performance
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Fig. 4. Full mesh Topology: The 99 percentile execution response time using 22k events/second and RTT values varying from 0 to 100 msec.

Fig. 5. The location of workers on the EU, U.S., and global topologies for scenarios with 2, 4, and 8 workers.

of both Spark and Flink. On the contrary, the performance of
Storm improves with additional workers, especially for RTT
delays of more than 30 msecs where the impact of RTT is
smoothed down. The best performance of a system, for a given
value of RTT, is obtained when using 8 workers. The main
reason for such results in Storm is that with the high num-
ber of workers, Storm can better distribute the input data into
their buffers [56]. Similar results are obtained for the 95th and
90th percentile execution response time (not shown) to confirm
that all the events are processed within the reported percentile
latencies.

D. Delay Sensitivity of Geo-Distributed Worker Topologies

For a more realistic assessment of the impact of the pairwise
node delays, we consider three topologies where the work-
ers2 are geo-distributed, namely, in EU, U.S., and global. We
emulate the placement of the workers in Europe, the conti-
nental U.S., and around the Globe by selecting cities that
are points of presence for many datacenter providers, e.g.,
Equinix [57], Amazon [58], Microsoft Azure [59], and Google
Datacenters [60]. Table I summarizes the location of work-
ers in the U.S., EU, and global topology with their average
RTT delay, i.e., D , and maximum RTT, i.e., DM , among the
workers. We collocate the master node of each DSP with the
first node, i.e., the first city name in each cell of Table I, in
all topologies. The placement results in having zero-latency
among the master and the first worker. We obtained the inter-
node delays for the EU network by contacting the GEANT
network administrators that operate measurement points in all

2We use the terms workers and location interchangeably.

TABLE I
THE LOCATION OF WORKERS ON THE DIFFERENT TOPOLOGIES

WITH DIFFERENT NUMBER OF WORKERS

the major cities in Europe. For the U.S. pairwise delays, we
rely on the backbone delays reported by AT&T [61]. The RTT
values for the pairwise delays of the global deployment are
taken from WonderNetwork [62]. Fig. 5 shows the locations
of the workers on the three topologies on the map. Note that
the 4-worker set is a superset of 2-worker, i.e., it includes the
locations of the 2-worker set, and the 8-worker is a superset
of 4-worker. This rule applies to all three topologies.

We repeat all the experiments that we described in the
previous section (full mesh topology) for all three deploy-
ments, namely, EU, U.S., and Global. We present a summary
of the results in Fig. 6. We consider the case that there is no
significant pairwise delay variance during our experiment and
we report the 99th percentile of the execution time.

Across the board, Flink performs better than the other
systems. In Europe, where the pairwise delay is relatively
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Fig. 6. Geo-distributed worker topologies: 99th percentile query response time of each system with input rate of 22k events/second using 2, 4, 8 workers.

small the performance gap between Flink and the other two
systems is smaller (see Fig. 6(a)). It is also worth noting that
the impact of the number of workers is in general relatively
small. In the U.S. deployment, the increase in the number of
nodes has a positive impact on the performance of Storm and
Flink, but not on Spark (see Fig. 6(b)). Note also that the
average pairwise delay for the set of cities we selected does
not go below 30 msecs, thus, the performance of Spark is
not expected to improve since we observed this behavior in
the results of full mesh topology in Fig. 4. In the global set-
ting, where the pairwise delays are significantly higher than in
Europe and the U.S., the latency of Storm and Spark are orders
of magnitude higher than this of Flink (see Fig. 6(c)). Again,
the increase in the number of workers has a positive impact on
Storm and Flink, but not on Spark’s performance. The main
reason for such results relies on the nature of TCP connections
among the workers that suffer from long RTTs. In such scenar-
ios, if the producer and consumer work at the same rate, the
consumer slows down the processing due to long RTT since
it has to wait for workers to consume the data. Therefore, the
buffer of the consumer may crash due to the bounded buffer
memory of the consumer or exhausting the memory of work-
ers. Generally, this trend can happen in scenarios in which the
producer is faster than the consumer [63]. Furthermore, in the
case of Spark, we have two types of buffering, i.e., one comes
from the micro-batching and one from consumer buffering,
thus, its performance suffers more.

V. DELAY-RESISTANT ARCHITECTURES

In this section, we discuss the system- and network-related
parameters that impact the architecture of DSPs and discuss
how these can be tuned towards realizing delay-resistant geo-
distributed analytics using these DSPs. We also discuss the
possible impact of the tuning of design parameters on the
performance of DSPs in WAN scenarios.

A. Deep Dive Into DSP Schedulers

We first discuss one of the fundamental components of all
three DSPs, the scheduler. The gained insights will help in
tuning the system parameters and understanding the impact of
this tuning on the performance of DSPs.

1) Storm Scheduler: Storm partitions the input data into
small chunks that have to be processed by the tasks. It executes
the streaming tasks using the concept of topology. Each Storm
topology consists of a computation graph that determines the

logical execution of the input data. Each Storm topology has
two components, namely, Spouts and Bolts. The Spout is the
source of the stream which emits the input data into the
topology by reading the data from external resources. All the
processing operations like map, aggregations, etc. are executed
using the Bolt component. Storm offers some built-in stream
grouping to group the set of tasks in topology and runs them
together on a worker. Depending on the number of Spouts
and Bolts in a Storm topology, the inter-connection among the
workers varies. There are different threads for each Spout and
Bolt component that communicate the execution of a task to
the workers of a Storm cluster. However, Storm uses a single
TCP port, called virtual port, on each worker for incoming
messages. The default scheduler of Apache Storm allocates
executors to all available slots evenly, otherwise, it uses round-
robin assignment. Placing the workers in WASP scenarios
impacts the execution latency of Storm due to the link delay
and distribution of Spots and Bolts in different locations.

2) Spark Scheduler: Spark runs the tasks using an instance
of SparkContext. Each SparkContext leverages an
independent set of execution processes to complete the tasks.
Each Spark application reserves a set of resources to execute
the tasks and holds them until the end of that specific task exe-
cution. Spark by default runs jobs in First-In-First-Out (FIFO)
fashion. Since Spark 0.8, it is possible to configure it in a
round-robin manner to fairly use the cluster resources among
the jobs.

To run a task, Spark creates an operator DAG from
RDD objects which includes reading data from input. The
DAG is submitted to the DAG scheduler that splits it into
stages of tasks. Spark submits a stage to TaskScheduler
when it becomes ready for execution. The TaskScheduler
launches the task via the cluster manager to run on the worker.
Each worker has a set of threads to execute the task. Therefore,
depending on the number of RDD objects in the cluster and
their internode delays in WASP scenarios, the performance
can suffer from WAN link delays.

3) Flink Scheduler: Flink uses the concept of pipeline to
assign the tasks into task slots offered by each worker. Each
pipeline consists of a set of consecutive tasks like MapReduce.
Each worker can run multiple parallel tasks. Running pipelines
in the workers reduces the number of communications
with other workers because, typically, they are running at
the same worker. Flink defines SlotSharingGroup and
CoLocationGroup to specify which tasks must be placed
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TABLE II
TUNABLE PARAMETERS IN BIG DATA ANALYTICS SYSTEMS

in the same worker. A side benefit of this mechanism is that it
reduces the communication with other workers placed at geo-
graphically distributed locations suffering from link delays.
Apache Flink allocates all resources at once, called Eager.
However, since version 1.12, Apache Flink leverages Pipelined
Region Scheduling for the assignment. This strategy finds all
the set of tasks that are connected via pipelined data exchanges
and runs them together.

Flink uses a single TCP connection if different tasks of a
worker should interact with a set of different tasks of another
worker. For example, consider the two workers A and B, where
each of them has two subtasks interacting with each other.
Flink uses a single TCP connection to exchange data between
workers A and B. Following this way results in opening fewer
TCP connections that may suffer from WAN links delay in
geo-distributed scenarios. Flink also leverages credit-based
flow control to assure that the receiver can handle whatever the
sender transmits. On the sender-side, this credit specifies the
availability of network buffers at the receiver. Each commu-
nication channel has its own set of exclusive buffers to store
the intermediate data.

B. DSP-Specific Parameters

Each DSP implementation has a set of parameters for the
features it offers and for tuning the scheduling and execution of
tasks. These parameters affect the performance of the system.
Table II summarizes the parameters in Storm, Spark, and Flink
that are relevant to our study. We briefly explain each of them
in the following.

Parallelism: The degree of parallelism specifies how many
parallel instances of a task can be executed on the workers
of each DSP. For our experiments, we use the same degree
of parallelism in all three DSPs depending on the number of
worker nodes. By default, all DSPs run the task with single
parallelism which may not use all the computing capacity of
the workers. Therefore, depending on the number of work-
ers and their capacity, the right parallelism value should be
selected. Not that a higher degree of parallelism can degrade
the performance due to the overhead introduced by different
instances of tasks.

Record Acknowledgment: Storm uses record acknowledg-
ment to guarantee the message passing inside a Storm topol-
ogy. However, this acknowledgment can be disabled using the
framework configuration file before submitting a Storm topol-
ogy for execution. Note that the record acknowledgment is
used for flow control but not for processing guarantees [40].
Since Storm uses at-least-once processing semantics,
disabling the acknowledgment will not impact the processed
data. Other parameters such as the number of workers or

executors can be also tuned and we used similar settings in
all DSPs [41]. In WASP scenarios, disabling acknowledgment
improves the performance of Storm by adding less commu-
nication overhead over delayed WAN links without impacting
the processed events.

Batch Interval: Spark stream engine generates streaming
data using the concept of micro-batch. This parameter can be
tuned using the batch interval as input to generate the desired
batch of data. The number of tasks in each Spark receiver
per batch is approximately equal to batch interval

block interval . Selecting the
right batch interval depends on several parameters such as the
number of cores per worker or cluster size [64]. There are
no optimal settings for the batch interval, and it has to be
obtained empirically depending on the use-cases. In WASP
scenarios, the batch interval should be carefully selected due
to the additional delay imposed by the WAN links. A small
batch interval can lead to the communication overhead and
large ones can delay the execution latency.

Number of TCP Connections: Each DSP leverages the
Transmission Control Protocol (TCP) for data transmission in
a cluster. When placing the cluster of DSP at a geo-distributed
location, the inter-node delay of workers in the cluster and
the number of TCP connections affect the execution latency
of tasks in WASP.

The number of workers has a determinant impact on the
performance of real-time stream processing systems like Storm
and Flink. Executing the tasks with a high number of work-
ers improves the overall performance of the systems in many
scenarios. However, it might add additional overhead due to
handling a large number of connections among the workers.
Thus, it is imperative to take this trade-off into account when
running our experiment.

VI. PERFORMANCE EVALUATION OF

DELAY-RESISTANT SYSTEMS

In this section, we outline our goals in designing the experi-
ments and assessing to what extent it is possible to improve the
performance of delay-resistant DSPs by properly tuning oper-
ational parameters that we described in the previous section
(see also Table II). We run the query for again 1,500 seconds
and the results are averaged over 5 different runs. We report
the 99th percentile execution response time (latency) similar
to Section IV.

A. Delay Resistance

The DSPs have been designed to perform the computation
of streaming applications in a cluster network located on a
rack in a datacenter. Inside a datacenter, delays are low, even
sub-second. However, for reasons we highlighted in the intro,
namely, volatile data sources and regulation, DSP are becom-
ing increasingly popular for geo-distributed analytics [36].
Thus, the performance of the DSPs in the new environment
needs to be carefully examined particularly regarding the
impact of wide-area network (WAN) links delay on the exe-
cution latency of each system. The goal is to find the breaking
point of each DSP when running them at geographically dis-
tributed locations where each site is connected via WAN links.
To achieve this goal, we first set up a full mesh topology
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Fig. 7. The 99th percentile latency of all systems using 22k events/second and by varying the RTT and tuning the parameters, i.e., Storm with NoACK and
Spark with 5k msecs of batch interval.

and then, gradually increase the inter-node delays to find the
performance degradation point for each DSP (Section VI-B).
Ideally, we would like to tune the DSPs to be delay resistant
in a geo-distributed setting, i.e., achieve throughput and query
execution time comparable with this when operating inside
a datacenter. Then, we report the results for geo-distributed
settings (Section VI-C).

B. Delay-Resistant DSPs on a Full Mesh Topology

We first evaluate the impact of appropriate tuning of param-
eters towards realizing delay-resistant systems on the full mesh
topology.

1) Impact on Delay Sensitivity: We repeat the experiments
for the full mesh topology, see Section IV-C, but we now
disable record acknowledgment of Storm to eliminate its com-
munication overhead for flow control. It is worth noting that
by disabling the acknowledgment the ability of reporting fail-
ures is also disabled in Storm. Fig. 7 shows that disabling the
acknowledgment improves the performance of Storm for 4 and
8 workers scenarios drastically. For 4 workers the degradation
of performance takes place for higher RTTs than 30 msecs. For
8 workers the performance is delay-resilient, even for higher
RTTs, similar to trans-continental.

We also notice that the performance of Storm and Flink
has a small variance as the RTT and the number of work-
ers increase. Recall that all the results are obtained with 5k
msecs batch interval. Our results also provide useful insights
on the impact of the batch interval. Increasing the batch
interval of Spark from 3k to 5k msecs slightly decreases the
percentile latency. We also report the impact on throughput in
Section VI-D.

2) Ephemeral TCP Connections: We now measure the
number of ephemeral TCP connections for Storm, Spark, and
Flink that are established between master and workers, as well
as bilaterally between pairs of workers. We use the socket
statistics tool [65] to count the number of established TCP con-
nections during the experiment and report the average number
of connections with standard deviations since they change over
the time of running our experiments. Fig. 8(a) shows that the
master VM in Flink establishes fewer TCP connections with
workers to execute the query, while Storm and Spark estab-
lish a similar number of TCP connections. Fig. 8(b) shows that

workers in Spark establish, on average, more TCP connections
when the RTT delay increases. In the scenario with 2 workers,
Spark workers establish two times more TCP connections as
compared to Flink and Storm. This adds considerable over-
head in communication, see Fig. 8. The reason is that Spark
has no built-in TCP server to wait for the producer to buffer
data since it works based on polling mechanism for TCP con-
nection using its API libraries [66]. In the case of 2-worker
scenarios, it needs to use more TCP connections to process
the events. Storm and Flink workers establish the same num-
ber of TCP connections to execute the query across different
settings we evaluated.

3) Stress Test: We perform stress tests to examine DSPs’
performance when increasing input data rate and latencies.

Performance for Load Variation: We first keep the RTT
fixed to 0 msecs and increase the input data rate in all DSP
systems from 22k to 154k events per second. We measure the
execution latency of all DSPs. We run the experiments for sce-
narios with 2, 4, and 8 workers. The goal is to understand the
performance of the systems under higher load in a centralized
cluster with zero inter-node delays. If there is an inter-node
delay the impact of increased input rate will be even more
severe. To perform this experiment we add more Kafka VMs
to be able to generate the desired input load when needed. We
generate at most 14k events per second on each Kafka VM
to guarantee that no events are dropped. Fig. 9 shows that
increasing the input data rate has less impact on the execution
latency of Flink for various scenarios by changing the number
of workers. Indeed, Flink’s performance deteriorates only in
very high input rates. On the other hand, the performance of
Spark and, especially, Storm is very sensitive to the increase
of input rate. The increase in the number of workers improves
the performance of Spark, and, especially the performance of
Storm.

Performance for RTT Variation: We now keep the input
rate fixed to 55k events/second (a load that already stress
some of the DSPs in some settings) and increase the RTT.
Fig. 10 shows the execution latency of all three DSPs for
scenarios with 2, 4, and 8 workers. The execution latency
of all the systems degrades when the RTT is higher than 25
msecs regardless of the number of workers. All the systems
can process the events with a similar latency when the RTT
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Fig. 8. Average ephemeral TCP connections established by (a) master and (b) workers in Storm, Spark, and Flink with 2, 4, and 8 workers on a full mesh
topology.

Fig. 9. Stress test: The 99th percentile latency of all systems by varying the input rate and keeping fixed the RTT (zero msecs).

is higher than 50 msecs. However, for lower than 50 msecs,
Flink’s performance is better, especially when the RTT is
below 50 msecs and the number of workers is 8.

4) Resource Usage: We also report on the resource usage
of the VMs we utilized in our testbed using Debian vmstat
tool [67]. After monitoring the recourse usage at each VM we
conclude that the Kafka leader VM is the most resource hungry
VM. This is to be expected as it writes the logs into the disk.
The I/O operations are reported as the number block/second in
which each block has 1KB size. Figs. 11, 12, and 13 report the

physical resource usage of Kafka leader VM for Spark, Storm,
and Flink, respectively, with an input rate of 22k events/second
on the full mesh topology. The Kafka leader VM has very
similar resource usage and I/O operations in Storm and Flink
and it does not add impact the execution latency of them. Spark
has a slightly higher number of I/O which adds additional
delay to its execution latency. The resource usage confirms
that all the workers have enough compute resources, i.e., CPU
cores and memory, to process the incoming data stream on the
full mesh topology. However, in WASP scenarios, the WAN
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Fig. 10. The 99th percentile latency of all systems using 55k events/second and by varying the RTT; Storm with NoAck and Spark with 5k msecs of batch
interval.

Fig. 11. Storm physical resource on Kafka leader for 22k events/second without ack.

Fig. 12. Spark physical resource on Kafka leader for 22k events/second with batch interval 3k msecs.

Fig. 13. Flink physical resource on Kafka leader for 22k events/second.

link delays play a determinant role in the response time of
the systems. Furthermore, the CPU of the workers is under-
utilized in WASP scenarios when the link delay is high and
available bandwidth is limited [29]. We investigate this in the
next section.

C. Delay-Resistant DSPs on Geo-Distributed Topologies

We now repeat the experiments (we performed on the
full mesh) on the three realistic topologies, namely, U.S.,
EU, and Global, by appropriately tuning the three DSP
systems.
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Fig. 14. The 99th percentile latency of Storm on the EU, U.S., and Global topologies with input rate of 22k events/second using 2, 4, 8 workers.

Fig. 15. The 99th percentile latency of Spark by varying the batch interval on the EU, U.S., and Global topologies with input rate of 22k events/second.

Storm Tuning Benefits: We repeat the same experiments with
Storm to understand the benefits of disabling Storm’s record
acknowledgment on three topologies with geo-distributed
nodes. Fig. 14 shows that disabling the record acknowledg-
ment slightly improves the execution latency of Storm in all
topologies. However, it seems that the inter-worker delays have
a more profound impact on the Storm’s performance and the
noAck tuning has only a marginal impact in Fig. 14. In this
scenario, the input rate is 22k events/second, and the systems
have less load compared to the one with 55k events/second.
Therefore, disabling acknowledgment has less impact.

Spark Tuning Benefits: The results of experiments by tuning
the batch interval of Spark are presented in Fig. 15. We find
that Spark has the best performance on the EU network, i.e.,
low pairwise RTT, when the batch interval is 3k msecs (see
Fig. 15(a)). We also observe that increasing the batch interval
of Spark up to 5k msecs results in decreasing the execution
latency on the U.S. and global networks where the pairwise
RTT is high (see Fig. 15(b) and Fig. 15(c)). Notice that the
y-axis is on the logarithmic scale, thus, the improvement is
noticeable.

We execute additional experiments to understand the behav-
ior of Spark in the above three realistic topologies. We vary
the batch interval from 1k to 25k msecs. We find that by
increasing the batch interval from 5k to 25k msecs has a neg-
ative effect on the systems that operate on the EU and U.S.
topologies. We observe that the performance curve is concave
(note that the y-axis is on a logarithmic scale). Indeed, the
best performance on the global network, where the pairwise
delays are the highest, is achieved when the batch interval is
15k msecs (see Fig. 16). However, even with this optimization,

Fig. 16. The 99th percentile latency of Storm and Flink vs. Spark by
varying the batch interval of Spark on the Global topology with input rate of
22k events/second using 8 workers.

the performance of Spark is not comparable with this of Storm
or Flink. When the batch interval exceeds 15k msecs the
performance degrades. The reason for that is that the majority
of events can be handled when the micro-batch size is large
enough. However, the remaining events are processed in the
next micro-batches and this behavior may be observable in
the next 3 or 4 subsequent batches [40]. In Section VI-E, we
provide additional results on our evaluation when the WAN
end-to-end delay varies over time.

D. Throughput Measurement

We also study the achieved throughput, i.e., the number
of processed events, in the three systems we consider in our
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Fig. 17. The moving average throughput for Storm, Spark, and Flink with 2, 4, and 8 workers on a full mesh topology.

study. We report the moving average throughput of the systems
for scenarios with the input data rate of 55k events/second
and RTT variation, see Fig. 17. The reason to pick such 55k
events/second is that all DSPs can process the events without
delaying them. Therefore, this input rate is obtained using the
capacity of VMs in our testbed when the RTT is 0. The goal
is to understand the performance of the DSPs on high loads
when the RTTs vary. Across the board, throughput degrades
substantially for scenarios with 2 and 4 workers for Storm and
Spark as RTT increases. Apache Storm is particularly affected
(exponential decrease) when the number of workers is small
(2). The performance of Storm and Flink is very similar in
scenarios with 8 workers.

We also report the exponential moving average of the
throughput for a sample scenario with 4 workers, and the RTT
equals 50 msec in Fig. 18. We show this figure to show how the
throughput of each system varies throughout an experiment.
Across the board, Flink has higher throughput compared to
Storm and Spark. Furthermore, Spark has a better throughput
compared to Storm.

E. Delay Variance Results

Recent studies [37], [38] show that the WAN link delays
vary over time. Moreover, network resources in different cloud
providers may vary. For example, the network operators should
monitor the available token buckets when running experiments
on Amazon AWS [68] since the lack of them can add extra
delay to the network. To better check the effect of this vari-
ance, we conduct a set of experiments by varying the link
delay according to the RTT measurements among Amazon
VMs taken from [38]. The experiments last 1,500 seconds,
and the RTT varies between 74 and 76 msec and we run them
for scenarios with 22k events/second. Fig. 19 shows that few
msec RTT variations have no impact on the performance of
the frameworks confirming that all the frameworks can tolerate
a few milliseconds of delay during the query execution time.
We used a different color to differentiate the delay variance
during the experiment time.

F. Summary of Insights

Flink seems to be the best option across all settings in our
experiments and does not require too much tuning. For Spark,

Fig. 18. The moving average throughput for scenarios with 4 workers and
RTT=50msec.

Fig. 19. Storm, Spark, and Flink performance in the RTT variation scenario.

the batch interval plays an important role in tuning Spark. The
batch interval is the interval in which data is partitioned into
blocks before storing them in Spark receiver [64]. We find that
Spark should be carefully tuned according to the inter-node
delays. For low pairwise delays, e.g., in the EU topology, the best
performance is achieved when the batch interval is relatively
low, i.e., 3k msecs. However, Spark performs better when the
batch interval is higher at 5k msecs for the U.S. network. For
a global network, we got the best performance when the batch
interval was 15k msecs. Moreover, Spark should be carefully
examined for the batch interval depending on the WAN links
delay. Overall, higher batch intervals for Apache Spark are
suitable for higher WAN links latency. Apache Storm seems
to be the more difficult DSP to tune correctly in the WAN
environment, and in many settings, even its best performance is
not comparable with this of Flink. We conclude that real-time
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stream processing systems have better performance than micro-
batch processing ones. The optimal settings depend on several
parameters such as the input rate, the available computation
resources, and WAN links properties. We plan to automate the
optimal settings in the future.

VII. CONCLUSION

Today, stream analytics involve geographically distributed
processing sites due to the increasing complexity or volume
of online products, and privacy protection legislation. In this
setting, data streams are processed in-situ and intermediate
results have to be exchanged among all sites using a wide-area
network. Thus, pairwise site delays are typically way higher
than those in a datacenter environment. In this paper, we show
that delays of tens of milliseconds have a significant nega-
tive impact on data stream processing systems’ performance.
After evaluating three of the most popular systems for var-
ious settings, we conclude that there is not a clear winner
in all settings. Nevertheless, Flink seems to be more resis-
tant to network delay because its credit-based flow buffering
reduces the impact of WAN delays when transmitting data over
TCP connections. Spark can be tuned to be tolerant in many
scenarios, including those with high network delay and load.
Apache Storm is the most challenging to configure, and its
performance is not comparable with these of the other systems
in many settings we investigated. The insights gained in this
study provide best practices in configuring popular data stream
processing systems when operating using wide-area networks.
Indeed, we show that it is possible to improve the performance
of all these popular big data analytics systems significantly
amid even transcontinental delays (where the inter-node delay
is more than 30 milliseconds) and achieve performance com-
parable to this within a datacenter, at least for a low data rate.
We believe that the gained insights can also inform decision-
making on installing or expanding sites around the globe to
better process data streams in the wild.
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