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Abstract—During the last decades, public and private in-
vestments contributed to building the Internet infrastructure,
including undersea cables, long-distance fiber links, broadband
networks, and satellite constellations to reduce end-to-end delay.
In this study, we measure the inter-city delays over the last six
years, considering 17 major metropolitan areas around the globe.
Our analysis shows that the delay for 88% of city pairs end-
to-end delay has decreased. Moreover, we study delay changes
for regional and long-haul (intercontinental) pairs. Our analysis
shows that end-to-end delay has decreased for 80% and 55%
of city pairs in Europe and North America, respectively. Our
study also shows that despite the overall decrease in inter-
city delays, global phenomena, e.g., the COVID-19 pandemic,
profoundly impact many inter-city connections simultaneously
while not affecting others.

Index Terms—Internet measurement, RTT delay, longitudinal
analysis, big network data analysis.

I. INTRODUCTION

The Internet connects people and devices worldwide, and
numerous applications and services rely on the Internet in-
frastructure to function, including but not limited to commu-
nication, health services, and cloud gaming. Latency (delay)
is an important metric for assessing network performance
as it directly impacts end-user experience. In networking by
latency is measured in milliseconds (ms) and includes the total
propagation and processing time as the time it takes for a
data packet to travel from a source to a destination, including
queuing time.

End-to-end Internet connections might span wide areas on
different continents via undersea cables or satellites. Improv-
ing hardware and software systems such as cables, wireless
connections, routing devices, and algorithms is the primary in-
strument to decrease the connection delay. Although deploying
cutting-edge solutions from individuals or organizations can
significantly reduce latency, not all cities have the means to
do so. Furthermore, millions of people live in metropolitan
areas, putting a strain on the cities’ Internet connections
during special events, festivals, elections, and pandemics. For
example, in 2017, a popular augmented reality mobile game
organized a festival in a city’s central park in a densely
populated metropolitan area [1]. Due to the high concentration
of connection requests, the mobile networks in the area were
overloaded and collapsed. The game was playable again after
actions had been taken to ease the congestion on the network.

In the past decade, much research and development focused
on decreasing the latency by relying on content delivery
networks (CDN), edge computing, and cloud centers to convert

data transfers from the global to the local level. However, a
variety of scenarios remain that call for the global and intercity
transfer of data [2]–[4]. Situations where long distances data
transfer cannot be avoided include interpersonal communica-
tion like social networks, teleconferences, distributed games
and business transaction.

Despite several studies on the changing Internet latency
between cities [5]–[9], their extent is limited, they also have
yet to focus on historical evolution, and further research
is required. This paper comprehensively analyzes network
latency evolution between major cities around the globe. To
this end, we leverage delay data collected from Réseaux IP
Européens Network Coordination Centre (RIPE) Atlas [10]
vantage points (probes) that are scattered around the world.
Using a platform developed for the study, we report on pairs
between major cities where the network latency increased or
decreased over the last six years. RIPE Atlas probes can be
hosted in different locations like end-user homes and data
centers. Hence, our latency analysis between cities is not
limited to only end-users in the cities. In summary, this study
presents the following contributions:

• A contemporary and historical examination of Internet
measurements spanning long distances using statistical
methods.

• We comprehensively analyze and compare the evolution
and trends of inter-city delays between major metropoli-
tan areas.

• We conducted tests to identify the limitations and biases
of RIPE Atlas vantage point features on the Internet
latency performance.

• We present our approaches for detecting anomalies in
Internet delay evolution using COVID-19 impact as a test
case, and empirically assess the impact of the COVID-19
pandemic and lockdowns on the inter-city delays.

The remainder of this paper is organized as follows. Section II
describes the background of technologies, sources of the
datasets, and the previous related research. Section III intro-
duces the datasets, pre-processing steps, and implementation
details. An overview of the analysis and overall results are
presented in Section IV. Further, Section V provides city
and continent-level delay evolution results. A case study for
evaluating the COVID-19 pandemic impact on delay evolution
is given in Section VI. Finally, Section VII discusses the results
and provides conclusions.978-3-903176-58-4 ©2023 IFIP



II. RELATED WORK

Retrospective research on Internet measurements plays an
important part in understanding the development of the In-
ternet, discovering the critical points, and understanding the
potential evolution of delay in the future [11]. Previous
studies investigated end-to-end delays between Autonomous
Systems (AS) [12]–[14] and server-to-server delays [15] using
traceroute data. The study published by Chowdhury et al. [14]
relied on the Ark [16] and iPlane [17] to analyze delay from
2008 to 2013 between different countries. Conversely, we
focus on the evolution of delay between cities using ping mea-
surements. Festivals, pandemics, infrastructure upgrades, and
the influence of high population on delay can all be included
in the city-level delay study. Data-based measurement-driven
studies have emerged that analyze the overall Internet capacity,
capabilities, malfunction, irregularity, network robustness, and
other aspects [18]–[20].

A massive amount of network measurement data is provided
by public sources and organizations such as RIPE Atlas,
which collects different networking raw data, including ping,
traceroute, NTP, and DNS. RIPE Atlas probe devices (vantage
points) perform measurements between two points, from probe
devices as a source to any destination. Since its establishment
in 2010, until this study performed, RIPE Atlas has composed
probe devices with different hardware versions, including
system-v1, system-v2, system-v3, system-v4, system-software,
system-anchor, and system-virtual. Our classification of the
probes revealed that system-v3 is the dominant hardware
version for the city-matched probes. On the other hand,
probes with system-v1 and system-v2 account for less than
15% of the probes in 2021. Recent studies have shown that
congestion and heavy load on probes (mostly on hardware
version system-v1 and system-v2) cause interference on delay
measurements [21], [22].

RIPE Atlas has been extensively employed to infer In-
ternet measurements [21]–[24]. Unlike this study’s focus on
using wider date-ranged data produced by RIPE Atlas probes,
Davisson et al. [9] assess the Internet latency in a limited
longitudinal way using the data for the first two weeks of every
year between 2016 and 2021 produced by 124 RIPE anchors.
Dönni et al. [25] used RIPE Atlas probes in the Schengen
Area for traceroute measurements to infer whether the routes
stay in the Schengen area. Fontugne et al. [26] extensively
investigated network conditions and use cases using RIPE
Atlas traceroute measurements. Outside of Europe, Fanou et
al. [27] analyzed the topology of interdomain routing using
data from 214 probes spread across 32 African countries and
more than one million traceroute measurements. Fiadino et
al. [28] used the RIPE Atlas platform to investigate the IP
addresses of an instant multimedia messaging platform and
assess latency to the servers as well as to map the discovered
IP addresses to cities. Cicalese et al. [29] used data from
the RIPE Atlas infrastructure for IP anycast enumeration and
geolocation.

In recent years, we have experienced an unusual phe-
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Fig. 1. Selected cities on the World map

nomenon known as the novel Coronavirus Disease (COVID-
19), which began spreading in the latter months of 2019
and was declared a pandemic in the early months of 2020.
Beginning in the spring of 2020, numerous countries im-
posed a series of restrictions (stay-at-home orders, curfews,
quarantines) as a result of the pandemic [30], [31]. These
restrictions caused most of the population to stay at home for
long periods of time, replacing the physical interactions with
digital (video meetings, virtual classrooms, remote working),
thus affecting the Internet performance [8], [32]–[34]. The
impact of the COVID-19 pandemic has been investigated
in several reports, news, and blogs analyzing the extensive
growth in traffic [35]–[38]. During the pandemic, studies for
Internet performance were conducted from the perspective of
a single or a few operators/IXPs to a broader multi-perspective
view, identifying performance changes and an increase in
outages [7], [39]–[41]. Network delays are monitored at the
Internet Health Report (IHR) platform [13] to study congestion
during COVID-19 lockdowns using RIPE Atlas traceroute
measurements.

III. DATASET & IMPLEMENTATION DETAILS

In this section, we briefly describe the datasets used in this
work as well as our processing approach. This study focuses
on IPv4 ping measurements from RIPE Atlas probes every
Wednesday between 2016 and 2022 for the 17 major cities (see
Fig. 1). Three additional meta datasets are utilized in addition
to the ping measurements: (i) the RIPE Atlas probe dataset,
(ii) the geolocation dataset, and (iii) RIPE Atlas measurement
metadata.
Ping measurements. The ping measurement dataset contains
information on Round Trip Time (RTT), source probe, desti-
nation IP address, measurement time, and other results. The
selected subset of the RIPE Atlas that we use in this study
yielded more than 9.6 billion ping measurements, which is
approximately 4.5 TB in size. We use the RIPE Atlas REST
API [42] to download the ping measurements.
Probe dataset. The downloaded probe dataset includes probes
that were active during our six-year measurement period, i.e.,
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Fig. 2. Intercity delay over time: decreasing (a), increasing (b) and no trend (c) in the delay evolution.

from 2016 to 2022. It includes probe location coordinates,
identification numbers, IP addresses, country information, and
hardware version, among other details. RIPE Atlas probes are
hosted in both end-user homes and data centers. For some
probes, this information can be extracted by using the user
or system tags in the probe metadata, and thus it does not
consistently appear across all probes. Hence, we do not break
down the probes into different classes using their hosting
environment. We utilize probe and geolocation data to find
the source and destination cities of the ping measurements.
Geolocation dataset. The geolocation dataset comprises in-
formation on the country name, city name, population, and
coordinates for 2594 cities in 247 countries [43]. The geolo-
cation dataset is used to map probe coordinates with a densely
populated city within a 25-kilometer radius of the city center.
Measurement metadata. To find probe-to-probe IPv4 ping
measurements for the selected dates and cities, we downloaded
more than 122 million metadata records about measurements.
The measurement metadata includes meta information for
all measurements that run on the RIPE Atlas platform. Af-
ter filtering the metadata to have probe-to-probe IPv4 ping
measurements for the selected dates and cities, we download
ping measurements. Furthermore, probes are mapped to ping
measurements as source and destination cities to find the
vantage points for our delay study.

The metadata for every pair of probes was augmented with
the geodesic distance between the two probes. It determines
the physical distance for computing the theoretical minimum
latency in the speed of light in fiber cables between the cities
and constitutes to allow us to compute a definite lower latency
bound for the probe pair.
Processing method. We set up a platform that utilizes dis-
tributed big data processing and virtualization technologies
because raw network data can easily exceed terabytes in size.
A heterogeneous high-performance computing cluster provides
the required processing power and data storage units. We set
up an Apache Spark (version 3.2.0) [44] big data processing
tool in standalone cluster mode on top of the virtualized
Docker [45] containers. On top of the platform, we develop
four delay evolution analysis modules that look into the delay
trends over time and the probe impact of delay. The Delay
RTT Evolution module focuses on delay changes between
pairwise cities over time. Probe Analysis examines the probe
metadata and matches probes to cities. The Stable Probe

Analysis module reports information on probes that are online
over a period of time. The Probe Hardware Version Analysis
module investigates the probe hardware versions and their
differences. Additionally, we tested the platform’s run time
performance by running modules on 1, 2, 3, and 4 nodes four
times and calculating the average run duration. We measure
9 hours 52 seconds to finish using only one node. Using
two, three, and four nodes results in 7’38”, 6’44”, and 6’03”,
respectively. Comparing the performances of four nodes and
one node shows that using a four nodes cluster increases the
performance by 39%. In other words, using only one server
takes 61% more time to finish.

We handle the ping measurements using probe features
to investigate the delay-affecting causes in three ways. The
first approach is using ping measurements between all probes
without any filter. In the second method, we present results
by using ping data that is extracted for being only between
probes with specific hardware versions of system-v3, system-
v4, system-anchor, system-virtual, and system-software. The
ping measurements use 4,494 probes for the 17 cities and with
selected hardware versions. In the last method, we investigate
the delay evolution utilizing ping measurements between dif-
ferent sets of stable probes by their minimum period of online
status. We classify probe stability as being online for more
than any 52, 104, 156, and 208 Wednesdays (one to four years)
across six years.

IV. ANALYSIS

In this section, we present the results of our analysis.

A. Overview

We rely on our platform to study the evolution of inter-
city delays over six years. We compute the median of the
measurements for each day and city pair to be considered
the delay performance. An exponentially weighted moving
average (EWMA) is calculated to enhance the delay evolution
analysis using the RTT median values. We compute EWMA
over ten weeks sliding time window. The EWMA smooths the
time series delay values to highlight the spikes and drops.

Our next step is to classify the delay evolution for each
city pair by applying a trend analysis method to the delay
data. Using the non-parametric Mann-Kendall (MK) trend
test [46], [47], we determine whether the delay has increased,
decreased, or remained unchanged over time. The MK test is
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Fig. 3. City level delay trend slope results

a standard statistical approach to inferring the trends in time
series, and it does not require that the data follows a specific
distribution [48]. Intuitively, the test does not compare the
delay values but rather the relative magnitude of the delay.
Thus, it is not sensitive to outliers. However, the test does not
offer information on whether the increase is linear and does
not report any local fluctuations in the data. We employ the
‘pyMannKendall’ Python module for the MK trend test. We
show in Fig. 2 the delay evolution over time and the fitted
trend lines for three pairs of cities. Note that we select these
city pairs as examples to illustrate the three classes of delay
trends that we encounter in our analysis. The delays from São
Paulo to Berlin and from Tokyo to Sydney has decreasing
and increasing trends, respectively. However, the delay from
Singapore to Los Angeles varies, and we cannot detect any
trend in the extracted values.

This study’s decreasing/increasing trend implies that the
overall delay decrease/increase is significant over time, even
though there may be sudden fluctuations. The trend test shows
a no-trend when the p-value does not pass the significance
level. In this study, N/A denotes the number of city pairs
with no time series data to evaluate. Our results indicate a
decreasing trend in the delay for 91% of the 289 city pairs.
However, for 11 city pairs, the delay results in an increasing
trend. A closer look at these pairs reveals that the increase
occurs both in the same city and between different cities.

B. Local and temporal effect on the delay

The raw delay data we employ in our analysis depends on
the available probes. Thus, we further analyze whether the
inferred trend decrease is sensitive to a few probes which are
stable over time. To this end, we consider probes that are stable
over a minimum period of four years. We filter out 73 city pairs
from our initial set as we do not find stable probes between

TABLE I
DELAY TREND COUNTS (PERCENTAGE) OF CITY PAIRS USING ONLY

PROBES WITH HARDWARE VERSION 3-4-ANCHOR-VIRTUAL-SOFTWARE

Minimum Trends
Weeks(Years) Decreasing Increasing No Trend N/A

0 (0) 254 (88%) 16 (5%) 19 (7%) 0 (0)
52 (1) 249 (86%) 24 (8%) 16 (6%) 0 (0)
104 (2) 247 (86%) 24 (8%) 17 (6%) 1 (0%)
156 (3) 210 (73%) 36 (12%) 17 (6%) 26 (9%)
208 (4) 105 (36%) 28 (10%) 24 (8%) 132 (46%)

these cities for at least four years. Our trend analysis reveals
decreasing trends for 71% of the 216 remaining pairwise cities.

We also investigate the local effects, like vantage point
features of RIPE Atlas probes, on the delay values. Using
the probe hardware version filtered ping measurements, we
analyze the delay trends. Table I summarizes these results.
Recall that the collection of these measurements excludes
probes with hardware versions system-v1 and system-v2. As
expected, we find that the delay has a decreasing trend for a
significant percentage of the city pairs. Moreover, considering
only stable probes for at least one, two, and three years yields
the same conclusion. Specifically, we find that the delay has a
decreasing trend for approximately 73%, 86%, and 86% of city
pairs when we consider stable probes for at least three, two,
and one year, respectively. The percentage of city pairs with
no data to process climbs to 46% when the stability period is
extended to four years, which lowers the percentage of pairs
with delay-decreasing trends to 36%. Our analysis shows that
a significant number of locations worldwide experience an
improvement in performance over time regardless of the local
and temporal effects.

V. REGIONAL DELAY EVOLUTION

Having observed an overall performance improvement, we
are interested in analyzing whether this improvement is limited
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Fig. 4. Comparison of COVID-19 periods over six years: (a) spike exists, but no trend (b) no spike exists, but increasing trend

to one geographical area or can be observed across the world.
We further focus on how the delay between different regions
evolved over time. Specifically, we study and present the city-
level and continent-level delay evolution. For the remainder of
the paper, the results are from using ping measurement data
filtered for specific probe hardware versions to eliminate any
bias from the local effect. Note that we include all such probes
regardless of stability period as this covers all the initial data,
i.e., probes and city pairs.

A. City level delay evolution

We study the delay evolution between different cities world-
wide and compute the trend per city pair. Thus, for each
pair, we extract the delay trend results and the rate of the
increase/decrease and show these results in the left part of
Fig. 3. Note that we include in Appendix A a similar figure
that highlights only the trend results per city pair. The dark
red/blue indicates a high increase/decrease in a delay, while
white corresponds to city pairs for which the trend is most
likely stable over time. The gradual shift from blue/red to
white reduces the decreasing/increasing delay rate.

The results show that Tokyo to Sydney and Amsterdam
to Singapore have the most increasing and decreasing delay
change amount over time, respectively, and Prague to Prague is
the most stable. The delay increases from around 110-120 ms
to 140-150 ms from Tokyo to Sydney, decreasing from around
300-340 ms to 160-180 ms from Amsterdam to Singapore. The
city pairs sourcing from and destined to Singapore have the
highest delay decreasing amounts. Lisbon is a destination city
that has the highest delay in increasing quantities. Turning our
attention to intra-city level, the city pairs have mostly a stable
delay over a long period.

B. Continent level delay evolution

Our next step is to analyze performance within and between
different regions. To this end, we group the cities and generate
the delay trends per region. Specifically, we group nine cities
in Europe and three in North America. Note that we exclude
Africa, Australia, South America, and Asia from this analysis
as our data comprised only one or two cities within these
regions.

The delay has a decreasing trend for approximately 80%
and 55% of city pairs within Europe and North America,
respectively. However, within the same two continents, we
also find city pairs for which the delay increases over time.
Approximately 12% and 11% of city pairs for intra-Europe
and intra-North America have an increasing delay trend,
respectively. The remaining 8% and 33% of city pairs have no
trend for delay evolution within Europe and North America.

When examining the intercontinental trend, the city pairs
from Europe to North America and vice versa have a decreas-
ing delay trend of approximately 93% and 96%, respectively.
At the same time, we find that the remaining part of city pairs
from North America towards Europe has an increasing delay
trend. We also find no delay trend between the remaining city
pairs from Europe to North America.

These findings suggest that performance improvements are
not limited to one region but are a global phenomenon likely
resulting from many advancements, such as public and private
infrastructure investments made worldwide. Our subsequent
study will investigate the causes of delay changes, taking into
account more cities from every possible region of the world.

VI. COVID-19 IMPACT ON DELAY

Our proposed method infers long-term changes in the delay
between different locations. However, we are further interested
in whether we can detect relatively short-term changes caused
by external phenomena. Moreover, we investigate whether
such phenomena have a long-term effect on the delay.

At the beginning of 2020, the coronavirus (COVID-19)
spread worldwide, forcing strict lockdowns in many loca-
tions [31]. Several studies have shown that these periods
clearly impacted Internet performance [8], [32]–[34]. Thus, we
consider the first lockdown period our external phenomenon
and analyze the delayed evolution between our selected cities.
Since we are interested in capturing the delay trend changes,
we consider fourteen months (from September 2019 to Octo-
ber 2020) as our measurement period.

Fig. 5 shows an example of the delay trend values be-
tween New York and Tokyo during our chosen measurement
period. The delays, as expected, remain roughly the same
value (150 ms) during the first months. However, we observe
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an apparent increase of 20 ms between February and July 2020
and a slight decline during the last few months. In this case,
the delay values do not return to their initial value. As a result,
our analysis concludes that there is an increasing trend during
the COVID-19 period. The majority of this period corresponds
to the lockdown period and most likely captures the effect on
performance.

Fig. 3 details the delay trends per city pair. Recall that
the left side of the figure showed the corresponding trend
slope results for the six-year periods. Similarly, we show the
same results filtered for our chosen COVID-19 period on the
right side of the figure. We observe a clear difference when
comparing the delay trend results during the two periods.
During the pandemic, we find that the delay increases between
23% (67) of the pairs, while the delay values decrease for
53% (153) of the pairs. Our analysis does not infer any
trend for the remaining 24% (69) city pairs. Fig. 6 shows
the summary of this comparison. The striped area highlights
the number of city pairs with the same trend classification
during both periods. During the pandemic period, we notice
a significant decrease in the number of cities that experience
performance improvement. However, for another set of city
pairs, we do not infer any trend hinting that the delay value
most likely follows a diurnal pattern during this period.

To further quantify the scale of the lockdown impact on
delay, we compute the increase in delay during this period as
follows. First, we calculate the minimum and maximum delay
values collected during our COVID-19 measurement periods.
We consider the minimum delay value equal to the mean
delay value over the first three months, i.e., from September to
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November 2019. As a maximum delay, we consider the 90th

and 95th percentile values of all the collected delay values.
Next, we compute the difference between the minimum and
the maximum values. Fig. 7 shows the distribution of these
differences. Our results show that 87% and 75% of city pairs
have approximately less than 10 milliseconds of delay change
for the 90th and 95th percentile threshold, respectively. At the
same time, we find city pairs for which the delay changes by
more than 50 ms.

The study also investigates the regional impact of COVID-
19 on delays considering only Europe and North America
as in Section V-B. We extract the percentage values of the
trend test results for city pairs between continents. Trend
test shows approximately 26%, and 11% of city pairs have
an increasing trend at the intra-level of Europe and North
America, respectively. Decreasing trend percentages of city
pairs are 60% and 33% within Europe and North America,
respectively. The trend test finds a no-trend result for the
remaining city pairs on the delay evolution. There are no city
pairs with an increasing trend from North America to Europe
at the inter-level. Still, approximately 15% of city pairs have
an increasing delay trend from Europe toward North America.
We find that the delay shows a decreasing trend for 67% and
63% of city pairs from North America toward Europe and
vice versa, respectively. There is no trend in the delay for the
remaining 33% of city pairs from North America to Europe
and 22% of the pairs in the opposite direction.



Having seen that the pandemic has an increasing effect on
the delay, we are further interested in whether the pandemic
has a long-term impact. Fig. 4 plots the delay evolution for
two pairs of cities, i.e., from Berlin to Singapore and from São
Paulo to Amsterdam. We highlight in the gray area our chosen
COVID-19 measurement period and observe a clear delay
increase of different scales during this period. Specifically, we
notice a jump of approximately 70 ms in delay between Berlin
and Singapore. In contrast, the impact on the delay between
São Paulo and Amsterdam is less than 5 ms. In both cases,
however, we find these increases to correspond only to the
pandemic period, as the long-term delay trends appear not to
be affected. Moreover, the comparison from Fig. 3 confirms
that this observation is valid across most of our studied pairs.
On the other hand, even when a pair of cities shows both a
small overall change and similar behavior globally and in the
COVID-19 period, this does not preclude strong temporary
change. To this end, we compute derivative of delay changes
(slope) for the traffic between our selected set of cities. This
metric is useful to identify the time when significant changes
occur in the series. We provide one example of values for this
metric for the traffic from Cape Town to London in Fig. 8.
We note a clear signal during the pandemic period and plan
to explore in the future how we can leverage this metric for
event detection.

Our analysis shows that the pandemic periods impacted
Internet performance. Similar results were reported by other
studies that focused on COVID-19 short-term effects [7], [39].
Surprisingly, our results do not infer any long-term effect of
the pandemic on the delay. Thus, when applied over shorter
periods of time, our proposed trend approach appears to infer
the impact of external phenomena correctly.

VII. CONCLUSION

We have provided a comprehensive analysis to reveal the
historical and longitudinal Internet delay variations between
17 cities every Wednesday over the six years from 2016 until
2022. In the following, we discuss our findings and their
implications and limitations.

In the analysis results, the delay for some city pairs expe-
riences sudden increases or decreases for a period of time.
However, a gradual decrease, increase, or stable historical
delay evolution is observable. The findings of this study clearly
show that there is a decreasing trend in the majority for both
the regions of city level and continent level. The delay trend
results were also in the same direction when we analyzed
the delay evolution excluding ping measurements with the
early RIPE Atlas probes with hardware versions of system-v1
and system-v2 to prevent interference. Furthermore, we obtain
similar results when we impose different stability periods for
the vantage points. However, we acknowledge that for a four-
year stability period, there is a significant decrease in the
number of available probes. In our next study, we plan to
extend our understanding of the local impact on the delay.
Specifically, we plan to analyze other features related to the
probe.

By analyzing the delay change amounts, we find that the
most decreased amount is much more changed than the most
increased amount. The findings show that the majority of the
delay change amounts are toward decreasing or stable over
the long period. Although the delay decreasing amount is
not limited to specific regions, long-haul connections from/to
Singapore still have the most reducing values, while inter-city
connections show stability.

Our findings clearly show that the COVID-19 pandemic
increasingly impacts the delay in trend results and change
amounts. We observe a shift from the decreasing and no-
trend delay trends during our six-year period to increasing
delay trends during the COVID-19 measurement period. The
delay increase amount exceeds 70 ms for some city pairs
during lockdowns due to the COVID-19 pandemic. However,
we observe that for most of the city pairs the pandemic does
not affect the delay trend over the long period.

This paper presents several key findings about the delayed
evolution and COVID-19 impact but with limitations on city
and date coverages. Even though we rely on samples taken
only one day per week, we can still demonstrate how the
COVID-19 pandemic has caused the delay to increase. There
may be more than one factor to consider when identifying
stable probes over time. Moreover, this study was limited to
only one city for some continents.

Our study comes with some limitations. We acknowledge
that in our study we focus on a subset of cities, i.e., 17
large cities. In the future, we plan to extend our analysis to
include other cities. We are well aware that it only partially
represents the continent’s delay, and we want to cover the
continents more extensively in the future as part of our study
goal. This study uses only ping measurements to study the
long-haul connection between cities. We also investigated the
usability of different probe features like probe tags, time-to-
live (TTL), and stability to further understand the delay evo-
lution. However, most of our results were inconclusive. Thus,
our future steps include incorporating in our analysis paths
information from RIPE Atlas traceroute data [42]. Moreover,
we plan to develop an event detection algorithm that identifies
the significant events similar that have an impact similar to
pandemic period. As part of our future agenda, we will study
both long-haul and intra-city connections.

In this paper, we assess the evolution of intercity Internet
latencies due to numerous investments. Our analysis relies on
end-to-end measurements collected between probes at major
metropolitan areas around the globe. The findings reveal that
the delay shows a decreasing trend for almost all city pairs
in general over the long period. Our study also assesses the
impact of global or local events such as calendar cycles and
a once-in-a-generation global event: the COVID-19 outbreak.
We acknowledge that the observed delay evolution can be
a result of many aspects/factors of network operations and
practices. In future work, we intend to expand on this study
by examining the effects of other possible factors, such as
infrastructure upgrades, congestion along the path, packet loss
rate, or changes in the routing policies on the evolution of



intercity delays. We also acknowledge that delay variations
may due to social and political events, military conflicts,
and financial sanctions. Moreover, we plan to include more
cities and expand our analysis to include detailed geographical
analyzes and connections between end-user and data centers.

ACKNOWLEDGMENT

The research presented in this paper has benefited from the
Experimental Infrastructure for Exploration of Exascale Com-
puting (eX3), which is financially supported by the Research
Council of Norway under contract 270053. Ioana Livadariu is
internally funded by SimulaMet. Georgios Smaragdakis was
supported by the European Research Council (ERC) Starting
Grant ResolutioNet (ERC-StG-679158).

REFERENCES

[1] The Guardian, “Pokémon Go fans enraged as first festival ends in
connectivity disaster,” Jul. 2017, visited on March 2023. [Online]. Avail-
able: https://www.theguardian.com/technology/2017/jul/24/pokemon-
go-fest-fans-enraged-connectivity-disaster

[2] T. Leighton, “Improving Performance on the Internet,” Communications
of the ACM, vol. 52, no. 2, p. 44–51, 2009.

[3] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell, Y. Cheng,
A. Jain, S. Hao, E. Katz-Bassett, and R. Govindan, “Reducing Web
Latency: the Virtue of Gentle Aggression,” in In Proceedings of SIG-
COMM, 2013.

[4] O. Victor Babasanmi and J. Chavula, “Measuring cloud latency in
africa,” in CloudNet, 2022.

[5] R. Noordally, X. Nicolay, P. Anelli, R. Lorion, and P. U. Tournoux,
“Analysis of Internet Latency: The Reunion Island Case,” in AINTEC,
2016.

[6] P. Sevcik, J. Alan, and R. Wetzel, “2020 Internet Latency Benchmark
Report,” NetForecast, techreport, Apr. 2021.

[7] M. Candela, V. Luconi, and A. Vecchio, “Impact of the COVID-
19 pandemic on the internet latency: A large-scale study,” Computer
Networks, vol. 182, p. 107495, dec 2020.

[8] A. Feldmann, O. Gasser, F. Lichtblau, E. Pujol, I. Poese, C. Diet-
zel, D. Wagner, M. Wichtlhuber, J. Tapiador, N. Vallina-Rodriguez,
O. Hohlfeld, and G. Smaragdakis, “The Lockdown Effect: Implications
of the COVID-19 Pandemic on Internet Traffic,” in IMC, 2020.

[9] L. Davisson, J. Jakovleski, N. Ngo, C. T. M. Pham, and J. Sommers,
“Reassessing the Constancy of End-to-End Internet Latency,” in TMA,
2021.

[10] E. Aben, “Measuring More Internet with RIPE Atlas,” 2016.
[Online]. Available: https://labs.ripe.net/author/emileaben/measuring-
more-internet-with-ripe-atlas/

[11] C. Williamson, “Internet Traffic Measurement,” IEEE Internet Comput-
ing, vol. 5, no. 6, pp. 70–74, 2001.

[12] F. Mazzola, P. Marcos, I. Castro, M. Luckie, and M. Barcellos, “On
the Latency Impact of Remote Peering,” in PAM, 2022.

[13] Internet Health Report, visited on March 2023. [Online]. Available:
https://ihr.iijlab.net/ihr/en-us

[14] M. Chowdhury, R. Agarwal, V. Sekar, and I. Stoica, “A Longitudinal
and Cross-Dataset Study of Internet Latency and Path Stability,” 2014.

[15] B. Chandrasekaran, G. Smaragdakis, A. Berger, M. Luckie, and K.-C.
Ng, “A Server-to-Server View of the Internet,” in Proceedings of ACM
CoNEXT 2015, 2015.

[16] Center for Applied Internet Data Analysis (CAIDA), “Archipelago
(Ark) Measurement Infrastructure,” https://www.caida.org/projects/ark/,
[Online; accessed 1-June-2023].

[17] H. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Kr-
ishnamurthy, and A. Venkataramani, “iPlane: An information plane for
distributed services.” OSDI 06, Nov. 2006.

[18] W. Willinger and M. Roughan, “Internet Topology Research Redux,”
Recent Advances in Networking ACM SIGCOMM eBook, Aug. 2013.

[19] J. Liu, F. Liu, and N. Ansari, “Monitoring and analyzing big traffic data
of a large-scale cellular network with Hadoop,” IEEE Network, 2014.

[20] R. Durairajan, P. Barford, J. Sommers, and W. Willinger, “InterTubes:
A Study of the US Long-Haul Fiber-Optic Infrastructure,” SIGCOMM,
2015.

[21] V. Bajpai, S. J. Eravuchira, and J. Schönwälder, “Lessons Learned From
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[33] T. Böttger, G. Ibrahim, and B. Vallis, “How the internet reacted to covid-

19: A perspective from facebook’s edge network,” ser. IMC ’20, 2020.
[34] A. Feldmann, O. Gasser, F. Lichtblau, E. Pujol, I. Poese, C. Diet-

zel, D. Wagner, M. Wichtlhuber, J. Tapiador, N. Vallina-Rodriguez,
O. Hohlfeld, and G. Smaragdakis, “A Year in Lockdown: How the Waves
of COVID-19 Impact Internet Traffic,” Commun. ACM, July 2021.

[35] A. Bergman and J. Iyengar, “Coronavirus: What do the
lockdowns mean in europe?” Apr. 2020, visited on March
2023. [Online]. Available: https://www.fastly.com/blog/how-covid-19-
is-affecting-internet-performance

[36] D. Howdle and M. Ashton, “How global broadband speeds changed dur-
ing covid-19 lockdown periods,” 2020, visited on March 2023. [Online].
Available: https://www.cable.co.uk/broadband/speed/broadband-speeds-
covid-19-lockdown/

[37] U. Hölzle, “Keeping our network infrastructure strong amid
COVID-19,” 2020, visited on March 2023. [Online]. Avail-
able: https://www.blog.google/inside-google/infrastructure/keeping-our-
network-infrastructure-strong-amid-covid-19/

[38] A. Medina, “State of Internet Health During COVID-19,”
Mar. 2020, visited on March 2023. [Online]. Available:
https://www.thousandeyes.com/blog/internet-health-during-covid-19

[39] A. Elmokashfi, A. Arouna, I. Livadariu, M.-R. Fida, A. Kvalbein, A. Al-
Selwi, T. Dreibholz, and H. Bryhni, “A multi-perspective study of
internet performance during the covid-19 outbreak,” 2021.

[40] S. Liu, P. Schmitt, F. Bronzino, and N. Feamster, “Characterizing Service
Provider Response to the COVID-19 Pandemic in the United States,” in
PAM, 2021.

[41] M. Rajiullah, A. S. Khatouni, C. Midoglu, O. Alay, A. Brunstrom,
and C. Griwodz, “Mobile Network Performance during the COVID-19
Outbreak from a Testbed Perspective,” in WiNTECH, 2020.

[42] RIPE Atlas REST API, visited on March 2023. [Online]. Available:
https://atlas.ripe.net/api/v2/

[43] GeoNames, “Large cities,” https://www.geonames.org/countries/, 2021,
[Online; accessed 1-June-2021].

[44] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster Computing with Working Sets,” ser. HotCloud, 2010.

[45] D. Merkel, “Docker: lightweight linux containers for consistent devel-
opment and deployment,” Linux journal, 2014.

[46] M. Kendall, Rank correlation measures. Charles Griffin, London, 1975.
[47] H. B. Mann, “Nonparametric tests against trend,” Econometrica, 1945.
[48] M. Hussain and I. Mahmud, “pyMannKendall: a python package for

non parametric Mann Kendall family of trend tests.” 7 2019.



Amste
rd

am
Berl

in

Cap
e T

ow
n

Lisb
on

Lon
don

Los 
Ange

les

M
osc

ow

New
 Yor

k
Par

is

Pra
gu

e

San
 Fra

ncis
co

Singa
pore

Syd
ney

São
 Pau

lo
Tok

yo

Vien
na

Zuric
h

Amsterdam

Berlin

Cape Town

Lisbon

London

Los Angeles

Moscow

New York

Paris

Prague

San Francisco

Singapore

Sydney

São Paulo

Tokyo

Vienna

Zurich

Amste
rd

am
Berl

in

Cap
e T

ow
n

Lisb
on

Lon
don

Los 
Ange

les

M
osc

ow

New
 Yor

k
Par

is

Pra
gu

e

San
 Fra

ncis
co

Singa
pore

Syd
ney

São
 Pau

lo
Tok

yo

Vien
na

Zuric
h

Amsterdam

Berlin

Cape Town

Lisbon

London

Los Angeles

Moscow

New York

Paris

Prague

San Francisco

Singapore

Sydney

São Paulo

Tokyo

Vienna

Zurich

Source Source

D
es

tin
at

io
n

Long period COVID-19 period

Decreasing No-trend Increasing City pairs with decreasing or no-trend in long period but increasing in COVID-19 period

Fig. 9. City level delay trend results for 6 years long and COVID-19 measurement periods

APPENDIX A
CITY LEVEL DELAY TREND RESULTS

We analyze and compare the delay trend test results on
the city level for both long and COVID-19 measurement
periods. The left side of the Fig. 9 shows the delay trend
results for a long period from source to destination cities in
a heatmap. Refer to Table I for the overall counts of trend
results. The black color indicates an increasing trend, white
is for a no-trend, and gray shows the decreasing trend result
of city pairs. The majority of city pairs have a decreasing
trend over the six years, considering the figure. However, this
is different for some city pairs, which continue to have an
increasing delay trend at both intra- and inter-levels. Intra-
level means source and destination cities are the same, and
inter-level means different source and destination cities. Cities
of Berlin, Cape Town, London, San Francisco, and Zurich
have an increasing delay trend at the intra-level. New York to
Lisbon, Tokyo to Los Angeles, Tokyo to Sydney, and Los
Angeles to Singapore are the long-distance inter-level city
pairs with an increasing trend result. Furthermore, we can infer
more by treating cities as sources or destinations. Lisbon, for
example, as a destination city, has the most increasing delay
trend with a source city both within Europe and from North
America. However, when viewed as a source city, Lisbon
exhibits decreasing delay trends to all cities, including intra-
level. We find that the delay has a decreasing trend from
Amsterdam towards 16 cities and from 17 cities towards

the same location. Moscow as a destination city and Sydney
as a source city have exclusively decreasing trend results.
São Paulo has all decreasing trend results as a bidirectional
city. The red boxes in the Fig. 9 represent the 57 city pairs
with a long-term trend of ‘decreasing’ or ‘no-trend’ and an
‘increasing’ delay trend during the COVID-19 era. The long-
period results in the Fig. 9 indicate a decreasing trend in the
delay for the majority of city pairs. Using the city-level view,
this finding indicates that the performance improvement is not
limited to one region but rather a global feature.

We also offer trend results for each city pair to demonstrate
the effect of the pandemic on delay in greater depth and to
compare the results from the extended period. The right side
of the Fig. 9 shows the delay trend results for the COVID
period from source to destination cities in a heatmap. The
exceeded number of city pairs with an increasing trend or no-
trend results in the figure can infer the effect of the pandemic
on the delay. There is no increasing delay trend when we
take Los Angeles as a source city. São Paulo is one of the
cities with the most increasing trends when considering both
source and destination. The inter-city delay trends are also
affected by the pandemic. In view of this, many city pairs
have changed trends from decreasing trends. As destination
and source cities, respectively, Moscow and Sydney having all
decreasing trends in the long period, are also affected by the
pandemic and experiencing changed trends. The performance-
decreasing effect of the pandemic indicates that the effect is
not restricted to one region or any distance with a pattern.


