
BOSTON UNIVERSITY

GRADUATE SCHOOL OF ARTS AND SCIENCES

Dissertation

OVERLAY NETWORK CREATION AND MAINTENANCE

WITH SELFISH USERS

by

GEORGIOS SMARAGDAKIS

Diploma, Technical University of Crete, 2002

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2009

c© Copyright by
GEORGIOS SMARAGDAKIS
2008

Approved by

First Reader

Azer Bestavros, Ph.D.
Professor of Computer Science
Boston University

Second Reader

Nikolaos Laoutaris, Ph.D.
Researcher
Telefónica Research, Barcelona

Third Reader

John W. Byers, Ph.D.
Associate Professor of Computer Science
Boston University

Sthn oikogènei� mou,Jemistokl , 'Anna kai Emmanou l.

iv

Acknowledgments

In the last five years I have been privileged to work, study, and reside in a great academic

environment that motivated me to challenge my limits. I would like to express my ac-

knowledgments to colleagues and friends who encouraged and inspired my work during the

graduate school years.

I am grateful to my advisor, Azer Bestavros, for his support and encouragement

throughout my graduate studies. Under his supervision, I was provided full academic

freedom to build my research agenda and was encouraged to think outside the box. De-

spite his extremely heavy schedule as the department chair, Azer was always available to

discuss my research and academic development.

I would like to express my gratitude to my co-advisor, Nikolaos Laoutaris. Nikos

taught me how to attack challenging networking problems by peeling off non-essential

details to reveal the underlying fundamental computer science problem. He also introduced

me to game theory, approximation algorithms, and operational research, which are the

algorithmic foundations of my research in this dissertation.

My second co-advisor, John Byers, is one of the most effective teachers I have had.

Taking coursework with him changed my outlook on computer networks and introduced

me to new areas of research.

The faculty, students, and staff of the computer science department at Boston Uni-

versity provided a stimulating and personal environment. My special thanks go to the

members of the WING group for their valuable feedback on my research. I would like

to express my gratitude to my co-authors who contributed to my research efforts. I am

also thankful to my office- and room-mate Vijay Erramilli, to Panagiotis Papapetrou, Niky

Riga, Vassilis Athitsos, Michalis Potamias, and Irena Tsvetkova for being always there for

v

me.

My research was financially supported by National Science Foundation, Boston Uni-

versity, Telefónica Research-Barcelona, and the European Commission.

I dedicate this dissertation to my father, my mother, and my brother. Words are not

strong enough to express my feelings for them.

vi

OVERLAY NETWORK CREATION AND MAINTENANCE

WITH SELFISH USERS

(Order No.)

GEORGIOS SMARAGDAKIS

Boston University, Graduate School of Arts and Sciences, 2009

Major Professor: Azer Bestavros, Professor of Computer Science Department

ABSTRACT

Overlay networks have been used for adding and enhancing functionality to the end-users

without requiring modifications in the Internet core mechanisms. Overlay networks have

been used for a variety of popular applications including routing, file sharing, content distri-

bution, and server deployment. Previous work has focused on devising practical neighbor

selection heuristics under the assumption that users conform to a specific wiring proto-

col. This is not a valid assumption in highly decentralized systems like overlay networks.

Overlay users may act selfishly and deviate from the default wiring protocols by utilizing

knowledge they have about the network when selecting neighbors to improve the perfor-

mance they receive from the overlay.

This thesis goes against the conventional thinking that overlay users conform to a spe-

cific protocol. The contributions of this thesis are threefold. It provides a systematic

evaluation of the design space of selfish neighbor selection strategies in real overlays, eval-

uates the performance of overlay networks that consist of users that select their neighbors

selfishly, and examines the implications of selfish neighbor and server selection to overlay

protocol design and service provisioning respectively.

This thesis develops a game-theoretic framework that provides a unified approach to

modeling Selfish Neighbor Selection (SNS) wiring procedures on behalf of selfish users.

The model is general, and takes into consideration costs reflecting network latency and

user preference profiles, the inherent directionality in overlay maintenance protocols, and

vii

connectivity constraints imposed on the system designer. Within this framework the notion

of user’s “best response” wiring strategy is formalized as a k-median problem on asymmetric

distance and is used to obtain overlay structures in which no node can re-wire to improve the

performance it receives from the overlay. Evaluation results presented in this thesis indicate

that selfish users can reap substantial performance benefits when connecting to overlay

networks composed of non-selfish users. In addition, in overlays that are dominated by

selfish users, the resulting stable wirings are optimized to such great extent that even non-

selfish newcomers can extract near-optimal performance through näıve wiring strategies.

To capitalize on the performance advantages of optimal neighbor selection strategies

and the emergent global wirings that result, this thesis presents EGOIST: an SNS-inspired

overlay network creation and maintenance routing system. Through an extensive measure-

ment study on the deployed prototype, results presented in this thesis show that EGOIST’s

neighbor selection primitives outperform existing heuristics on a variety of performance

metrics, including delay, available bandwidth, and node utilization. Moreover, these re-

sults demonstrate that EGOIST is competitive with an optimal but unscalable full-mesh

approach, remains highly effective under significant churn, is robust to cheating, and incurs

minimal overheads.

This thesis also studies selfish neighbor selection strategies for swarming applications.

The main focus is on n-way broadcast applications where each of n overlay user wants to

push its own distinct file to all other destinations as well as download their respective data

files. Results presented in this thesis demonstrate that the performance of our swarming

protocol for n-way broadcast on top of overlays of selfish users is far superior than the

performance on top of existing overlays.

In the context of service provisioning, this thesis examines the use of distributed ap-

proaches that enable a provider to determine the number and location of servers for optimal

delivery of content or services to its selfish end-users. To leverage recent advances in virtu-

alization technologies, this thesis develops and evaluates a distributed protocol to migrate

servers based on end-users demand and only on local topological knowledge. Results under

viii

a range of network topologies and workloads suggest that the performance of the distributed

deployment is comparable to that of the optimal but unscalable centralized deployment.

ix

Contents

Abstract vii

List of Tables xv

List of Figures xvi

List of Abbreviations xix

1 Introduction 1

1.1 Conceptual Contributions . 2

1.2 Technical Contributions . 3

1.3 Thesis Organization . 6

2 Selfish Neighbor Selection 7

2.1 Background . 10

2.2 Definitions . 11

2.3 Deriving Stable Wirings . 12

2.3.1 The Best-Response of a node . 13

2.3.2 Connections between SNS Game and Facility Location 13

2.3.3 Equilibrium Wirings through Iterative Best Response 15

2.3.4 A Lower Bound on the Cost of a Socially Optimal Wiring 16

2.4 Characterization of Stable Wirings . 17

2.4.1 Social Cost of Stable Wirings . 17

2.4.2 Topology of Stable Wirings . 19

2.4.3 Contsraining the In-degree: A Doubly Constrained Overlay 22

2.5 Overlay Neighbor Selection: Best Response vs. k-Random, k-Regular, and

k-Closest . 23

x

2.5.1 Description and Design Methodology 24

2.5.2 Description of the Datasets . 24

2.5.3 Comparison of Different Graphs . 26

2.5.4 The Value of Best Response . 26

2.6 Minimizing the Maximum Delay . 32

2.7 Overlay Neighbor Selection with variable out-degree 34

2.8 Overlay Neighbor Selection under scoped-flooding 35

2.8.1 A reformulation of Best Response for scoped-flooding 37

2.8.2 The value of Best Response for scoped-flooding 38

2.8.3 Stable wirings under scoped-flooding 39

2.9 Chapter Summary . 42

3 The EGOIST Overlay Routing System 43

3.1 Background . 44

3.2 Preliminaries . 46

3.3 Architecture . 47

3.3.1 Basic Design . 47

3.3.2 Neighbor Selection Policies . 49

3.3.3 Dealing with churn . 49

3.3.4 Dealing with Cheaters . 51

3.4 Experimental Evaluation . 52

3.4.1 Cost Metrics . 52

3.4.2 Baseline Experimental Results . 54

3.4.3 Measurement and Re-wiring Overheads 59

3.4.4 Effect of Churn . 61

3.4.5 Vulnerability to Abuse . 64

3.5 Scalability Issues . 66

3.5.1 Scalability via Sampling . 66

3.5.2 Layered Architecture . 69

xi

3.6 Applications . 70

3.6.1 Multiplayer P2P Games . 71

3.6.2 Multipath File Transfer . 72

3.6.3 Real-time Traffic over IP . 74

3.7 Artifacts . 75

3.8 Chapter Summary . 76

4 Swarming on Optimized Graphs 77

4.1 Background . 81

4.2 Peer-set Selection . 83

4.3 Node Architecture . 88

4.3.1 Peer Selection Module . 88

4.3.2 The Downloader Module . 89

4.4 The Uploader Module . 89

4.5 Performance Evaluation . 90

4.5.1 Case Study I: A PlanetLab Prototype 91

4.5.2 Case Study II: A Dedicated Network Prototype 94

4.5.3 Case Study III: The Effect of an Outlier 100

4.6 Dealing with Selfish Behavior . 101

4.6.1 A Brief Taxonomy of Deterrence Mechanisms 102

4.6.2 Quantifying the Impact of Selfish FIFO/MRF 103

4.6.3 Download-Selfishness . 106

4.7 Chapter Summary . 107

5 Distributed Server Migration 109

5.1 Background . 113

5.2 A Limited Horizon Approach to Distributed Facility Location 116

5.2.1 Definitions . 116

5.2.2 The Distributed Algorithm . 116

xii

5.2.3 Optimizing r-shapes . 118

5.3 A More Detailed Examination of Distributed Facility Location 119

5.3.1 Convergence of the Iterative Method 119

5.3.2 The Mapping Error and its Effect on Local Optimizations 123

5.4 Synthetic Results on ER and BA Graphs 124

5.4.1 Node Coverage with Radius r . 125

5.4.2 Performance of distributed UKM . 125

5.4.3 Performance of distributed UFL . 127

5.5 Results for Real AS-level Topologies . 130

5.5.1 Description of the AS-level Dataset 130

5.5.2 Distributed UKM on the AS-level Dataset 132

5.5.3 Distributed UFL on the AS-level Dataset 132

5.6 Non-Stationary Demand and Imperfect Redirection 133

5.6.1 Measuring the demand of a popular multi-player game 133

5.6.2 Distributed UFL under non-stationarity demand 134

5.6.3 The Effect of Imperfect Redirection 137

5.7 Chapter Summary . 138

6 Conclusion 140

6.1 Summary . 140

6.2 Directions for Future Research . 141

Appendix A 144

Appendix B 146

Appendix C 147

Appendix D 149

Appendix E 151

Appendix F 154

xiii

References 155

Curriculum Vitae 166

xiv

List of Tables

2.1 Social cost ratios of heuristic wiring strategies and Best Response 27

2.2 Maximum delay ratios of heuristic wiring strategies and Min-Max Best Re-

sponse . 33

5.1 Cost ratio between server migration and centralized deployment in the AS-

level topology . 133

xv

List of Figures

2·1 The social cost of stable wirings is close to optimal 18

2·2 Stable wiring motifs . 20

2·3 Convergence time starting from different graphs 22

2·4 The social cost of doubly capacitated stable wirings 23

2·5 The cost ratio between simple wiring and BR wiring for a newconer 30

2·6 Minimizing the maximum delay . 32

2·7 Satisfying application requirements with variable degree 35

2·8 Value of Best Response under Scoped-flooding 39

2·9 Pure Nash equilibria with good properties for the uniform Scoped-flooding

game . 40

2·10 Non existence of pure Nash equilibria in non uniform Scoped-flooding games 41

3·1 Performance evaluation of EGOIST on PlanetLab 57

3·2 Number of rewirings in EGOIST . 60

3·3 Trade-off between performance and rewirings in EGOIST 61

3·4 CPU, memory and bandwidth overhead in EGOIST 62

3·5 Performance evaluation of EGOIST under churn 64

3·6 Robustness of EGOIST under cheating . 65

3·7 Performance evaluation of topology-based biased sampling 68

3·8 EGOIST and maltiplayer P2P games . 72

3·9 EGOIST and multi-path file transfer . 73

3·10 EGOIST and real-time traffic over IP . 74

3·11 Number of disjoint paths on EGOIST . 75

xvi

4·1 Mixing max-flows is hard to analyze . 86

4·2 CDF and scatter plots of available bandwidth in the PlanetLab experiment 92

4·3 Performance evaluation of wiring strategies in the PlanetLab experiment . . 93

4·4 CDF and scatter plots of available bandwidth in the Sprint topology 95

4·5 Simulation of a closed network based on Sprint’s topology. 96

4·6 Worst finish time per node on Sprint’s topology 98

4·7 Max-Sum and Max-Min performance on Sprint topology 99

4·8 Node degree of different wirings on Sprint topology 100

4·9 CDF of the average and worst delivery time on Sprint topology 101

4·10 Simulation of a closed network, with an outlier, based on Sprint’s topology 101

4·11 CDF of the average and worst delivery time on Sprint topology with an outlier102

4·12 Maximum finish time under different wirings on Sprint topology 105

4·13 Maximum finish time under different wirings on Sprint topology, in presence

of an outlier . 108

5·1 Stability of server’s migration . 120

5·2 Mapping error due to local optimizations 122

5·3 Average coverage of a node for different size of ER and BA graphs. 126

5·4 Performance and speed of convergence of distributed server migration . . . 127

5·5 Cost deployment for server migration in ER and BA graphs under degree-

based facility cost . 128

5·6 Cost deployment for server migration in ER and BA graphs under uniform

facility cost . 129

5·7 Number of costumer ASes for each peer-AS 131

5·8 Cost of server migration deployment on AS graph 132

5·9 Download activity over time in our study 135

5·10 Churn of users in our study . 135

5·11 Server migration ratio in our study . 136

xvii

5·12 Performance of server migration under non-stationary demand 137

5·13 Performance of server migration under imperfect redirection 138

A·1 Reduction from MAX-UNIQUES(k) to max sum of bottleneck bandwidths. 145

C·2 Reduction from MAX-UNIQUES(k) to Max-Min. 148

D·3 Reduction from MAX-UNIQUES(k) to Max-Sum. 150

F·4 Deriving analytical expressions for the error in mapping 154

xviii

List of Abbreviations

API Application Programming Interface

AS Autonomous System (in the Internet)

BA Barabási-Albert graph

BR Best Response

CDF Cumulative Distribution Function

CDN Content Distribution Network

CPU Central Processing Unit

DHT Distributed Hashing Table

ER Erdös-Rényi graph

GSH Generic Service Host (in the Internet)

FIFO First In First Out scheduling

ILP Integer Linear Programming

IP Internet Protocol

ISP Internet Service Provider

MF Maximum Flow

MRF Most Replicated First scheduling

MST Minimum Spanning Tree

NP Non-deterministic Polynomial time

ON Ordinary Node

P2P Peer-to-Peer

RTT Round Trip Time

SLA Service Level Agreements (in the Internet)

SN Super Node

xix

SNS Selfish Neighbor Selection

UFL Uncapacitated Facility Location problem

UKM Uncapacitated k-median problem

VM Virtual Machine

xx

1

Chapter 1

Introduction

Overlay networks are computer networks that are built on top of physical networks of

interconnected routers and end-systems. A node in an overlay network is a process running

at an end-system and has neighbors, to which it connects through logical links that in reality

are multi-hop paths in the underlying physical network. For the rest of the thesis we will use

the terms overlay node and user interchangeably. Overlay networks have been developed for

adding and enhancing functionality to the end-users without requiring modifications in the

Internet core mechanisms. Overlays have been used for a variety of popular applications

including routing [101, 2], peer-to-peer file sharing [93], content distribution [27], data-

center applications [60], and online multi-player games [10], among others.

A common goal of overlay designers has been the improvement of the average per-

formance that an overlay user receives. Previous work has focused on devising practical

neighbor selection heuristics under the assumption that users conform to a specific wiring

protocol [101, 2, 70, 69, 119, 73, 45, 121, 102, 113, 30, 102, 108, 96, 43, 109, 24, 55, 19]. This

is not a valid assumption in highly decentralized systems like overlay networks. Overlay

users are typically governed by agents whose interest is not the optimization of the overlay’s

performance, but rather the maximization of their own benefit. Therefore, users may act

selfishly by choosing to connect to their best neighbors. Overlay users are incented to de-

viate from the wiring protocol, utilize more information about the network, and re-wire in

order to improve the performance they receive from the overlay. In overlay networks both

the collection of topological information as well as re-wiring is easy. While much attention

has been paid to the harmful downsides of selfish behavior in different settings [94, 100, 86],

2

the impact of adopting Selfish Neighbor Selection (SNS) strategies in real overlay networks

has been an open problem up to now [35].

1.1 Conceptual Contributions

In this thesis we go against the conventional thinking that overlay users conform to a

specific wiring protocol, whose objective is the optimization of the overlay’s performance.

Our main focus is on the performance characteristics of overlays, consisting of users that are

self-interested and select their neighbors selfishly. In the following paragraphs we comment

on why this is a promising approach to study the performance of real overlays.

In highly decentralized overlays, where users belong to different administrative author-

ities, auditing or enforcing global wiring can be difficult or impossible. In this setting it is

very difficult to identify non-compliant wiring behavior. Individual users who conform to

the wiring protocol, may experience significant performance degradation. An architectural

solution to protect individual users as well as the system from being exploited is to provide

the best wiring strategy to all the users in the overlay. A system that provides such a

wiring strategy to the users creates additional incentives to users not to deviate from the

protocol. Analytical and experimental results obtained under this framework are more

general as they relax the assumption that users will sacrifice their performance towards

improving the overlay’s performance.

Selfish wiring ability increases the awareness of end-users about possible misconfigura-

tion or bugs of the wiring protocol. Wiring protocols that attempt to optimize the average

performance in the overlay may lead to substantial performance degradation of individual

users. The only way for an individual user to avoid such pathological cases is to react by de-

viating from the wiring protocol. Moreover, selfish wiring leads to scalable and distributed

deployment of networks, where the monitoring cost and wiring decisions are outsourced to

the end-users.

An overlay that offers the best wiring strategies to end-users and increases end-users

awareness provides additional incentives for new users to join the overlay. We believe

3

that the study of such systems has not received enough attention. In this thesis we first

model what is the best wiring strategy for a user and then use this model to study the

performance of different types of overlays, which are composed of selfish users. This is

a more realistic approach to studying the performance characteristics of complex overlay

systems. In many overlay systems, only the individual objective function can be derived,

as the social objective function may be too complex [106].

1.2 Technical Contributions

In this Section we highlight the main technical contributions of the thesis. We demonstrate

the implications and potential for adopting selfish wiring strategies in overlay network

creation and maintenance.

We develop a game-theoretic framework that provides a unified approach to modeling

selfish neighbor selection wiring procedures on behalf of selfish users. Our model is richer

than previously proposed ones, attempting to derive selfish neighbor selection strategies in

the physical layer [34, 23, 99, 29]. Our model is general enough to take into consideration

costs, reflecting network latency, user preference profiles, the inherent directionality in over-

lay maintenance protocols, and connectivity constraints imposed on the system designer.

Within this framework the notion of user’s “best response” is formalized as a k-median

problem on asymmetric distance. We use this formulation to quantify the performance

gain of a selfish user when compared to this of a conformant user. Our evaluation shows

that selfish users can reap substantial performance benefit, especially when connecting to

overlays composed of näıve users.

We use the above-mentioned formulation in order to obtain overlays that are composed

of selfish users. In overlays that are composed of selfish users, the resulting wirings are

optimized to such an extend that even non-informed newcomers can extract near-optimal

performance through näıve neighbor selection strategies. We also show the potential bene-

fits that selfish neighbor selection strategy offers to overlays like real-time and file-searching

systems.

4

To capitalize on the performance advantages of selfish neighbor selection strategies and

the emergent global wirings that result, we present the design and evaluation of EGOIST.

EGOIST is an SNS-inspired overlay network creation and maintenance routing system. In

EGOIST, each user participates in a link-state protocol [92], where it reports its neighbors

and the distance to them. Each overlay user constructs the full topology of the overlay and

is informed about the wiring changes that take place in the overlay. Periodically, each over-

lay user monitors the distance to all the other users in the network and then connects to its

best neighbors. Through an extensive measurement study on our deployed prototype over

PlanetLab, our results show that EGOIST’s neighbor selection primitives outperform ex-

isting heuristics on a variety of performance metrics, including delay, available bandwidth,

and node utilization. Moreover, our results demonstrate that EGOIST is competitive with

an optimal but unscalable full-mesh approach, remains highly effective under significant

churn and is robust to cheating. EGOIST also incurs minimal measurement, computa-

tional, and re-wiring overheads. Furthermore, we present architectural decisions to make

EGOIST scalable. We present the potential benefits that EGOIST offers to many appli-

cations, including multi-player peer-to-peer games, multi-path file transfers, and real-time

traffic over IP. EGOIST has been released to the research community and can be accessed

from the EGOIST project web site at http://csr.bu.edu/sns/.

In the context of file sharing, selfish neighbor selection has different characteristics. We

study the implications of selfish neighbor selection strategies on swarming applications.

For many swarming applications, including the popular BitTorrent [24], the evolving ran-

dom topology is justifiable, given the scale of peer-to-peer file swapping networks. On the

other hand, many high-performance file-sharing applications, are realizable only in small

to medium scale networks. Therefore, we consider n-way broadcasting – a class of appli-

cations in which each one of the n overlay users must push a large file to all other peers,

as well as pull the files pushed by these other peers. Examples of n-broadcasting include

high-performance applications like distribution of large scientific data-sets, distribution

of large-scale traffic log files for network-wide distributed intrusion or anomaly detection

5

schemes [68], synchronization of distributed databases [9], and several other enterprise ap-

plications. We show that selfish neighbor selection can leverage the above scale constraint

to construct optimized overlays that take into consideration the end-to-end characteristics

of the network. Moreover, we show that the deployment of a single overlay to jointly op-

timize all the file swappings in parallel, in order to protect the uplink capacity of overlay

users, is more appropriate. In this setting a selfish user strives to maximize the available

bandwidth to the slowest destination. Our experimental results show that our swarm-

ing protocol that operates on top of overlays formed by selfish users delivers far superior

performance than this on top of that of existing overlays. At the same time, selfish neigh-

bor selection guarantees download synchronization. Finally, we show how to modify our

swarming protocol to allow it to accommodate upload-selfish users.

In the context of service provisioning for Content Distribution Networks (CDNs) and

service deployment we study the setting, in which end-users selfishly select how to connect

to a server. We present the design and evaluation of a scalable and distributed protocol

that enables a provider to dynamically determine the number and location of servers for op-

timal delivery of content or services to end-user. This protocol relies on the fact that users

select their servers selfishly. Our distributed protocol migrates servers, based only on local

topological knowledge and end-user demand, to leverage recent advances in virtualization

technologies. The local topology is easily obtained through standard topology discovery

protocols,1 while end-user demand can be achieved through measuring locally the outgo-

ing traffic at each server. We prove that our protocol converges to a stable deployment

within a small number of migrations, while the size of the topology that is utilized regu-

lates the trade-off between scalability and performance. Our experimental results under a

range of network topologies and workloads suggest that the performance of our protocol

is comparable to that of the optimal but unscalable centralized deployment. These results

also show that the degradation of performance, due to imperfect redirection of users to

migrated servers, is minimal.

1Skitter, http://www.caida.org/tools/measurement/skitter or DIMES, http://www.netdimes.org/

6

In this thesis we do not dwell on the negatives, but instead focus on the potential

benefits from selfish neighbor selection. These include the obvious benefits to selfish users,

and, more surprisingly, to the network as a whole. Indeed, we confirm that selfishness is

not a problem, as much as inaction, indifference, or näıve reaction.

1.3 Thesis Organization

In Chapter 2 we introduce SNS and experimentally examine the performance characteristics

of overlays, composed of selfish users. In Chapter 3 we present the design and evaluation of

the EGOIST overlay routing system. Next, in Chapter 4 we present our swarming protocol

for assisting n-broadcasting applications, based on selfish neighbor selection primitives. In

Chapter 5 we present the design and evaluation of our distributed server migration protocol.

Chapter 6 offers concluding remarks and outlines promising future research directions.

7

Chapter 2

Selfish Neighbor Selection

Neighbor selection is a key problem for a broad class of distributed services and applications

that run atop large, amorphous overlay networks of autonomous nodes (we use the terms

node, user and agent interchangeably). For example, in an overlay routing or a peer-to-peer

(P2P) file sharing network, a new node must first select a relatively small number of direct

neighbors before it can connect to the service.

In these systems, and in many others, it is clear that the impact of the neighbor selec-

tion strategy is significant, as evidenced by the emerging body of work exploring network

creation games and characterizing the equilibria of these games. To date, however, the

bulk of the work and main results in this area have centered on games where edges are

undirected, access costs are based on hop-counts, and nodes have potentially unbounded

degrees [34, 23, 99, 29]. While this existing body of work is extremely helpful for laying a

theoretical foundation and for building intuition, it is not clear how or whether the guid-

ance provided by this prior work generalizes to situations of practical interest, in which

underlying assumptions in these prior studies are not satisfied. Another aspect not consid-

ered in previous work is the consideration of settings in which some or even most players

do not play optimally – a setting which we believe to be typical. Interesting questions

along these lines include an assessment of the advantage to a player from employing an

optimizing strategy, when most other players do not, or more broadly, whether employing

an optimizing strategy by a relatively small number of players could be enough to achieve

global efficiencies.

In this Chapter, we formulate and answer such questions using a combination of mod-

8

eling, analysis, and extensive simulations using synthetic and real datasets. Our starting

point is the definition of a network creation game that is better suited for settings of P2P

and overlay routing applications – settings that necessitate the relaxation and/or modifica-

tion of some of the central modeling assumptions of prior work. In that regard, the central

aspects of our model are:

(1) Bounded Degree: Most protocols used for implementing overlay routing or content shar-

ing impose hard constraints on the maximum number of overlay neighbors. For example,

in popular versions of BitTorrent a client may select up to 35 nodes from a neighbors’ list

provided by the Tracker of a particular torrent file [13].1 In overlay routing systems [73],

the number of immediate nodes has to be kept small so as to reduce the monitoring and

reporting overhead imposed by the link-state routing protocol implemented at the overlay

layer. Hard constraints on the number of first hop neighbors are also imposed in most

peer-to-peer systems to address scalability issues, up-link and down-link fragmentation,

and CPU consumption due to contention [114]. Motivated by these systems, we explicitly

model such hard constraints on node degrees. Notice that in the prior studies cited above,

node degrees were implicitly bounded (as opposed to explicitly constrained) by virtue of the

trade-off between the additional cost of setting up more links and the decreased commu-

nication distance achieved through the addition of new links. We also note that some of

these earlier network creation games were proposed in the context of physical communica-

tion networks. In such networks, the cost of acquiring a link is instrumental to the design

and operation of a critical infrastructure. Such concerns do not apply in the case of overlay

networks such as those we consider in this paper. Thus, we argue that models in which

node degrees are outcomes of an underlying optimization process do not faithfully reflect

the realities of systems and applications we consider.

1KaZaA and Pasturage include neighbor constraints at multiple levels: ordinary nodes (ON) may select
up to 5 super nodes (SN) from a larger list for establishing initial negotiation and then maintain connection
with only one of these; SNs may connect to at most 50 other SNs (from a typical population of SNs ranging
between 25K and 40K [71]) and accept between 55 to 70 (or 100 to 160) children ONs (depending on their
provisioning). New versions of Gnutella and Limewire involve a similar two-level architecture [110] with
associated constraints. Similarly, DHT routing protocols like Chord [109] impose hard constraints on the
number of first hop neighbors.

9

(2) Directed Edges: Another important consideration in the settings we envision for our

work relates to link directionality. Prior models have generally assumed bi-directional

(undirected) links. This is an acceptable assumption that fits naturally with the unbounded

node degree assumption for models that target physical telecommunication networks be-

cause actual wire-line communication links are almost exclusively bidirectional. In overlay

settings we consider, this assumption needs to be relaxed since the fact that node v for-

wards traffic or requests to node u does not mean that node u may also forward traffic or

requests to v.

(3) Non-uniform preference vectors: In our model, we supply each node with a vector

that captures its local preference for all other destinations. In overlay routing such pref-

erence may capture the percentage of locally generated traffic that a node routes to each

destination, and then the aggregation of all preference vectors would amount to a ori-

gin/destination traffic matrix. In P2P overlays such preference may amount to speculations

from the local node about the quality of, or interest in, the content held by other nodes.

Other considerations may also include subjective criteria such as the perceived capacity of

the node, its geographic location, or its availability profile.

(4) Representative distance functions: Although the initial models presented in this pa-

per use assumptions made in several previous studies regarding equal unitary pair-wise

distances for all one-hop overlay links, later in this paper, we relax this assumption by con-

sidering more representative distance models. As was done in [23], we consider synthetic

distances obtained using topology generators. In addition, we consider more realistic set-

tings in which topologies are obtained from real Internet settings – namely the PlanetLab

overlay and actual AS-level maps – and in which associated distances are obtained through

real measurements in these settings.

Our first technical contribution within this model is to express a node’s “best response”

wiring strategy as a k-median problem on asymmetric distance [5], and use this observation

to obtain pure Nash equilibria through iterative best response walks via local search. We

then experimentally investigate the properties of stable wirings on synthetic topologies

10

as we vary two key properties of interest: (i) the edge density of the graph and (ii) the

non-uniformity of popularity of nodes within the topology.

Our experimental results then consider neighbor selection problems motivated and

driven by measurements of PlanetLab and the AS-level topology with a realistic access

cost model. Here, we find that selfish nodes can reap substantial performance benefits

when connecting to overlay networks composed of non-selfish nodes. On the other hand,

in overlays that are dominated by selfish nodes, the resulting stable wirings are already so

highly optimized that even non-selfish newcomers can extract near-optimal performance

through heuristic wiring strategies. We conclude the Chapter by providing evidence in

support of the potential benefits SNS may offer to overlay applications with different spec-

ifications and routing policies.

2.1 Background

Selfish neighbor selection for overlay networks was first mentioned by Feigenbaum and

Shenker [35]. Fabrikant et al. [34] studied an unconstrained undirected version of the

problem in which nodes can buy as many links as they want at a fixed per link price α.

Chun et al. [23] studied experimental an extended version of the problem in which links

prices need not be the same. Rocha et al. [99] is in the same spirit. In practice, however,

important constraints on node degrees, not captured by these models, lead to richer games

with substantively and fundamentally different outcomes.

Bindal et al. [13] propose a locality-enhanced version of BitTorrent in which only m

out of the total k neighbors of a BitTorrent node are allowed to belong to a different

ISP. Although the capacitated selection of neighbors is a central aspect of this work, their

treatment is fundamentally different from ours in several regards: (i) there’s no contention

between selfish peers, (ii) the minimization objective is on inter-AS traffic therefore only

two levels of communication distance are modeled, intra and inter-AS (we use finer topo-

logical information that includes exact inter-peer distances), and (iii) their “reachability”

constraint amounts to asking for a similar level of data availability as the original one under

11

the standard random neighbor selection mechanism of BitTorrent (we have fundamentally

different reachability constraints, expressed as general preference functions over the po-

tential overlay neighbors). Another recent work on neighbor selection is from Godfrey et

al. [41]. It aims at selecting neighbors in a way that minimizes the effects of node churn

(appearance of new nodes, graceful leaves and sudden malfunctions), but unlike our work,

it does not focus on the impact of competing selfish nodes.

2.2 Definitions

Let V = {v1, v2, . . . , vn} denote a set of nodes. Associated with node vi is a preference

vector pi = {pi1, pi2, . . . , pii−1, pii+1, . . . , pin}, where pij ∈ [0, 1] denotes the preference of

vi for vj , i 6= j:
∑n

j=1,j 6=i pij = 1. Node vi establishes a wiring si = {vi1 , vi2 , . . . , viki
} by

creating links to ki other nodes (we will use the terms link, wire, and edge interchangeably).

Edges are directed and weighted, thus e = (vi, vj) can only be crossed in the direction from

vi to vj , and has cost dij (dji 6= dij in the general case). Let S = {s1, s2, . . . , sn} denote

a global wiring between the nodes of V and let dS(vi, vj) denote the cost of a shortest

directed path between vi and vj over this global wiring; dS(vi, vj) = M ≫ n if there’s

no directed path connecting the two nodes.2 For the overlay networks discussed here,

the above definition of cost amounts to the incurred end-to-end delay when performing

shortest-path routing along the overlay topology S, whose direct links have weights that

capture the delay of crossing the underlying IP layer path that goes from the one end of

the overlay link to the other. Let Ci(S) denote the cost of vi under the global wiring S,

defined as the weighted (by preference) summation of its distances to all other nodes, i.e.,

Ci(S) =
∑n

j=1,j 6=i pij · dS(vi, vj).

Definition 1 (The SNS Game) The selfish neighbor selection game is defined by the tuple

〈V, {Si}, {Ci}〉, where:

• V is the set of n players, which in this case are the nodes.

2If the links are also annotated, then M ≫ maxi,j dij .

12

• {Si} is the set of strategies available to the individual players. Si is the set of strategies

available to vi. Strategies correspond to wirings and, thus, player vi has
(

n−1
ki

)

possible

strategies si ∈ Si.

• {Ci} is the set of cost functions for the individual players. The cost of player vi under

an outcome S, which in this case is a global wiring, is Ci(S).

The above definition amounts to a local connection [86], non-cooperative, non-zero sum,

n-player game [89]. Let S−i = S − {si} denote the residual wiring obtained from S by

taking away vi’s outgoing links.

Definition 2 (Best Response) Given a residual wiring S−i, a best response for node vi is

a wiring si ∈ Si such that Ci(S−i + {si}) ≤ Ci(S−i + {s′i}), ∀s
′
i 6= si.

Definition 3 (Stable Wiring) A global wiring S is stable iff it is composed of individual

wirings that are best responses.

Therefore stable wirings are pure Nash equilibria of the SNS game, i.e., they have the

property that no node can re-wire unilaterally and reduce its cost. Fundamentally different

is the work on Selfish Routing [94, 100], in which the network topology is part of the input

to the game, and selfish source routing is the outcome. In a way, this is the inverse of

our work, in which network-based (shortest-path) routing is an input of the game, and

topology is the outcome. Selfish Routing is also based on source routing which is either

not provided in most system implementations, or it is difficult to perform well in systems

with high churn like peer-to-peer systems. Moreover, the proposed game is not a congestion

game (thus it is not a potential game [86]), as the cost of the link is not dependent on the

number of the nodes that use it.

2.3 Deriving Stable Wirings

In this section we start with a description of a general method for obtaining the best

response of a node under general overlay link weights, which we then refine for the case

that link weights are uniform. Next, we describe the iterative best response algorithm

that we use for obtaining stable wirings. We conclude this section by presenting a simple

13

lower bound for the social cost of a socially optimal solution — we later use this bound to

evaluate the social cost of stable wirings.

2.3.1 The Best-Response of a node

A wiring for a node vi can be defined using n − 1 binary unknowns Yl, 1 ≤ l ≤ n, l 6= i:

Yl = 1 iff vi wires to vl, and 0 otherwise. Define also the binary unknowns Xlj : Xlj = 1

iff vi has vl as a first-hop neighbor on a shortest path to vj . A best response for vi under

residual wiring S−i can be obtained by solving the following Integer Linear Program (ILP):

Minimize:

Ci(S−i, X) =
n
∑

j=1,j 6=i

pij

n
∑

l=1,l 6=i

Xlj · (dil + dS−i
(vl, vj)) (2.1)

Subject to:

n
∑

l=1,l 6=i

Xlj = 1, ∀j 6= i and
n
∑

l=1,l 6=i

Yl = ki and Xlj ≤ Yl,∀l, j 6= i, (2.2)

where dil is the cost of a wire from vi to vl, and dS−i
(vl, vj) is the cost of a shortest path

from vl to vj over the wiring S−i.

2.3.2 Connections between SNS Game and Facility Location

When all the wires have the same unitary weight, then the distances dS are essentially

“hop counts”, in which case there is an interesting relationship between finding a node’s

best-response wiring and solving a k-median problem on asymmetric distance [5, 83]3. The

latter is defined as follows:

Definition 4 (Asymmetric k-median) Given a set of nodes V ′, weight’s wj ∀vj ∈ V ′, and

an asymmetric distance function dS′ (meaning that in general dS′(v, u) 6= dS′(u, v)), select

up to k nodes to act as medians so as to minimize C(V ′, k, w), defined as follows:

C(V ′, k, w) =
∑

∀vj∈V ′

wj · dS′(vj ,m(vj)),

where m(vj) is the median that is closest to vj.

3For the definition of the k-median problem see Section 5.1.

14

Proposition 1 The best response of node vi to S−i under uniform link weights (dij =

1,∀i, j ∈ V) can be obtained by solving an asymmetric k-median problem, in which:

1. V ′ = V − {vi}

2. k = ki

3. wj = pij, vj ∈ V ′

4. dS′(u,w) = dS−i
(w, u), u,w ∈ V ′,

Proof: Let si denote vi’s response to S−i. The resulting cost will be:

Ci(S−i + {si}) =
∑

vj∈V ′

pijdS−i+{si}(vi, vj)

=
∑

vj∈V ′

pij(dS−i+{si}(vi,m(vj)) + dS−i+{si}(m(vj), vj))

=
∑

vj∈V ′

pijdS−i+{si}(vi,m(vj)) +
∑

vj∈V ′

pijdS−i+{si}(m(vj), vj)

=
∑

vj∈V ′

pij +
∑

vj∈V ′

pijdS−i+{si}(m(vj), vj)

=
∑

vj∈V ′

wj +
∑

vj∈V ′

wjdS−i
(m(vj), vj)

= c+
∑

vj∈V ′

wjdS′(vj ,m(vj))

(2.3)

where c is a constant and m(vj) is vi’s next-hop neighbor on a shortest path to vj under the

global wiring S−i + {si}. The transition from the third to the fourth line of Equation (2.3)

relies on the fact that all distances to first hop neighbors are equal to 1 under hop-count

distance. Obtaining the best response requires minimizing Ci(S−i + {si}). Equation (2.3)

shows that this is equivalent to minimizing
∑

vj∈V ′ wjdS′(vj ,m(vj)), which is exactly the

objective function of the above mentioned asymmetric k-median problem.

Proposition 1 suggests that vi’s best response is to wire to the ki medians of a distance

function obtained by reversing the end-to-end distances of the residual wiring S−i. Since

even the metric version of k-median is NP-hard [83], so is its asymmetric version, and

through Proposition 1 the best response of the SNS game as well. For the metric version

of the k-median there exist several algorithms that provide constant-factor approximations

15

of an exact solution [21, 54, 6, 49]. These guarantees do not hold for the asymmetric case.

For the asymmetric k-median, Lin and Vitter [72] have given a bicriterion approximation

that blows up the number of used medians by an O(log n) multiplicative factor to provide

a cost that exceeds the optimal one by an additive factor. Archer [5] has shown that this

is the best attainable approximation for this problem unless NP ⊆ DTIME(nO(log log n)).

Despite this negative result, simple heuristics like the p-swapping local search of Arya

et al. [6] perform typically very well on the directed k-median (as also confirmed by our

numerical results later in this paper).

2.3.3 Equilibrium Wirings through Iterative Best Response

Definition 5 (Iterative best response) Given an initial global wiring S(0), start an iterative

procedure where at the m-th iteration the nodes line up according to their identifiers (i.e.,

v1, v2, . . .), and perform the following steps:

1. vi computes its best response s
(m)
i to S

(m,i−1)
−i , after vi−1 and before vi+1

2. S(m,i) = S
(m,i−1)
−i + {s

(m)
i }

S(m,i−1) is the global wiring at iteration m (after vi−1’s best response and prior to vi’s

best response); S
(m,i−1)
−i is the corresponding residual wiring with respect to vi (S

(m,0)
−1 =

S(m−1,n) − {s
(m−1)
1 } and S

(1,0)
−1 = S(0) − {s

(0)
1 }). The iterative best response search stops

and returns S = S(M) when at iteration M: s
(M)
i = s

(M−1)
i , ∀vi ∈ V , i.e., when no node

can profit by re-wiring.

We use the iterative best response method to find stable wirings. In Section 2.4 where we

present synthetic results based on hop-count distance we take advantage of the connection

established through Proposition 2.3, and employ exact (ILP) and approximate (p-swapping

local search [6]) solutions for the directed k-median in order to obtain best responses. In

Section 2.5 we employ several real topologies in which distances are not hop-count and,

therefore, employ the ILP formulation of Section 2.3.1 in order to obtain best responses.

16

2.3.4 A Lower Bound on the Cost of a Socially Optimal Wiring

Let S∗ denote a socially optimal (SO) wiring, i.e., a global wiring that minimizes the social

cost C(S) =
∑

∀vi∈V Ci(S). Let SU,i denote the utopian wiring for vi, i.e., the global wiring

that minimizes Ci(S) over all possible global wirings S (this should not be confused with

a best response si that minimizes Ci(S−i + {si}) granted a particular residual wiring S−i).

We can obtain a lower bound L on C(S∗) by summing the costs of the individual utopian

solutions, i.e., L =
∑

∀vi∈V Ci(S
U,i). We describe SU,i for some interesting cases below.

Before that, let oj
−i denote the node with the jth largest out-degree, excluding vi — let

this degree be denoted k(oj
−i).

Uniform node preference: When pi = p = {1/n, . . . , 1/n}, ∀vi ∈ V , it is easy to

see that SU,i is a directed tree with downward pointing edges, where: (1) vi is the root;

(2) vi connects to nodes o1−i, o
2
−i, . . . , o

ki

−i at level 1; (3) these nodes connect to the next

l1 =
∑ki

j=1 k(o
j
−i) nodes with highest degrees (oki+1

−i , oki+2
−i , . . . , oki+l1

−i) at level 2, and so on.

Uniform out-degree: When ki = k, ∀vi ∈ V , then SU,i is a directed regular k-ary tree

with downward pointing edges, where (1) vi is the root; (2) level l includes kl nodes whose

preference according to pi ranks from
(

∑l−1
l′=1 k

l′
)

+ 1 to
∑l

l′=1 k
l′ .

Uniform preference and out-degree: Combining the previous two cases results in a

regular k-ary tree with l levels such that:

l
∑

l′=1

kl′ ≥ n− 1 ⇒ k
kl − 1

k − 1
≥ n− 1 ⇒ l ≥ logk

[

(n− 1)(k − 1)

k
+ 1

]

The resulting (common) cost for all vi ∈ V is:

Ci(S
U,i) =

(

l
∑

l′=1

lkl′

)

− l

(

l
∑

l′=1

kl′ − (n− 1)

)

=
l(k − 1)(n(k − 1) + 1) − k(kl − 1)

(k − 1)2

(2.4)

In Section 2.4.1, we use the aforementioned bound to show numerically that the social cost

of stable wirings is close to the social cost of socially optimal wirings.

17

2.4 Characterization of Stable Wirings

In this section we assume that establishing a direct (overlay) link between any two nodes

incurs unit cost and, therefore, the cost between any pair of nodes equals the number of

hops along any shortest, directed path that connects these nodes at the overlay layer. Our

goal will be to characterize the structure of stable wirings with respect to two key scaling

parameters of interest. The first parameter, α ∈ [0, 1], reflects the non-uniformity (skew)

in the popularity of different destinations. We create such non-uniformity by adopting

a generalized power-law profile for node popularity with skewness α, meaning that the

popularity of the ith most popular node is qi = Λ/iα, where Λ = (
∑n

k=1
1

kα)−1. We

construct the preference vector pi of node vi by setting pij = qj/(1− qi),∀vj ∈ V : vj 6= vi.

High values of α mean that there are few highly-popular destinations among all the nodes,

whereas low values mean that most destinations are equally popular.

The second parameter, β ∈ [0, 1], determines the link density of a regular graph, which

relates to the fanout (out-degree) of each node as follows: k =
⌈

nβ
⌉

.

For a given pair (α, β) we obtain the corresponding stable wiring by using the iterative

best response method of Section 2.3.3, where the best response amounts to a solution of a

directed k-median problem. Here, it is worthwhile to notice that different node orderings

in the iterative best response search may lead to different stable wirings.4 We have found

that different stable wirings perform approximately the same and therefore it is of marginal

value to look at the structure of different individual ones.

2.4.1 Social Cost of Stable Wirings

We first consider the quality of stable wirings compared to the utopian wirings described

in the previous section. As can be seen for the examples depicted in Figure 2·1 (a) and

(b), the gap between the stable solution and the Utopian solution is small, and this result

holds across a wide range of settings for α and β, and for various values of n for which

4See [63] for a related discussion based on a different object replication game.

18

 0.8
 0.6

 0.4
 0.2

 0.9

 0.6
 0.4

 0

 15
 20
 25
 30
 35
 40
 45

C(S)

n=15 nodes

STABLE (ILP)
UTOPIANC(S)

β
α

 0.8
 0.6

 0.4
 0.2

 0.9

 0.6
 0.4

 0

 40
 60
 80

 100
 120
 140
 160
 180

C(S)

n=50 nodes

STABLE (ILP)
UTOPIANC(S)

β
α

(a) (b)

 0.8
 0.6

 0.4
 0.2

 0.9

 0.6
 0.4

 0

 15
 20
 25
 30
 35
 40
 45

C(S)

n=15 nodes

C(S)

STABLE (ILP)
STABLE (ǫ-ILP)

STABLE (LS)
STABLE (ǫ-LS)

β
α

 0.8
 0.6

 0.4
 0.2

 0.9

 0.6
 0.4

 0

 1
 1.5

 2
 2.5

 3
 3.5

Average Path Length

n=15 nodes

Average Path Length

β
α

(c) (d)

Figure 2·1: (a): Comparison of the social cost C(S) of stable wirings to a
lower bound of the cost of a socially optimal solution (the Utopian solution
of Section 2.3.4) for n = 15. Stable wirings obtained using exact best
responses based on an ILP formulation of the directed k-median problem of
Section 2.3.2. (b): same as (a) with n = 50. (c): Comparison of the social
cost C(S) of stable wirings obtained by using exact (ILP) and approximate
(LS) best response and corresponding ǫ = 5% versions. (d): Average path
length for the stable graph obtained by using exact (ILP) best response for
n = 15.

19

simulation was tractable. In terms of absolute values, the social cost decreases with both

the skew in popularity and link density. In particular, a highly-skewed popularity profile

ensures that shorter paths to the most popular destinations are realized, whereas higher

link densities reduces the average length of shortest paths, and thus the social cost as well.

Since computing exact best-response wirings is NP-hard, even under hop-count dis-

tance, it makes sense to study the performance of approximate best responses and corre-

sponding approximately stable wirings. For this purpose, we used the Local Search (LS)

heuristics described in [6] to solve the k-median problem, which yields the best-response

wiring by virtue of Proposition 1. We also considered ǫ-stable versions of the problem in

which nodes do not re-wire unless they can reduce their current cost by at least a multi-

plicative factor ǫ (we combined ǫ-stability with both exact (ILP) and approximate (LS)

best responses). As evident from Figure 2·1 (c), we found that ǫ-stable wirings have similar

social costs.5

To summarize, stable wirings have performance close to the socially optimal wirings.

Moreover, approximate best-response wirings can be computed fast with LS and ǫ approx-

imations.

In support to our results, we note that in a later work [59], it has been established

analytically that provably existent stable wirings are guaranteed to perform approximately

as well as socially optimal solutions under uniform node popularity. A similar conclusion is

reached in the next section (albeit experimentally) for the case of non-uniform popularity.6

2.4.2 Topology of Stable Wirings

Next, we take a more in-depth look at the stable wirings that result for given values of α

and β, as depicted in the set of graphs in Figure 2·2, where α varies from left to right and

β varies from top to bottom.

5The results in Figure 2·1 (c) were obtained for ǫ = 0.05, similar results (not shown) were obtained for
ǫ ∈ [0.01, 0.1].

6In [59] was shown that for non-uniform popularity, a Nash equilibrium may not exist, or iterative best
response walks may not lead to an equilibrium. Such observations were not made in our simulation study
(we were able to find a stable graph starting from any initial graph we tried).

20

α = 0 α = 0.4 α = 0.6 α = 0.9

β
=

0.
2

1

2

3
45

6

7

8

9

10

11
12 13

14

15

1

2

3
45

6

7

8

9

10

11
12 13

14

15

1

2

3
45

6

7

8

9

10

11
12 13

14

15

1

2

3
45

6

7

8

9

10

11
12 13

14

15

β
=

0.
4

1

2

3
45

6

7

8

9

10

11
12 13

14

15

1

2

3
45

6

7

8

9

10

11
12 13

14

15

1

2

3
45

6

7

8

9

10

11
12 13

14

15

1

2

3
45

6

7

8

9

10

11
12 13

14

15

β
=

0.
6

1

2

3
45

6

7

8

9

10

11
12 13

14

15

1

2

3
45

6

7

8

9

10

11
12 13

14

15

1

2

3
45

6

7

8

9

10

11
12 13

14

15

1

2

3
45

6

7

8

9

10

11
12 13

14

15

β
=

0.
8

1

2

3
45

6

7

8

9

10

11
12 13

14

15

1

2

3
45

6

7

8

9

10

11
12 13

14

15

1

2

3
45

6

7

8

9

10

11
12 13

14

15

1

2

3
45

6

7

8

9

10

11
12 13

14

15

Figure 2·2: Stable wiring motifs for n = 15 and different values of α and
β.

21

The first interesting finding is evident from an examination of the structures that emerge

when α = 0 (i.e., under uniform popularity – the leftmost column in the figure). Despite

the equal popularity of nodes, the resulting stable wirings do not exhibit uniform in-degree

node distributions. In particular, some nodes tend to be more desirable for other nodes.

Had the links been bidirectional, the emergence of such “hubs” could have been easily

explained, by noting that they would be serving the purpose of providing short outgoing

routes to many destinations. In our case, however, this cannot be the cause since these hubs

have many incoming links, whereas their outgoing links are just as many as for the other

nodes since all nodes have exactly k links, where k is controlled by the link density (β).

Having made sure that these hubs did not emerge due to bias in tie-breaking during the

computation of best responses, we attribute this “preferential attachment” phenomenon to

the quality rather than the quantity of outgoing links of hub nodes. In particular, the hubs

are nodes that (by coincidence) managed to position their k outgoing links in such a way

that is beneficial to others as well (despite the fact that the wiring has been decided solely

based on selfish criteria).7

Moving on to other larger values of α, where popularity is skewed, the hub creation

process becomes a mix of the aforementioned phenomenon and the inherent preference

for popular nodes. Nodes that are globally popular are natural candidates for becoming

hubs. Even with relatively low skew (α = 0.4), the most popular nodes are becoming hubs

(node with id=1 is the most popular and that with id=n is the least popular). We see

this trend consistently for all values of β, as is to be expected. But interestingly, as β

increases further, it is not simply a contiguous sequence of the most popular nodes that

end up becoming hubs! For example, in the α = 0.6, β = 0.6 case, several nodes in the

“tail” end of the popularity distribution end up becoming hubs as well, facilitating relay

shortcuts as in the uniform popularity case.

We also find that the average path length slowly increases with α for a given β (see

7It is also worth mentioning that all the stable graphs (for the same value of k) we found are isomorphic
having the structure that was proposed in [59].

22

 6
 4

 2

 8 10 12 14 16 18 20 22 24
 1

 10
 100

 1000
 10000

 100000
 1e+06

iterations

input k-regular

k
n

iterations

 6
 4

 2

 8 10 12 14 16 18 20 22 24
 1

 10
 100

 1000
 10000

 100000
 1e+06

iterations

input random

k
n

iterations

Figure 2·3: Convergence time starting from regular and random initial
graphs.

Figure 2·1 (d)). This is to be expected since nodes prefer to be closer to the most popular

nodes, and thus place less importance on the distance to much less popular nodes. Although

this reduces the newcomers’ access costs, it increases some shortest paths, and the diameter.

On a computational note, we observed that the uniform case required an exponential

number of iterations for convergence. In the first plot of Figure 2·3, we start round-robin

best-response walk from a regular (n, k)-wiring with offsets [1 : k]. All our experiments

converge to a stable wiring. We plot the lengths of walks for all (n, k)-pairs. In the second

plot of Figure 2·3, we repeat the same experiment starting from a wiring constructed as

follows: Starting from a simple directed Hamiltonian cycle, we add to every vertex k-1

random out-going links. Both experiments demonstrate lengthy and possible exponential

convergence. Moreover, the “random” wiring experiment shows large variance in the length

of convergence, especially for sparse wirings. On the other hand, in the presence of non-

uniform power-law profile with skewness α, a stable graph was found within a small number

of iterations.

2.4.3 Contsraining the In-degree: A Doubly Constrained Overlay

We next examine the effects of constraining the maximum in-degree of nodes so that they

never have more than ν incoming links, while maintaining also the constraint on the out-

degree. We can enforce this constraint by including in the definition of Ci(S) a large

23

 1
 0.8

 0.6
 0.4

 0.2

 0.9

 0.6
 0.4

 0

 25
 30
 35
 40
 45
 50
 55
 60

C(S)

STABLE (ILP)

C(S)

n = 15 nodes,β = 0.2

α
γ

Figure 2·4: The social cost C(S) of doubly capacitated stable wirings for
β = 0.2 and different α, γ.

penalty for connecting to nodes that have more than ν − 1 incoming links. We can define

a scaling factor γ for the in-degree as done previously with β for the out-degree.

In Figure 2·4, we fix the out-degree scaling parameter to β = 0.2, and present the social

cost for different values of the in-degree scaling parameter γ. Low values of γ increase the

social cost under skewed popularity profiles, as in these cases, the highly-popular nodes

quickly reach their maximum in-degree and thus, many nodes have to reach them indirectly

through multi-hop paths. Note that without in-degree constraints most nodes would access

them in a single hop by establishing a direct overlay link to them. When γ is low, e.g.,

γ = 0.2, the resulting graph looks much like a ν-regular graph. With large values of γ, i.e.,

γ approaching 1, the in-degree constraints become too loose and, thus, the corresponding

stable graphs become similar to their unconstrained counterparts.

2.5 Overlay Neighbor Selection: Best Response vs. k-Random, k-Regular,

and k-Closest

In this section we take a closer look at the performance benefits from employing best-

response wiring instead of simpler wiring strategies. We also depart from the simplistic

unit-distance model for the cost of direct links and instead use more realistic cost models on

synthetic and measured topologies. Corresponding stable wirings are obtained by using the

ILP model for a node’s best response under general distances as detailed in Section 2.3.1.

24

2.5.1 Description and Design Methodology

In Section 2.2, we defined the best response strategy for a node entering a given network.

Now, we consider two other natural alternatives. Let dX
ij denote the cost associated with

creating a direct overlay link between nodes vi and vj under a model X for end-to-end IP

layer distances. We say that a “newcomer” node vi employs a k-Closest wiring strategy

under the modelX when it establishes a wiring si such that dX
ij ≤ dX

ij′ for all vj ∈ si, vj′ 6∈ si.

We say that a newcomer node vi employs a k-Random wiring strategy when it chooses a

wiring si uniformly at random from the space of all valid wirings of cardinality ki. A

newcomer node vi that employs a k-Regular wiring strategy if it follows a pre-defined

wiring pattern, based on node identifiers, like every other node in the network.

To substantiate the benefits of best response, we consider the initial graph awaiting a

“newcomer” upon its arrival. We assume that this initial graph has resulted from having

its constituent nodes apply a specific wiring strategy.8 We refer to an instance of an n

node graph for which each of the n nodes employed a k-Closest strategy as a k-Closest

graph, and attribute similar meanings to a k-Random graph, a k-Regular graph and a

Best-Response (BR) graph.

2.5.2 Description of the Datasets

In this section we describe the IP-layer end-to-end distance models X from which we obtain

the dX
ij ’s that are used as weights for direct overlay links between nodes vi and vj .

9 The

following three datasets are used:

BRITE: The first dataset is synthetically generated from the BRITE topology gener-

ator [81] following a Barabási-Albert [8] model with N = 1000 nodes and incremental

growth parameter µ = 2. The nodes were placed on the plane according to a heavy tail

model that creates high density clusters. Based on the observation that the delay between

8To guarantee connectivity, nodes that participate in a k-Random or a k-Closest graph, donate one link
in order to create a ring. We note that a ring is a feature common to many other overlays, such as the
Chord DHT [109] that is abstracted by the k-Regular graph.

9Overlay nodes that do not have a direct link communicate through a shortest-path on the overlay
topology.

25

two nodes in high speed networks is highly correlated to their physical distance [122], we

assigned weights on the links at the physical layer by calculating the Euclidean distance

between their two end nodes.

PlanetLab: PlanetLab is an overlay testbed network of approximately 700 nodes in more

than 300 academic, industrial, and government sites around the world. We used a publicly

available dataset10 containing delays obtained using pings between all pairs of PlanetLab

sites (inter-site delays are more representative than inter-node delays for overlay applica-

tions).

AS-level map: As a third dataset, we use the relation-based AS topology map of the

Internet from December 2001 measurements11. This map was constructed by using the

measurement methodology described in [112]. The dataset includes two kinds of relation-

ships between ASes: (1) customer-provider: The customer is typically a smaller AS that

pays a larger AS for access to the rest of the Internet. The provider may, in turn, be a

customer of an even larger AS. A customer-provider relationship is modeled using a di-

rected link from the provider to the customer. (2) Peer-Peer: Peer ASes are typically of

comparable size and have mutual agreements for carrying each other’s traffic. Peer-peer

relationships are modeled using undirected links. Overall the AS-level map includes 12779

unique ASes, of which 1076 are peers (joined by at least one peer-peer link), and the re-

maining 11703 are customers. These ASes are connected through 26387 directed and 1336

undirected links. We choose to present results based on the largest connected component

of the dataset, which we found to include a substantial part of the total AS topology at

the peer level: 497 peer ASes connected with 1012 links (we verified that this component

contains all the top-20 larger peer ASes reported in [112]). The ASes that participate in

this graph are responsible for routing the majority of the Internet traffic. We measured the

hop-count distance between pairs of overlay nodes and used it as weight for a direct link

between these two nodes at the overlay layer. To model the characteristics of IP routing

10http://ping.ececs.uc.edu/ping, accessed on July 10, 2006.
11http://www.cc.gatech.edu/∼mihail/ASdata.html

26

(unique path), we broke ties by assigning each edge i a weight 1+ǫi where ǫi is a zero-mean

random noise as suggested in [58].

2.5.3 Comparison of Different Graphs

Using as input the weighted graphs from our three datasets, we obtained the social costs

resulting from applying the various wiring strategies under consideration, for different

values of β. The Best-Response (BR) graph (resulting from having all nodes apply the

best-response wiring strategy) was by far the most optimized wiring, thus providing a

lower-bound for the simpler k-Random and k-Closest strategies. Table 2.1 summarizes

our results by providing the ratios of the social costs of the simple wiring strategies (k-

Random, k-Closest, k-Regular) to that of the BR wiring. These results suggest that the

premium provided by BR is highest for lower link densities (i.e., when β is small). This is

an intuitive result since in denser graphs, there is less of an opportunity for optimization.

On a technical note, none of the k-Random, k-Closest or k-Regular graphs we created

was stable. On a computational note, all the stable graphs were found within a small

number of iterations. Moreover, we observed that, for all the input datasets, and the given

node selection process, the in-degree distribution of stable graphs was quite uniform, thus

the load to relay traffic is expected to be quite balanced.

The results in this section give us a baseline for the efficiency of the wirings that result

from the adoption by all nodes in the graph of the same strategy (be it k-Random, k-

Closest, k-Regular or BR). This sets up the stage for our next set of questions: Given such

an initial wiring, what is the marginal utility to a newcomer from executing each one of

the three wiring strategies under consideration?

2.5.4 The Value of Best Response

Given an initial wiring created (as described above) by having n overlay nodes follow one of

our three wiring strategies, we quantify the benefit to a “newcomer” (i.e., the n+1’st node)

from choosing its neighbors using one of the three neighbor selection strategies. Twelve

27

β = 0.1 β = 0.2 β = 0.4 β = 0.6 β = 0.8

k
-R

a
n
d
o
m

/
B

R

k
-R

eg
u
la

r/
B

R

k
-C

lo
se

st
/
B

R

k
-R

a
n
d
o
m

/
B

R

k
-R

eg
u
la

r/
B

R

k
-C

lo
se

st
/
B

R

k
-R

a
n
d
o
m

/
B

R

k
-R

eg
u
la

r/
B

R

k
-C

lo
se

st
/
B

R

k
-R

a
n
d
o
m

/
B

R

k
-R

eg
u
la

r/
B

R

k
-C

lo
se

st
/
B

R

k
-R

a
n
d
o
m

/
B

R

k
-R

eg
u
la

r/
B

R

k
-C

lo
se

st
/
B

R

BRITE 1.44 3.61 1.53 1.52 2.31 1.84 1.38 1.50 2.07 1.28 1.11 1.46 1.09 1.03 1.16

PlanetLab 2.23 3.84 1.48 1.75 2.74 1.23 1.37 2.10 1.13 1.09 1.41 1.16 1.04 1.18 1.06

AS-level 2.04 4.78 1.90 1.83 2.86 1.61 1.58 2.37 1.39 1.24 1.10 1.23 1.12 1.12 1.16

Table 2.1: Social cost ratios between simple wiring strategies (k-Random, k-Regular, k-Closest) and Best
Response.

28

possibilities exist for applying strategy S1 over a wiring obtained using S2, where S1 and

S2 could be k-Random, k-Closest, k-Regular or BR. We use c(w|G(n)) to denote the cost

of a newcomer using wiring strategy w on a pre-existing graph G of n nodes, or simply

c(w) when the graph G is understood. For example, c(k-Random — k-Closest) denotes

the cost of a newcomer using the k-Random wiring strategy to connect to a graph of n

nodes, each of which employed the k-Closest wiring strategy to construct the initial graph

(to which the newcomer will connect).

In the results presented below, we set n = 50 and evaluate the performance for 200

newcomers on the BRITE and AS dataset and 100 newcomers for the PlanetLab dataset

(which is smaller). Our main results are shown in Figure 2·5, where each column corre-

sponds to an underlying graph model, and each row corresponds to a strategy employed

by the n newcomers. Within each plot, we vary the link density β along the x-axis, and

plot the cost ratio of the n+ 1’st arrival for a given strategy versus the cost of the n+ 1’st

arrival if it were to use BR.

Connecting to a k-Random Graph: The plots in the top row of Figure 2·5 show the

case in which the first n arrivals use k-Random, and thus the underlying graph is poorly

optimized.

With such an initial graph, the k-Random wiring is a poor choice for the (n+1)st node,

as it could lead to significantly higher costs (anywhere from 30% for the BRITE and AS

datasets to 60% for the PlanetLab dataset) when compared to using BR. This performance

gap closes, as one would expect, when β (and therefore k) becomes large. In fact this trend

holds in all cases because finding a closer approximation to BR is easier when each node

has more links — and therefore ample opportunity to make good connections, even when

using simple strategies. The performance of k-Regular wiring is similar to the k-Random

one, as the identifiers are randomly assigned.

Using the k-Closest wiring, on the other hand, turns out to be a very reasonable choice,

as it achieves a cost comparable to that achieved by BR (typically within 10% with small

exceptions for the BRITE and PlanetLab datasets under low link densities). This find-

29

ing suggests that in poorly optimized random graphs, simply connecting to your nearby

neighbors (at low cost), is a good rule of thumb, especially when edge density is high.

Connecting to a k-Regular Graph: The plots in the second row of Figure 2·5 show

the case in which the first n arrivals use k-Regular, and thus the underlying graph is a

structured one, where each node follows the same wiring pattern. Here we see again that

a BR wirings pays off. The performance of k-Closest and k-Random improve as the graph

becomes denser. k-Regular turns out to be a the worst choice12 because structured graphs

seem to eliminate the number of shortcuts.

Connecting to a k-Closest Graph: The plots in the third row of Figure 2·5 show

the case in which the first n arrivals use k-Closest, and thus the underlying graph consists

mostly of local edges with few shortcuts. Here we see that it is considerably more important

for newcomers to behave strategically. For example, on the BRITE topology, näıvely using

k-Closest is a poor choice that perpetuates the lack of shortcuts in the underlying graph

to the point that even using k-Random or k-Closest turns out to be a better choice!

In the other topologies, k-Closest, k-Random, and k-Regular are comparable, and the

improvement in quality relative to BR as β increases is much more modest.

One conclusion from the results we obtained above for connection strategies to the

k-Random, k-Regular (as we will elaborate next) and k-Closest graphs is of particular

importance for P2P applications. In a P2P network, nodes pick neighbors randomly from

the list provided to them by a bootstrap server (i.e., the initial graph to which a newcomer

would connect is a k-Random or a k-Regular graph). Under such circumstances, it pays to

“cheat”, by pinging the possible neighbors and connecting to the k-Closest ones. However,

if the constituent nodes in the initial graph also cheat, (i.e., the initial graph to which a

newcomer would connect is a k-Closest graph), then it does not pay to cheat; it may even

cost!.

Connecting to a Stable Graph: Finally, the plots in the bottom row of Figure 2·5

12Note also that the range on values in the y-axis that represent the newcomer’s cost ratio, is higher than
before.

30

BRITE PlanetLab AS-level

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 0 0.2 0.4 0.6 0.8 1

ne
w

co
m

er
’s

 c
os

t r
at

io

on a k-Random graph with n nodes

c(k-Random)/c(BR)
c(k-Regular)/c(BR)
c(k-Closest)/c(BR)

β

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 0 0.2 0.4 0.6 0.8 1

ne
w

co
m

er
’s

 c
os

t r
at

io

on a k-Random graph with n nodes

c(k-Random)/c(BR)
c(k-Regular)/c(BR)
c(k-Closest)/c(BR)

β

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 0 0.2 0.4 0.6 0.8 1

ne
w

co
m

er
’s

 c
os

t r
at

io

on a k-Random graph with n nodes

c(k-Random)/c(BR)
c(k-Regular)/c(BR)
c(k-Closest)/c(BR)

β

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6

 0 0.2 0.4 0.6 0.8 1

ne
w

co
m

er
’s

 c
os

t r
at

io

on a k-Regular graph with n nodes

c(k-Random)/c(BR)
c(k-Regular)/c(BR)
c(k-Closest)/c(BR)

β

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6

 0 0.2 0.4 0.6 0.8 1

ne
w

co
m

er
’s

 c
os

t r
at

io

on a k-Regular graph with n nodes

c(k-Random)/c(BR)
c(k-Regular)/c(BR)
c(k-Closest)/c(BR)

β

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6

 0 0.2 0.4 0.6 0.8 1

ne
w

co
m

er
’s

 c
os

t r
at

io

on a k-Regular graph with n nodes

c(k-Random)/c(BR)
c(k-Regular)/c(BR)
c(k-Closest)/c(BR)

β

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 0 0.2 0.4 0.6 0.8 1

ne
w

co
m

er
’s

 c
os

t r
at

io

on a k-Closest graph with n nodes

c(k-Random)/c(BR)
c(k-Regular)/c(BR)
c(k-Closest)/c(BR)

β

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 0 0.2 0.4 0.6 0.8 1

ne
w

co
m

er
’s

 c
os

t r
at

io

on a k-Closest graph with n nodes

c(k-Random)/c(BR)
c(k-Regular)/c(BR)
c(k-Closest)/c(BR)

β

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 0 0.2 0.4 0.6 0.8 1

ne
w

co
m

er
’s

 c
os

t r
at

io

on a k-Closest graph with n nodes

c(k-Random)/c(BR)
c(k-Regular)/c(BR)
c(k-Closest)/c(BR)

β

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 0 0.2 0.4 0.6 0.8 1

ne
w

co
m

er
’s

 c
os

t r
at

io

on a Best Response graph with n nodes

c(k-Random)/c(BR)
c(k-Regular)/c(BR)
c(k-Closest)/c(BR)

β

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 0 0.2 0.4 0.6 0.8 1

ne
w

co
m

er
’s

 c
os

t r
at

io

on a Best Response graph with n nodes

c(k-Random)/c(BR)
c(k-Regular)/c(BR)
c(k-Closest)/c(BR)

β

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 0 0.2 0.4 0.6 0.8 1

ne
w

co
m

er
’s

 c
os

t r
at

io

on a Best Response graph with n nodes

c(k-Random)/c(BR)
c(k-Regular)/c(BR)
c(k-Closest)/c(BR)

β

Figure 2·5: The cost ratio between simple wiring (k-Random, k-Regular
or k-Closest) and BR wiring for a newcomer node that connects to a pre-
existing network of n nodes that was wired using k-Random, k-Regular, k-
Closest, or BR. We present the 25-, 50-, 75-quartiles for the aforementioned
ratios using three different data sets (BRITE, PlanetLab, AS-level map) for
obtaining the costs of establishing direct links.

31

show the case in which the first n arrivals use BR, and thus the underlying graph ends

up being highly optimized, prior to the arrival of newcomers. In this case, the graph is

so much optimized for the newcomer that any reasonable strategy might well have good

performance. Surprisingly, while the k-Closest strategy does indeed perform well for the

newcomer across the three topologies, the alternative strategies of k-Random and k-Regular

do not. This seemingly odd result could be explained by noting that given the very low

overall costs between nodes in the optimized initial graph, the cost to the newcomer from

selecting its own neighbors (as opposed to the cost of reaching all nodes in the graph) could

not be ignored. A poor choice of neighbors could backfire.13

General Observation: In conclusion, we find common trends across the three topologies

with respect to strategic neighbor selection behavior. At the two extremes where the

other players are playing completely at random or completely selfishly (top and bottom

rows, respectively), the underlying graphs are either too poorly constructed, or too well

constructed, for an uninformed newcomer to be at a significant disadvantage. In either

of these two situations, the näıve strategy of k-Closest is generally competitive to BR,

especially under stable graphs. Picking links at random in these situations however, is

unlikely to work well, unless the graph is already dense (large β).

But in the middle regime, in which all the other players adopt k-Closest the newcomer

must be much more careful. Here, there is much to be gained by the optimal shortcuts

selected in BR, which neither k-Closest nor k-Random typically selects. Our experimental

results suggest that k-Closest is one of the worse the possible strategies considered for the

newcomer to adopt in this situation. Strikingly, our results advocate that the k-Regular

is actually the worst of the possible strategies considered for the newcomer. Constructed

overlays seem to reduce to the minimum the number of shortcuts.

13Recall that the topologies we considered in this section feature non-unit link costs, and as such, selecting
neighbors at random could put the newcomer at a disadvantage, especially if the initial graph was optimized,
since the relative penalty from a bad random selection of neighbors would be high.

32

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6

 0 0.2 0.4 0.6 0.8 1
m

ax
im

um
 c

os
t r

at
io

PlanetLab, minimizing the maximum delay

c(k-Random)/c(BR)
c(k-Regular)/c(BR)
c(k-Closest)/c(BR)

β

Figure 2·6: The cost ratio between simple wiring (k-Random, k-Regular,
or k-Closest) and Min-Max BR wiring. We present the 25-, 50-, 75-quartiles
for the aforementioned ratios in the PlanetLab dataset.

2.6 Minimizing the Maximum Delay

In many applications, e.g., real-time streaming, voice conference, a selfish node would strive

to minimize the maximum delay to all the other nodes in the overlay in order to receive

the best possible quality of the service. The “best response” of the node, henceforth called

Min-Max Best Response, is the following

Definition 6 (Min-Max Best Response) Given a residual wiring S−i, a best response for

node vi is a wiring si ∈ Si such that Mi(S−i + {si}) ≤ Mi(S−i + {s′i}), ∀s′i 6= si, where

Mi = maxj dS(vi, vj).

In Table 2.2 we plot the maximum delay (maxiMi) ratios between näıve and myopic

wiring strategies, namely k-Random, k-Closest, k-Regular, and Min-Max Best Response14

in the PlanetLab dataset. The performance of Min-Max Best-Response wiring is signifi-

cantly better than that of näıve or myopic wiring strategies, even in dense graphs (high

value of k). Focusing on the quality of service that an individual overlay user receives,

we plot the maximum delay ratio between the aforementioned näıve and myopic wirings

and Min-Max Best Resposne, along with the 25-, 50-, 75-quartiles in Figure 2·7. The

performance of Min-Max Best Response is significantly better than that of näıve or myopic

14Stable wirings were derived with local search walks.

33

β = 0.1 β = 0.2 β = 0.4 β = 0.6 β = 0.8

k
-R

a
n
d
o
m

/
B

R

k
-R

eg
u
la

r/
B

R

k
-C

lo
se

st
/
B

R

k
-R

a
n
d
o
m

/
B

R

k
-R

eg
u
la

r/
B

R

k
-C

lo
se

st
/
B

R

k
-R

a
n
d
o
m

/
B

R

k
-R

eg
u
la

r/
B

R

k
-C

lo
se

st
/
B

R

k
-R

a
n
d
o
m

/
B

R

k
-R

eg
u
la

r/
B

R

k
-C

lo
se

st
/
B

R

k
-R

a
n
d
o
m

/
B

R

k
-R

eg
u
la

r/
B

R

k
-C

lo
se

st
/
B

R

PlanetLab 2.89 3.09 1.91 2.37 1.79 1.60 1.64 1.82 1.90 1.84 1.86 1.88 1.94 1.94 1.96

Table 2.2: Maximum delay ratios between simple wiring strategies (k-Random, k-Regular, k-Closest) and
Min-Max Best Response.

34

Algorithm 1 si=variable degree Best Response(S−i,MT)

1: If Mi > MT

2: Find si ∈ Si such that Mi(S−i + {si}) ≤ Mi(S−i + {s′i}), ∀s′i 6= si, |si| = |s′i| = k. [1-swap]
3: If Mi ≤ MT

4: Return si;
5: If Mi > MT

6: Find si ∈ Si such that Mi(S−i + {si}) ≤ Mi(S−i + {s′i}), ∀s′i 6= si, |si| = |s′i| = k + 1. [1-add]
7: Return si;
8: If Mi ≤ MT

9: Find si ∈ Si such that Mi(S−i + {si}) ≤ Mi(S−i + {s′i}), ∀s′i 6= si, |si| = |s′i| = k − 1. [1-drop]
10: If Mi ≤ MT

11: Return si;
12: If Mi > MT

13: Find si ∈ Si such that Mi(S−i + {si}) ≤ Mi(S−i + {s′i}), ∀s′i 6= si, |si| = |s′i| = k. [1-swap]
14: Return si;

wirings for a large range of out-degree values. Furthermore, none of the näıve or myopic

wiring strategies is consistently better than another one.

2.7 Overlay Neighbor Selection with variable out-degree

In many applications, like the ones mentioned in the previous section, hard quality-of-

service requirements must be satisfied. The estimation of the minimum out-degree that is

needed to satisfy the application requirements is hard to be estimated a-priori by the system

designer. Moreover, application requirements may change over time, thus an online and

distributed estimation of the minimum number of connections per user is more appropriate.

In this Section, we examine the performance of best-response wirings, where the out-degree

of a node is not constant.

Let us consider a real-time application where the user satisfaction degrades rapidly

when the maximum delay of one node to any other in the network is higher than an upper

threshold of MT time units. A selfish node would strive to satisfy the application require-

ments while keeping its out-degree as small as possible. This can be achieved by a local

search heuristic, described in Algorithm 1, where each node can swap or incrementally15

add or drop out-going connections.

15Multiple establishments or drops of connections may lead to faster convergence to a connectivity that
satisfies the application requirements, but it might be unfair for a node [63], thus a selfish node would like
to adapt its out-degree in an incremental fashion.

35

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500pa
irw

is
e

m
ax

im
um

 d
el

ay
 (

m
se

cs
)

iterations

PlanetLab, variable degree

system maximum delay
application requirement delay

Figure 2·7: The maximum system pairwise delay per re-wire, under vari-
able degree Best Response, in the PlanetLab dataset. The application re-
quirement maximum delay is denoted with the dashed horizontal line.

To evaluate the performance of variable degree Best-Response wiring, we estimated the

MT for the stable graph where each node has out-degree k = 5 in the PlanetLab dataset,

and use it as the application requirement for the same PlanetLab nodes where the initial

out-degree was set k = 2. In Figure 2·7, we show that the application requirement is

satisfied by all nodes within a small number of individual wirings. The evolving stable

graph is still sparse. Out of the n = 50 nodes, 35 nodes have out-degree 2, 12 nodes

have out-degree 3, one node has out-degree 4, and only two nodes have out-degree 5. This

counts up to only 120 links compared to 250 established in the case where the out-degree

is uniform and k = 5.

2.8 Overlay Neighbor Selection under scoped-flooding

In this Section we shift our attention to potential benefits employing BR neighbor selection

strategy in applications other than shortest path routing. To that end we investigate the

case of unstructured P2P file sharing. In such networks the outgoing traffic, the search

queries,16 target objects wherever these may lie, instead of specific nodes, as assumed in

the original formulation of the BR. Still the initial formulation of BR might be helpful.

Consider a P2P file sharing system in which nodes maintain a figure of merit for each other

16Once the object is mapped onto a node than a direct connection is established.

36

node based on direct or third-party experience.17 The merit value could, for example,

indicate quality of content, correlation of interests, or the capacity or reliability of the

node. Then, even if queries are for objects and not for nodes, it still is beneficial to have

the queries reach meritorious nodes first before propagating further away in the network.

One could then incorporate the merit value into the preference weights pij of the original

BR formulation. This results in wirings in which nodes of higher merit are kept closer to

the connecting node. Implementing this idea, however, requires addressing some non-trivial

technical hurdles.

First, one must augment the current P2P protocols with additional functionality that

will permit a node to gather the required information for computing a BR (namely the

residual network). In the case of overlay routing, the link-state routing protocol running

at the overlay layer provides this information, but in currently deployed P2P file-sharing

systems, there is no equivalent capability. Second, even if the required information was to

become available, the problem still remains that P2P applications have no way of perform-

ing shortest-path routing to a destination, which is a fundamental underlying assumption

of the original formulation. This is because a querying node does not know a priori the

identity of the destination node holding the file of interest. Employing full flooding would of

course create an equivalent of shortest-path routing as queries would reach target nodes first

through shortest-paths and then through non-shortest paths. Unfortunately, full flooding

does not scale, and thus real unstructured P2P file-sharing systems rely on either scoped-

flooding.18 In scoped flooding, a successful search (meaning that the object is located) will

indeed go over a shortest path. Objects that exist only outside the scope will simply not

be reachable.

17Similar in spirit to reputation protocols.
18Random walks [75] for forwarding search queries have also been proposed. With random walks located

objects are reached through paths that are not generally shortest-paths.

37

2.8.1 A reformulation of Best Response for scoped-flooding

Consider an unstructured P2P file sharing network employing scoped flooding of search

queries with time-to-live r. Granted that in most such networks there’s no a priori knowl-

edge of other nodes’ content, the search performance is optimized by maximizing the num-

ber of distinct nodes reachable by scoped flooding. This implies that first hop neighbors

should be selected so as to cover as much as possible disjoint parts of the residual overlay

topology. We reformulate our notion of BR so as to achieve this goal and compare with the

corresponding search performance of k-Random which is the typical choice in many exist-

ing systems. We base our discussion on a two-tier unstructured P2P network (like KaZaA

and the latest versions of Gnutella) with two types of nodes: Ordinary Nodes (ON) and

Super Nodes (SN), which operates as follows:

(1) A newcomer node vi connects to a bootstrap server and retrieves a set C with m = |C|

candidate SN’s, from which it has to select k.

(2) The newcomer vi contacts each one of the candidate SNs v ∈ C and queries it for its

list of first hop neighbors (and the type of each neighbor, ON or SN). Such capability is

provided by most widely deployed unstructured P2P systems [111]. Then it queries all SN

neighbors recursively up to distance r − 1 from the initial candidate v.

(3) After receiving all such information, the newcomer computes for each candidate SN v

the set F (v) of unique nodes (both ON and SN) that are reachable from it in r − 1 hops.

(4) To compute its BR, vi has to select a wiring s of cardinality k so as maximize the

cardinality of its coverage F r
i (s) over all possible wirings, with scope r:

F r
i (s) =

⋃

vj∈s

F r−1
j (S−i)

The “best response” of the node requires the solution of a special case of the Miximum

Coverage problem, where the profit of an element and the cost of selecting a subset of

elements are uniform (1 and 0 respectively).

Definition 7 (Maximum Coverage) Given a universe set U = {e1, ..., en}, where each

38

Algorithm 2 si=Local-k-Greedy-Profit(F r−1
j (S−i), ∀vj ∈ Vi)

1: Set s(0) = ∅ and Φ(0) = ∅ and CΦ = 0;
2: While CΦ ≤ k

3: v(t) = arg maxvj∈Vi

Profit(F
r−1
j

(S
−i)\Φ

(t−1))
Cj

;

4: s(t) = s(t−1) ∪ {v(t)};

5: Φ(t) = Φ(t−1) ∪ F
(r−1)
j (S−i);

6: Vi = Vi − {v(t)};
7: Return s = s(k);

element ei has a non-negative profit pi, a collection B = {B1, ..., Bm} of subsets of U , an

associated cost Ci > 0, for selecting a subset Bi ∈ B, and an integer k, pick sets of B with

total cost at most k, to maximize the total profit of elements covered.

A straight-forward exhaustive search can find such a BR wiring in O(nkmk), where

m = |Vi|, since there exist
(

m
k

)

= O(mk) possible wirings, and computing the cardinality

of each one requires performing union operations on k sets F r−1
j (S−i),∀ vj ∈ Vi, each one

having size O(n). Unfortunately, this pseudo-polynomial running time is essentially the

best that can be achieved, as maximizing the cardinality of F r
i (s) is NP-hard.

The Algorithm 2 has unbounded approximation ratio but for the special case where

Ci ≤ ǫk, for a sufficient small ǫ > 0, (1 ≤ i ≤ m), then the aforementioned greedy algorithm

has a ratio (1 − 1
e)-approximation ratio [47]. If the profit of covering an element is 1 and

the cost to cover a set is 0, then the greedy algorithm has O(nmk) complexity, which is

capable of producing high-quality solutions, and provably optimal solution for the special

case of k=2.

2.8.2 The value of Best Response for scoped-flooding

To demonstrate the benefits of BR as reformulated for scoped-flooding, we use the Gnutella

trace presented in [111]. This dataset provides a realistic snapshot of the Gnutella topology

with over 305, 000 ONs and SNs. We select an ON from this trace and let it be our

“newcomer” node. Then we supply it with an unbiased random sample set C with m

candidate nodes (as a bootstrap server for Gnutella would do). We compare the number of

unique nodes reachable from this newcomer given its wiring as was reported in the dataset

39

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

 1 2 3 4

N
or

m
al

iz
ed

 n
um

be
r

of
 n

od
es

 r
ea

ch
ab

le

time to live r

Gnutella Dataset, ONs connected to 2 SNs
exhaustive

greedy

1.0
1.1
1.1
1.2
1.2
1.3
1.3
1.4
1.4
1.5
1.5

 1 2 3 4

N
or

m
al

iz
ed

 n
um

be
r

of
 n

od
es

 r
ea

ch
ab

le

time to live r

Gnutella Dataset, ONs connected to 3 SNs
exhaustive

greedy

Figure 2·8: Gnutella simulations showing the improvement in node cover-
age using BR, reformulated for Scoped-flooding, and using exhaustive and
greedy search algorithms. Improvement is relative to the coverage achieved
using Gnutella’s scoped flooding over its default wiring. Results are for ONs
connected to two SNs (left) and three SNs (right).

and according to our reformulated BR.

We uniformly at random select two sets of 30 ONs from the aforementioned data set,

which are connected to two and three SNs respectively. Each of these ONs connects to

the bootstrap server and retrieves candidate SNs (m = 10, including those to which it is

currently connected).

In Figure 2·8, we plot the ratio of the unique nodes reachable with scoped-flooding for

different values of time-to-live (r) using our new BR formulation relative to that reported in

the Gnutella dataset. The reformulated BR computed through exhaustive search increases

significantly the number of nodes reached, with similar improvements achieved when the

greedy heuristic is used for the computation.

2.8.3 Stable wirings under scoped-flooding

The Scoped-flooding game can be defined as in Section 2.2.

Definition 8 (Scoped-flooding Game) The (n, k, r)-Scoped-flooding Game is a bounded de-

gree local connection network creation game which is defined by the tuple 〈V, {Si}, {F
r
i }〉,

where:

• V is the set of n players, which in this case are the nodes.

40

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

...

....

...

....
.... ...

r

r

kr

k k

k

Figure 2·9: Provably stable graph for the uniform (n, k, r)-Scoped-flooding
game.

• {Si} is the set of wiring strategies available to the individual players. Si is the set of

wiring strategies available to vi.

• {F r
i } is the set of utility functions for the individual players. The utility of player vi,

under an outcome (wiring) S, is F r
i (S), where r is the horizon of the scoped flooding

process, and k is the maximum out-degree of the node.

For the uniform (n, k, r)-Scoped-flooding game, pure Nash equilibria with good prop-

erties exist.

Proposition 2 For r ≤ 1
2(logk n − 1) there is a configuration of the uniform (n, k, r)-

Scoped-flooding game, that is pure Nash equilibrium and socially optimal.

Proof: We describe a pure Nash equilibrium configuration, that is socially optimum.

The core of our construction contains a forest of kr interconnected node-disjoint trees, that

we call utopian trees (illustrated in Figure 2·9). We call the forest a utopian forest. Every

utopian tree is a balanced k-ary tree of height r: every node connects by directed links to k

immediate children nodes (except for the leaves, which we will accommodate later). Then

a utopian tree contains exactly kr+1−1
k−1 nodes. One can see that for r ≤ 1

2(logk n− 1) there

are enough nodes, so that construction of kr node-disjoint trees of height r is possible: the

total number of distinct nodes contained in the utopian forest is:

kr+1 − 1

k − 1
kr ≤ k2r+1 ≤ k2 1

2
(logk n−1)+1 = n

41

BA

C
G

D

E

Figure 2·10: A setting where pure Nash Equilibrium for the non uniform
(n, k, r)-Scoped-flooding game does not exist. Wirings of nodes A and B
are not stable for given profits of nodes C, D, E, F, G. Solid links (and other
that are not illustrated) are stable.

We explain how these trees are interconnected and how the remaining nodes connect to

them so that the resulting configuration is a pure strategy Nash equilibrium. At first we

accommodate the leaf nodes of each tree as follows. For a tree Tk,r divide the set of its

leaves into k groups of kr−1 leaf-nodes each, so that every group corresponds to the leaves

of the same subtree of Tk,r. Let Lp, p = 1 . . . k be these groups. Every leaf node u ∈ Lp

must have k descendants. The total number of descendants of nodes in Lp is kr. Fix an

arbitrary ordering of vi ∈ Lp, i = 1 . . . kr−1. Let u1 connect to the root of Tk,r. For the

remaining kr − 1 needed descendants we use the roots of the kr − 1 trees of the forest,

other than Tk,r. Each of the nodes (players) other than the ones belonging to the forest

simply connects to the roots of k arbitrary distinct trees of the forest. This completes our

construction.

It is easy to verify that by construction every node of the utopian forest can reach a

maximum possible number of distinct network nodes within the scope horizon r and given

k, that is exactly kr+1−1
k−1 − 1 = k(kr−1)

k−1 . This naturally holds for nodes outside the forest as

well. Therefore no node has incentive to change any of its k connections. Furthermore, the

social gain is the maximum possible. Thus this construction is socially optimum as well.

For non uniform (n, k, r)-Scoped-flooding games, we provide a counter example (with

race conditions) to demonstrate that pure Nash equilibria may not exist. Consider the

42

setting where all but the nodes in the network that are illustrated in Figure 2·10 have stable

wiring, except nodes A, B. Assume that k = 2 and r = 3. Both node A and B have stabilized

one of their link (that is not illustrated). The profit by connecting to other nodes in the

network is the following: for A, profit(B)=1/2, profit(C)=2, profit(D)=1+ǫ, profit(G)=1/2;

and for B, profit(A)=1/2, profit(B)=1+ǫ, profit(E)=2, profit(G)=1/2; ǫ < 1/2. Node B

re-wires to G and increases its profit from 2 to 2+ǫ, as A is now connected to C. Node

A, may have access to D now within r hops, so it re-wires and connects to B, increasing

its profit from 2 to 2+ǫ. B now prefers to connects back to E, as this connection gives

the highest benefit. A then connects back to C as this is the connection that returns the

maximum profit. The aforementioned re-wirings will repeat, thus the total wiring will

never stabilize.

2.9 Chapter Summary

Our experimental results on selfish neighbor selection, in a richer model that captures

the nuances of overlay applications more faithfully than previous work, reveals numerous

subtleties that are not apparent in simpler models. Among our most noteworthy findings

is that it is typically in a newcomer’s best interest (whether that newcomer is näıve or

sophisticated) to have had the prior arrivals behave selfishly, as the underlying “best-

response” graph is often highly optimized in favor of the newcomer. A corollary is that

suboptimal behavior by a participant is often costly, not only to the individual, but to

the population at large, i.e., suboptimal behavior leads to large negative externalities.

We also show how SNS variations may lead to optimized graphs to better serve real-time

applications and query propagation in unstructured peer-to-peer networks.

43

Chapter 3

The EGOIST Overlay Routing System

Our evaluation of selfish neighbor selection wiring strategies on static topologies in the

previous Chapter demonstrates that selfish users can select neighbors so as to efficiently

reach near-equilibria in the Nash sense, while also providing good global performance. One

implication of this work is that shortest path overlay routing performs much better over SNS

topologies than over random or myopic ones. Left unanswered in this prior work, though,

is whether it is practical to build SNS-inspired overlays, how to incorporate additional

metrics other than delay, e.g., bandwidth, what is the average performance gain when

SNS wiring strategies are used in highly dynamic environments, whether such overlays are

robust against churn, and whether they scale. In this Chapter we address the questions

mentioned above and describe the design, implementation, and evaluation of EGOIST: an

SNS-inspired prototype overlay routing network. EGOIST serves as a building block for

the construction of efficient and scalable overlay applications consisting of (potentially)

selfish nodes.

Our contributions can be summarized as follows. We first demonstrate through real

measurements on PlanetLab that overlay routing atop EGOIST is significantly more effi-

cient than systems utilizing common heuristic neighbor selection strategies under multiple

performance metrics, including delay, system load and available bandwidth. Second, we

demonstrate that the performance of EGOIST approaches that of a (theoretically-optimal)

full-mesh topology, while achieving superior scalability, requiring link announcements pro-

portional to nk compared to n2 for a full mesh topology. We also demonstrate that the

computational, memory and traffic overhead to create and operate EGOIST in minimal.

44

Third, to accommodate high-churn environments, we introduce a hybrid extension of the

“Best-Response” (BR) neighbor selection strategy, in which nodes “donate” a portion of

their k links to the system to assure connectivity, leaving the remaining links to be cho-

sen selfishly by the node. Our experiments show that such an extension is warranted,

especially when the churn rate is high relative to the size of the network. Fourth, we con-

sider the impact of cheaters – nodes that announce false information in order to benefit

themselves, or harm the network. While such behavior can be identified and eliminated

through the use of appropriate mechanisms, we show that EGOIST remains robust even

without the use of such mechanisms. Finally, we discuss how EGOIST can provide a redi-

rection stepping-stone for the benefit of end-user applications including file transfer and

multiplayer peer-to-peer games. The list of EGOIST’s artifacts is provided in Section 3.7.

3.1 Background

The work presented in this Chapter is inspired by the SNS game introduced in the previ-

ous Chapter. There, the focus was on presented basic theoretic and experimental results,

without considering any of the practical systems issues that are covered in this Chapter,

such as dealing with churn in realistic network conditions or achieving high global perfor-

mance without the computational and control message overheads required by theoretical

formulations. Network Creation Games that predate SNS [34, 25, 84, 23, 29] have con-

sidered settings in which nodes may buy as many links (neighbors) as they like and thus

differ fundamentally from our work, in which constraints on the number of neighbors play

a central role.1 Also, as it was highlighted in the previous section, fundamentally different

is the work on Selfish Routing [94, 100], in which the network topology is part of the input

to the game, and selfish source routing is the outcome. In a way, this is the inverse of

our work, in which network-based (shortest-path) routing is an input of the game, and

topology is the outcome. Selfish Routing is also based on source routing which is either

1We also note that in our target (overlay networks) setting, it is more realistic to impose a limit on
the number of neighbors as opposed to a price on the link to a neighbor. This latter assumption is better
justified for connectivity at the physical as opposed to overlay layer.

45

not provided in most system implementations, or it is difficult to perform well in systems

with high churn like peer-to-peer systems.

A number of routing overlay systems have been recently proposed [101, 2, 70, 69, 119,

73, 45, 121, 102, 108, 113, 30]. Most of these have been proposed as ways of coping with

some of the inefficiencies of native IP routing. The basic design pattern is more or less the

same: overlay nodes monitor the characteristics of the overlay links between them (overlay

topology may differ among systems) and employ a full-fledged or simpler [45] routing

protocol to route at the overlay layer. Some overlay routing systems optimize route hop

count [69, 102, 108], others optimize for application delay [101, 2, 94, 70, 119, 73, 45],

and others optimize for available bandwidth [121]. These works assume that either all

overlay nodes are under central control and thus obediently follow simple empirical neighbor

selection strategies as discussed earlier, or bypass the issue altogether by assuming that

some fixed overlay design is already in place. With reference to the employed metric, in

our work, we provide mechanisms to support optimization of all aforementioned metrics

and leave it up to the application designers to choose the most suitable one.

Selfish behavior has been studied in the context of providing incentives for nodes to

route traffic for others [15].2 Such works are complementary to ours since we assume that

an external mechanism exists for incenting forwarding for other nodes. Chawathe et al. [22]

proposed mechanisms for dealing with selfish nodes that lie about their capacities to avoid

receiving queries. While we visit some of these issues in this Chapter, we note that this

prior work did not focus on neighbor selection nor did it impose any constraints on node

degrees.

In structured DHTs, proximity neighbor selection has been proposed to make the over-

lay topology match the underlying IP topology as much as possible [96, 43] in order to

achieve faster lookups: Nodes can choose the physically closest nodes from a set of can-

didate nodes. While this approach gives to nodes some flexibility in choosing neighbors

2The use of incentives has also been studied in other contexts that are fundamentally different from
ours, e.g., P2P file sharing [36, 24].

46

selfishly, the set of nodes from which the choice can be made is constrained by node ID and

thus tuning it at will becomes impossible [115]. Undoubtedly, DHTs are able to provide

the best possible indexing of objects in a network. On the other hand, routing of traffic on

DHTs has been shown to be sub-optimal due to local forwarding [59, 78]. EGOIST can be

integrated as a different layer in DHTs; when an object is mapped onto a node, EGOIST

is responsible to optimally route the content.

3.2 Preliminaries

Let V = {v1, v2, . . . , vn} denote a set of overlay routing nodes. Node vi establishes a

wiring si = {vi1 , vi2 , . . . , vik} by creating links to k other nodes (we will use the terms

link, wire, and edge interchangeably). Edges are directed and weighted, thus e = (vi, vj)

can only be crossed in the direction from vi to vj , and has cost dij (in general, dji 6= dij).

Let S = {s1, s2, . . . , sn} denote a global wiring between the nodes of V and let dS(vi, vj)

denote the cost of a shortest directed path between vi and vj over this global wiring;

dS(vi, vj) = M ≫ maxi,j dij , if there is no directed path connecting the two nodes. In our

implementation, we computed shortest path using Dijkstra’s algorithm. Given than the

graph is sparse, we used the most efficient implementation of the algorithm using Fibonacci

heap that requires O(|E| + |V | log |V |) amortized time, where |E| is the number of edges

in the graph [26].

For the overlay networks discussed here, the above definition of cost amounts to the

incurred end-to-end delay when performing shortest-path routing along the overlay topol-

ogy S, whose direct links have weights that capture the delay of the underlying IP path

connecting one end of the overlay link to the other. Let Ci(S) denote the cost of vi under

the global wiring S, defined as a weighted summation of its distances to all other nodes,

i.e., Ci(S) =
∑n

j=1,j 6=i pij · dS(vi, vj), where the weight pij denotes “preference” e.g., the

percentage of vi’s traffic that is destined to node vj .

The best response of a node is defined in Section 2.2. Given a residual wiring S−i =

S − {si}, a best response for node vi is a wiring si ∈ Si such that Ci(S−i + {si}) ≤

47

Ci(S−i + {s′i}), ∀s′i 6= si, where Si is the set of all possible wirings for vi. The Selfish

Neighbor Selection (SNS) game was introduced in Section 2.2 as a strategic game where

nodes are the players, wirings are the strategies, and Ci’s are the cost functions. It was

shown that under hop-count distance, obtaining the BR of vi requires solving an asymmetric

k-median problem on the residual wiring S−i and is, therefore, NP-hard. To overcome the

computational obstacle, we applied the local search heuristic [6] that provides a solution in

a polynomial number of iterations. Experimental results (in the previous section) showed

that the performance of the above heuristic is within 5%. In [59] it was proved that

every instance of the SNS game with uniform preference and link weights has pure Nash

equilibria whose social cost is within a constant factor of that of a socially-optimal solution.

It was also shown that non-uniform instances of the game may have no equilibria at all.

In this Chapter however, we are turning our attention to the average performance gain

that individual nodes and the system can achieve through best-response walks in a real

operational environment.

3.3 Architecture

In this section we overview the architecture of our EGOIST overlay routing system.

3.3.1 Basic Design

EGOIST is a distributed system (evaluated on PlanetLab) that allows the creation and

maintenance of an overlay network, in which every node selects and continuously updates

its k overlay neighbors in a selfish manner—namely to minimize its (weighted) sum of

distances to all destinations under shortest-path routing. For ease of presentation, we will

assume that delay is used to reflect the cost of a path, noting that other metrics – which we

will discuss later in the Chapter and which are incorporated in EGOIST’s implementation

– could well be used to account for cost, including bandwidth and node utilization.

In EGOIST, a newcomer overlay node vi connects to the system by querying a bootstrap

node, from which it receives a list of potential overlay neighbors. The newcomer connects

48

to at least one of these nodes, enabling it to participate in the link-state routing protocol

running at the overlay layer. As a result, after some time, vi obtains the full residual graph

G−i of the overlay. By running all-pairs shortest path algorithm on G−i, the newcomer is

able to obtain the pair-wise distance (delay) function dG−i
. In addition to this information,

the newcomer estimates dij , the weight of a potential direct overlay link from itself to node

vj , for all vj ∈ V−i. Using the values of dij and dG−i
, the newcomer connects to G−i using

one of a number of wiring policies (discussed in Section 3.3.2). In our implementation,

each node acts as a server that listens to all the messages of the link state protocol and

propagates them only to its immediate neighbors. In order to reduce the traffic in the

system, each node propagates only unique messages by dropping messages that have been

received more than once or have been superseded. There are also two threads, one for

estimating dij , and one responsible for estimating the new wiring and propagating the

wiring to the immediate neighbors. In order to minimize the load in the system, a node

propagates its wiring to its immediate neighbors only if this changes.

Clearly, obtaining dij for all n nodes requires O(n2) measurements.3 However, we note

that these O(n2) measurements do not have to be announced or be continuously monitored.

In particular, each node needs to monitor and send updates only for the k links that it

chooses to establish, with O(n) measurements to all nodes in the overlay done much less

frequently – namely once per wiring epoch, which is defined as the period T between two

successive evaluations by a node of its set of candidate links and possible adoption of a

new wiring (i.e., re-wiring) based on such evaluation. Since re-wiring is much less frequent

than monitoring of the established k links, the load imposed by the link-state protocol is

only O(nk) and not O(n2).

3Note that dij can be obtained through active or passive measurements depending on the metric of
interest (see Section 3.4.1 for details).

49

3.3.2 Neighbor Selection Policies

As its namesake suggests, the default neighbor selection policy in EGOIST is the Best-

Response (BR) strategy described in Section 3.2. Using BR, a node selects all its k neigh-

bors so as to minimize a local cost function, which could be expressed in terms of some

performance metric (e.g., average delay to all destinations, maximum aggregate through-

put to all destinations, or any combination of the above). Since obtaining an exact BR

is computational expensive under both delay (see Section 2.3.2) and throughput (see Ap-

pendix A), in Section 3.4.1, we employ fast approximate versions based on local search

(that was introduced in Section 3.2) to reduce computational costs and enhance scalabil-

ity. In addition to BR, we have also implemented the following neighbor selection policies

in order to perform a comparative evaluation.

k-Random: Each node selects k neighbors randomly. If the resulting graph is not con-

nected, we re-wire some links to enforce a cycle upon it.

k-Closest: Each node selects its k neighbors to be the nodes with the minimum link cost

(e.g., , minimum delay from it, maximum bandwidth, etc.). Again, if the graph is not

connected, we enforce a cycle.

k-Regular: In this case, all nodes follow the same wiring pattern dictated by a common

offset vector o = {o1, o2, . . . , ok}, used as follows: node i connects to nodes i+ oj mod n,

j = 1, . . . , k. In our system, we set oj = 1 + (j − 1) · n−1
k+1 . One way to visualize this is to

consider that all nodes are placed on a ring according to their ids (as with a DHT). Thus,

an offset vector makes each node use its k links to connect to other nodes so as to equally

divide the periphery of the ring.

3.3.3 Dealing with churn

EGOIST’s BR neighbor selection strategy assumes that existing nodes never leave the

overlay. Therefore, even in an extreme case in which some nodes are reachable through

only a unique path, a node can count on this path always being in place (re-wirings by

other nodes will not tear it down as this would also disconnect them [59]). Overlay routing

50

networks (e.g., RON [2]) are not inherently prone to churn to the extent that file-sharing

P2P-networks [41, 97] are. Nonetheless, nodes may occasionally go down, or network prob-

lems may cause transient disconnections until successive re-wirings establish new paths.

One could re-formulate the BR objective function used by a node to take into account the

churning behavior of other nodes. This, however, requires modeling of the churn charac-

teristics of various nodes in an overlay, which may not be feasible, particularly for large

networks [118].

In EGOIST, we follow a different approach reminiscent of how k-Random and k-Closest

policies ensure overlay connectivity. We introduce a hybrid wiring strategy (HybridBR),

in which each node uses k1 of its k links to selfishly optimize its performance using BR,

and “donates” the remaining k2 = k − k1 links to the system to be used for assuring

basic connectivity under churn. We call this wiring “hybrid” because, in effect, two wiring

strategies are in play – a selfish BR strategy that aims to maximize local performance and

a selfless strategy that aims to maintain global connectivity by providing redundant routes.

There are several ways in which a system can use the k2 donated links of each node

to build a connectivity backbone. Young et al. [119] proposed the use of k Minimum

Spanning Trees (k-MST). Using k-MST (a centralized construction) to maintain connec-

tivity is problematic, as it must always be updated (due to churn and to changes in edge

weights over time), not to mention the overhead and complexities involved in establishing

(k2/2)-MSTs. To avoid these complexities, EGOIST uses a simpler solution that forms

k2/2 bidirectional cycles. Consider the simplest case k2 = 2, which allows for the creation

of a single bidirectional cycle. To accommodate a new node vn+1, node vn will disconnect

from node v1 and connect to vn+1, whereas the latter will connect to v1 to close the cycle.

For higher k2/2, the system decides k2/2 offsets and then each node connects to the nodes

taken by adding (modulo n) its id to each offset. If k2 is small (e.g., 2) then the nodes

will need to monitor (e.g., ping) the backbone links closely so as to quickly identify and

restore disconnections. With higher k2 the monitoring can be more relaxed due to the

existence of alternative routes through other cycles. Computing BR using k1 links granted

51

the existence of the k2 links can be achieved by restricting the set candidate candidate

immediate neighbors for swapping.

We have implemented HybridBR in EGOIST. As hinted above, donated links are mon-

itored aggressively so as to recover promptly from any disconnections in the connectivity

backbone through the use of frequent heartbeat signaling. On the other hand, the moni-

toring and upkeep of the remaining BR links could be done lazily, namely by measuring

link costs, and recomputing BR wirings at a pace that is convenient to the node—a pace

that reduces probing and computational overheads without risking global connectivity.

To differentiate between these two types of link monitoring strategies (aggressive versus

lazy), in EGOIST we allow re-wiring of a dropped link to be performed in one of two

different modes: immediate and delayed. In immediate mode, re-wiring is done as soon

as it is determined that the link is dropped, whereas in delayed mode re-wiring is only

performed (if necessary) at the preset wiring epoch T . Unless otherwise specified, we

assume a delayed re-wiring mode is in use.

3.3.4 Dealing with Cheaters

In the aforementioned setting, the selfishness in the selection of neighbors has the game

theoretic meaning of local optimization and does not imply any anti-social behavior that

needs to be mitigated. In this section, we briefly examine such harmful ways in which a

node may “cheat” its way through, as well as possible countermeasures.

The most blatant form of cheating is free-riding, i.e., using the system to route one’s

own traffic but denying routing to any incoming traffic from other nodes. Dealing with

such behavior has been the subject of a number of studies, including the works in [15, 18]

which propose the adoption of reputation and repudiation or punishment mechanisms that

act as incentives for nodes to route, and/or expel misbehaving nodes from the system.

These studies are orthogonal to and thus complement our work.

A more elaborate way for a node to cheat is to announce false information via the link-

state protocol to discourage others from picking it as an upstream neighbor. For example,

52

a node can cheat by falsely announcing larger-than-actual delays for its potential outgoing

links. One could add mechanisms to detect this type of cheating. If the construction of the

overlay is based on passive measurements obtained from a virtual coordinate system (as

discussed in Section 3.4.1), then nodes could periodically select a random subset of remote

nodes and “audit them” by querying the coordinate system for the delays of the outgoing

links of the audited nodes and comparing them to the actual values that the audited

nodes declare on the link-state routing protocol. Similar audits can be designed using

active probing by sending traffic and measuring its delay and comparing it to the expected

delay based on the delays that nodes on the end-to-end path declare. In Section 3.4.5, we

evaluate the impact of broadcasting false information to cheat the system: we show that

even without the use of the aforementioned audit mechanisms, EGOIST is robust to this

form of cheating.

3.4 Experimental Evaluation

In this section we present our evaluation for EGOIST based on large scale experiments

using extensive measurements of paths between nodes that participated in EGOIST.

3.4.1 Cost Metrics

As alluded earlier, a number of metrics can be used to measure the “cost” of traversing an

overlay link. Clearly, the choice of an appropriate one depends largely on the application

at hand. In this section, we review the various metrics we have incorporated in EGOIST.

Link and Path Delays: Delays are natural cost metrics for many applications, especially

those involving interactive communication. To obtain the delay cost metric, a node needs

to obtain estimates for its own delay to potential neighbors, and for the delay between pairs

of overlay nodes already in the network. In EGOIST, we estimate directed (one-way) link

delays using two different methods: an active method based on ping, and a passive method

using the pyxida virtual coordinate system [65]. Using ping, one-way delay is estimated to

be one half of the measured ping round-trip-times (RTT) averaged over enough samples.

53

Clearly, a node is able to measure such a value for all of its direct (overlay) neighbors, and

is also able to relay such information to any other nodes through the overlay link-state

routing protocol. To estimate the distance to nodes that were configured not to reply to

ping, we used application layer ping. Using pyxida, delay estimates are available through

a simple query to the pyxida system. 4

Node Load: For many overlay applications, it may be the case that the primary determi-

nant of the cost of a path is the performance of the nodes along that path—e.g., if traversal

of nodes along the path incur significant overhead due to (say) context switching and fre-

quent crossing of user/kernel spaces. Thus, in EGOIST, we allow the use of a variation

of the delay metric in which all outgoing links from a node are assigned the same cost,

which is set to be equal to the measured load of the node. When applicable, the estimation

of such a metric is straightforward as it requires only local measurements. In EGOIST,

we did this by querying the CPU load of the local PlanetLab node, and computing an

exponentially-weighted moving average of that load calculated over a given interval (taken

to be 1 minute in our experiments querying the loadavg reports).

Available Bandwidth: Another important cost metric, especially for content-delivery

applications, is the available bandwidth on overlay links. Different available bandwidth esti-

mation tools have been proposed in the literature [103]. In EGOIST , we used pathChirp [98],

a light-weight, fast and accurate tool, which fits well with PlanetLab-specific constraints,

namely: it does not impose a high load on PlanetLab nodes since it does not require the

transmission of long sequences of packet trains, and it does not exceed the max-burst limits

of Planetlab. pathChirp is an end-to-end active probing tool, which requires the installa-

tion of sender and receiver pathChirp functionality in each EGOIST node. The available

bandwidth between a pair of nodes v, u ∈ V−i is given by:

AvailBW (v, u) = max
p∈P (v,u)

AvailBW (p),

4Using ping produces more accurate estimates, but subjects the overlay to added load, whereas using
pyxida produces less accurate estimates, but consumes much less bandwidth.

54

Algorithm 3 ρ=AvailBW(G(V,E), s ∈ V)

1: Set W = {s}; and ρ[s] = ∞;
2: for all y ∈ V − {s} do ρ[y] = dsy;
3: while W 6= V do
4: begin find x = argmax{ρ[y] : y /∈W};
5: set W = W ∪ {x};
6: for all y ∈ V −W do
7: ρ[y] = max{ρ[y], ρ[x] + dxy}
8: end
9: Return ρ;

where the available bandwidth for a path p is given by:

AvailBW (p) = min
e∈p

AvailBW (e),

and P (v, u) denotes the set of paths that connects v to u. Thus, finding P ∗(v, u) that

maximizes the available bandwidth between v and u, and the bottleneck edge, is a “Maxi-

mum Bottleneck Bandwidth” problem which can be solved using a simple modification of

Dijkstra’s algorithm as shown in Algorithm 3.

3.4.2 Baseline Experimental Results

In this section, we present performance results obtained through measurement of EGOIST.

These results allow us to make comparisons between the various neighbor selection policies

described in Section 3.3.2 for the various cost metrics described above. All the results in

this section assume that node churn is not an issue – i.e., once it joins the overlay, a node

does not leave. Results showing the impact of node churn on EGOIST performance are

presented in Section 3.4.4.

Experimental Setting: We deployed EGOIST on n = 50 PlanetLab5 nodes (30 in North

America, 11 in Europe, 7 in Asia, 1 in South America, and 1 in Oceania). Each of these

nodes is configured to recompute its wiring every wiring epoch T = 60 seconds. EGOIST

nodes are not synchronized, thus on average a re-wiring by some EGOIST node occurs

5PlanetLab is an overlay testbed network of approximately 700 nodes in more than 300 academic,
industrial, and government sites around the world.

55

every T/n = 1.2 seconds. Whether a node ends up re-wiring or not depends on the

neighbor selection policy. For k-Random and k-Regular policies, and since our baseline

experiments do not feature any node churn, it follows that these policies will not exhibit

any re-wiring. For k-Closest, re-wiring would only be the result of dynamic changes in

PlanetLab that result in changes to the cost metric in use (and hence what constitutes

the closest set of neighbors). For BR, a node may rewire due to changes in PlanetLab

conditions, but may also rewire simply as a result of another node’s re-wiring. While in

theory [59], BR strategies (under certain conditions) converge to some equilibrium in the

Nash sense, we note that this is not likely to be the case for real systems such as EGOIST,

since dynamic changes of the underlying system (changes in link delays, bandwidth, and

node load) are likely to result in perpetual re-wiring by EGOIST nodes. Setting the wiring

epoch T in EGOIST has the effect of controlling the timescale of, and consequently the

overhead incurred by, BR re-wiring.

Each experiment presented in this section reflects the results obtained by running EGO-

IST for at least 10 hours on PlanetLab on January 5th, January 15th, September 15th,

October 3rd 2007, and April-June 2008.

To be able to compare the impact of neighbor selection on the quality of the resulting

overlay, throughout this paper we use the routing cost (for an individual node or averaged

over all nodes) as the main performance metric. For each experiment, an individual cost

metric is calculated for every one of the n = 50 nodes in the system. The individual cost

metric for a node reflects the cost of routing from that node to all other 49 nodes in the

system, assuming a uniform routing preference over all destinations.6 For each experiment

we report the mean of all n = 50 individual costs, as well as the 95th-percentile confidence

interval.

To facilitate comparisons between various neighbor selection strategies, we often report

the normalized routing cost (and the 95th-percentile confidence interval), which is the ratio

6We note that using a uniform routing preference will tend to deflate the advantage of BR neighbor
selection – in other words, the results we present here are conservative, since unlike the other policies we
considered, BR is capable of leveraging skew in preference to its advantage.

56

of the cost achievable using a given strategy to that achievable using BR.

Control Variables: In our first set of experiments, our aim is to identify for the three

metrics of interest the payoff (if any) from adopting a selfish neighbor selection strategy,

i.e., using a BR policy in EGOIST . This payoff will depend on many variables. While

some of these variables are not within our control (e.g., the dynamic nature of the Internet

as reflected by variability in observed PlanetLab conditions), others are within our control,

e.g., n, T , and the various settings for our active measurement techniques.

In order to neutralize the effect of extrinsic variables that are not within our control,

experiments reporting on different neighbor selection policies were conducted concurrently.

To do so, we deploy concurrent EGOIST agents on each of the n = 50 PlanetLab nodes we

use in our experiments, with each agent using a different selection strategy. In effect, each

experiment compares the performance of a set of concurrently deployed EGOIST overlay

networks, each resulting from the use of a particular neighbor selection policy.

One control variable that is particularly important is the number of direct neighbors,

k, that an EGOIST node is allowed to have. In many ways, k puts a premium on the

significance of making a judicious choice of neighbors. For small values of k, choosing the

right set of neighbors has the potential of making a bigger impact on performance, when

compared to the impact for larger values of k. Thus, in all the results we present in this

section, we show the performance of the various policies over a range of k values.

Overview of Performance Results: Before presenting specific performance results, we

make two broad observations: first, in all of our experiments, using a BR policy in EGOIST

consistently yields the best performance. While such an outcome was anticipated by virtue

of findings reported in the previous Chapter for a static setting, the results we present here

are significant because they underscore the payoff in a real deployment, where the modeling

assumptions made in prior work do not hold. Second, in all of our experiments, with the

exception of BR, no single neighbor selection policy was consistently better than all others

across all metrics. In other words, while the performance of a given policy may approach

that of BR for one metric while dominating all other policies, such policy dominance does

57

 4.5
 4

 3.5
 3

 2.5
 2

 1.5
 1

 0.7
 2 3 4 5 6 7 8

In
di

vi
du

al
 c

os
t/B

R
 c

os
t

k

Metric: Delay (via ping)

k-Random
k-Regular
k-Closest
Full mesh

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 2 3 4 5 6 7 8

In
di

vi
du

al
 c

os
t/B

R
 c

os
t

k

Metric: Delay (via pyxida)

k-Random
k-Regular
k-Closest

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 2 3 4 5 6 7 8

In
di

vi
du

al
 c

os
t/B

R
 c

os
t

k

Metric: System Load

k-Random
k-Regular
k-Closest

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8

T
ot

al
 A

v.
B

w
th

/B
R

 A
v.

B
w

th

k

Metric: Available Bandwidth

k-Random
k-Regular
k-Closest

Figure 3·1: PlanetLab Baseline experiments showing the individual costs
for various neighbor selection policies (normalized with respect to BR costs)
as a function of number of neighbors k for a 50-node EGOIST overlay: Cost
metric is ping delays (top-left), pyxida delays (top-right), node CPU load
(bottom-left), and available bandwidth (bottom-right).

not hold across all the metrics we considered.

Results for Delay Metric: Figure 3·1 shows the performance of the various neighbor

selection policies in EGOIST normalized with respect to that achievable using BR when the

metric of interest is the overlay link/path delay over a range of values for k (with link delays

measured using ping in the top-left plot, and using pyxida in the top-right plot). These

results show that BR outperforms all the other wiring policies, especially when k is small,

as anticipated in our discussion of the significance of k as a control variable. For example,

for k = 2, the average delay experienced by an individual node could be anywhere between

200% and 400% higher than that achievable using BR. The performance advantage of BR

in terms of routing delay stands, even for a moderate number of neighbors. For example,

58

for k = 5, BR cuts the routing delay almost by half.

These results confirm the superiority of BR relative to other policies, but do not give us

a feel for how close is the performance of EGOIST using BR wiring to the “best possible”

performance. To do so, we note that by allowing nodes to connect to all other nodes in the

overlay, we would be creating a complete overlay graph with O(n2) overlay links, obviating

the need for a neighbor selection policy. Clearly, the performance of routing over such a rich

overlay network gives us an upper bound on the achievable performance, and a lower bound

on the delay metric. Thus, to provide a point of reference for the performance numbers we

presented above, in the top-left plot in Figure 3·1 we also show the performance achieved

by deploying EGOIST and setting k = n− 1. Here we should note that this lower bound

on delay is what a system such as RON [2] would yield, given that routing in RON is

done over shortest paths established over a full mesh, and assuming that any of the O(n2)

overlay links could be used for routing. These results show that using BR in EGOIST

yields a performance that is quite competitive with RON’s lower bound. As expected, the

difference is most pronounced for the smallest k we considered—namely, the lowest delay

achievable using 49 overlay links per node is only 30% lower than that achievable using

BR with 2 overlay links per node. BR is almost indistinguishable from the lower bound

for slightly larger values of k (e.g., k = 4).

With respect to the other heuristics, the results in the top plots in Figure 3·1 show

that k-Closest outperforms k-Random when k is small, but that k-Random ends up out-

performing k-Closest for slightly larger values of k. This can be explained by noting that

k-Random ends up creating graphs with much smaller diameters than the grid-like graphs

resulting from the use of k-Closest, especially as k gets larger. In all experiments, k-Regular

performed the worst.

Results for Node Load: The bottom-left plot in Figure 3·1 shows the results we obtained

using the node load metric, where the path cost is the sum of the loads of all nodes in the

path. These results show clear delineations, with BR delivering the best performance over

all values of k, k-Random delivering the second-best performance, and k-Closest delivering

59

the worst performance as it fails to predict anything beyond the immediate neighbor,

especially in light of the high variance in node load on PlanetLab.

Results for Available Bandwidth: The bottom-right plot in Figure 3·1 shows the re-

sults we obtained using available bandwidth as the cost metric. Recall that, here, the

objective is to get the highest possible aggregate bandwidth to all destinations (again, as-

suming a uniform preference for all destinations) – thus, larger is better. These results

show trends that are quite similar to those obtained for the delay metric, with BR outper-

forming all other policies—delivering a two-fold to four-fold improvement over the other

policies, over a wide range of values of k.

3.4.3 Measurement and Re-wiring Overheads

In this section we show experimentally that EGOIST introduces a rather small amount of

overhead for maintaining the overlay structure.

Active Measurement Load: As mentioned in Section 3.4.2, in the absence of node

churn, k-Random and k-Regular do no perform any re-wirings, and thus do not introduce

measurement overheads. For k-Closest and BR, the active measurement load is identical.

When the cost metric is delay via ping, ICMP messages of size 320 bits each (ECHO

requests/replies) are exchanged once per wiring epoch T . Notice that for established links,

there is no need for active measurements since the cost metric for a link would be available

by virtue of its use. Thus, the overhead is ≈ (n − k − 1) · 320/T bps per node. Using

pyxida, a single (http) request/reply to the pyxida server yields the (virtual coordinate

space) distances between the node initiating the request and all other nodes in the overlay.

This is clearly more efficient than using ping, as it injects ≈ (320+32n)/T bps per node.7

When the metric is system load, there is no overhead imposed on the network as the system

load is measured locally at each node. Finally, when the metric is available bandwidth, our

experimental results showed that the bandwidth needed for accurate probing of available

7Measurements showed that a rate of one message per (one minute) wiring epoch per node was sufficient
to sustain a coordinate system in PlanetLab.

60

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600
T

ot
al

 n
um

be
r

of
 r

e-
w

iri
ng

s
pe

r
ep

oc
h

time (mins)

Metric: Delay (via ping)
k=8
k=5
k=4
k=3
k=2

Figure 3·2: PlanetLab experiments showing the total number of re-wirings
per epoch in the system as a function of the number of neighbors k in
EGOIST overlay.

bandwidth between two nodes in the overlay is less than 2% of the pairwise bandwdith.

Link-State Protocol Load: The overhead (in terms of additional injected traffic) im-

posed by the link-state protocol is also low. Each node broadcasts a packet with its ID, its

neighbors’ IDs and the cost of the established links to its k neighbors every Tannounce < T .

The header and padding of the link-state protocol messages require a total of 192 bits,

and the payload per neighbor requires 32 bits. Thus, the overhead in terms of injected

traffic on the overlay is ≈ (192 + 32 · k)/Tannounce bps per node. In our experiments we

set Tannounce=20 secs. The above can be seen as an upper limit, as only unique link state

messages forwarded in the overlay (as mentioned in Section 3.3.1). In our implementation,

no node spent more than 1 Kbps to maintain the network.

Re-wirings Overhead: Figure 3·2 (left) shows the total number of re-wirings per (one

minute) epoch for the entire overlay over time. The results suggest that the re-wiring rate

decreases fast as EGOIST reaches a “steady state” and that the re-wiring rate is minimal

for small values of k. Here we note that as k increases the re-wiring rate increases, but

the improvement (in terms of routing cost) is marginal, as a small number of outgoing

links is sufficient to significantly decrease the cost. This is evident in Figure 3·3. Finally,

we also note that the re-wiring rate can significantly be decreased (with marginal impact

on routing cost) by requiring that re-wiring be performed only if connecting to the “new”

61

 1

 1.2

 1.4

 1.6

 1.8

 2

 2 3 4 5 6 7 8

 50

 40

 30

 20

 10

 1

N
or

m
al

iz
ed

 C
os

t

T
ot

al
 n

um
be

r
of

 r
e-

w
iri

ng
s

pe
r

ep
oc

h

k

Metric: Delay (via ping)
BR cost/cost full mesh

BR re-wirings

 1

 1.2

 1.4

 1.6

 1.8

 2

 2 3 4 5 6 7 8

 6

 4

 2

 1

 0.1

N
or

m
al

iz
ed

 C
os

t

T
ot

al
 n

um
be

r
of

 r
e-

w
iri

ng
s

pe
r

ep
oc

h

k

Metric: Delay (via ping)
BR(0.1) cost/full mesh cost

BR(0.1) re-wirings

Figure 3·3: PlanetLab experiments showing relationship between individ-
ual cost and total number of re-wirings per epoch in the system with exact
best response and an approximate best response with ǫ = 10% (left and
right respectively), as a function of the number of neighbors k in EGOIST
overlay.

set of neighbors would improve the local cost to the node by more than a given threshold

ǫ. We refer to this modified version of BR as BR(ǫ). Figure 3·3 (right) confirms this by

showing the number of re-wirings and resulting performance when ǫ = 10%.

We also measured the memory and CPU consumption using time of Unix. In Figure 3·4

we show the average CPU and memory utilization, along with the average bandwidth con-

sumption to maintain the overlay per node. Both the CPU and memory consumption is

close to 0%, and the bandwidth consumption per node is negligible. It is worth mention-

ing that the in-degree was quite uniform in all our experiments, thus no node allocated

significantly more CPU power, memory, or bandwidth than any other in the overlay.

3.4.4 Effect of Churn

In the original SNS formulation,the graphs resulting from the SNS-game as well as from the

empirical wiring strategies were guaranteed to be connected, so they could be compared

in terms of average or maximum distance. Node churn, however, can lead to disconnected

graphs, therefore we have to use a different metric. For that purpose, we choose the

Efficiency metric [64], where the Efficiency ǫij between node i and j (j 6= i) is inversely

proportional to the shortest communication distance dij when i and j are connected. If

62

 0

 0.5

 1

 1.5

 2

100806040201008060402010080604020

2

1.5

1

0.5
%

 c
on

su
m

pt
io

n
(C

P
U

, m
em

or
y)

ba
nd

w
id

th
 c

on
su

m
pt

io
n

in
 K

bp
s

number of nodes

CPU 				Memory 				Bandwidth

Figure 3·4: Percentage of CPU and memory consumption, and bandwidth
consumption in EGOIST. The metric is delay via ping.

there is no path in the graph between node i and j then ǫij = 0. The Efficiency ǫi of a

node i defined as:

ǫi =
1

n− 1

∑

j 6=i

ǫij

To evaluate the efficiency of nodes in EGOIST overlays under churn, we allow each of the

n = 50 nodes in the overlays to exhibit ON and OFF periods. During its ON periods,

a node “joins” the overlay, performs re-wiring according to the chosen policy, and fully

participates in the link-state routing protocol. During its OFF periods, a node simply

drops out from any activity related to the overlay. The ON/OFF periods we use in our

experiments are derived from real data sets of the churn observed for PlanetLab nodes [41],

with adjustments to the timescale to control the intensity of churn.

In addition to evaluating the efficiency of various neighbor selection policies we have

considered so far, we also evaluate the efficiency of HybridBR, which allows a node to

donate k2 = 2 of its links to ensure connectivity (i.e., boost the efficiency of the overlay)

while using BR for the remaining links.

The top plot in Figure 3·5 shows the achievable efficiency of the various neighbor

selection policies when churn is present. As before, the efficiency of the various policies

is normalized with respect to that achievable using BR, and is shown as a function of k.

As with all the metrics we considered so far, BR outperforms all other policies (including

63

HybridBR), but as EGOIST nodes are allowed to have more neighbors (i.e., as k increases),

the efficiency of the HybridBR approaches that of BR, with the efficiency of k-Closest

decisively better than k-Random and k-Regular.

The above results imply that under the level of churn in these experiments, it is not

justifiable for BR to donate two of its links simply to ensure connectivity, especially when

k is small. Notice that BR overlays that get disconnected due to churn will naturally heal

as soon as any of its active nodes decides to rewire. This is so because the (infinite) cost of

reaching the disconnected nodes will act as an incentive for nodes to choose disconnected

nodes as direct neighbors, thus reconnecting the overlay. As noted earlier, re-wiring occurs

every T/n units of time on average (1.2 seconds under our settings), which implies that

the vulnerability of BR to disconnections due to churn is highest for smaller overlays and

if re-wiring is done infrequently. Our results also showed that adding or removing a node

from the overlay does not increase the number of re-wires in the system. Under moderate

churn, and random selection of a node to add or delete, the number of re-wirings in the

system are similar to those reported in Section 3.4.3.

Our last question then is whether at much higher churn rates, it is the case that the

use of HybridBR would be justified. To answer this question, we changed the timescale of

the ON/OFF churn processes to emulate more frequent joins and leaves. The bottom plot

in Figure 3·5 shows the results by plotting the efficiency metric for the various policies as

a function of the churn rate (on the x-axis), which we define (as in [41]) to be the sum of

the fraction of the overlay network nodes that changed state (ON/OFF), normalized by

time T :

Churn =
1

T

∑

events i

|Ui−1 ⊖ Ui|

max{|Ui−1|, |Ui|}
,

where Ui is the new set of nodes in the overlay following an event i that alters the mem-

bership in the set of nodes that participate in the overlay, and ⊖ is the symmetric set

difference. Thus, a churn rate of 0.01 implies that, on average, 1% of the nodes join or

leave the overlay per second. For an overlay of size n = 50, this translates to a join or leave

64

 0

 0.2

 0.4

 0.6

 0.8

 1

 3 4 5 6 7 8N
od

e
E

ffi
ci

en
cy

/B
R

 E
ffi

ci
en

cy

k

trace driven churn, n=50

k-Random
k-Regular
k-Closest
HybridBR

 0

 0.5

 1

 1.5

 2

 2.5

 1e-05 1e-04 0.001 0.01 0.1N
od

e
E

ffi
ci

en
cy

/B
R

 E
ffi

ci
en

cy

churn

parametrized churn, n=50, k=5

k-Random
k-Regular
k-Closest
HybridBR

Figure 3·5: PlanetLab experiments with node churn showing the efficiency
of neighbor selection policies (normalized with respect to BR) as a function
of the number of neighbors k (top) and churn (bottom) for a 50-node EGO-
IST overlay.

event every two seconds.

As expected, when churn rate increases significantly to the point where the average time

between churn events approaches T/n, the efficiency of HybridBR eventually surpasses that

of BR. The results also suggest that under such conditions, the efficiency of both k-Random

and k-Regular fall dramatically, whereas that of k-Closest remains level with that of BR.

3.4.5 Vulnerability to Abuse

As we discussed in section 3.3.3, cheating nodes may attempt to game the system by

declaring false link costs to their neighbors in order to benefit from EGOIST without

contributing their own resources to the overlay. Due to the combinatorial nature of the

optimization problem underlying BR re-wiring, and the out of order rewirings of individual

nodes, it is very hard for individual cheaters to derive the proper costs that will lead to

wirings that will be of benefit to them individually, while harming others. Theoretical

results [7] advocate that such behavior may even lead to worse equilibria for cheaters in

routing games. Thus, in this section, we present results from a series of experiments aimed

to assess EGOIST’s vulnerability to cheaters that misrepresent the cost of their outgoing

links (simply by inflating them), in the hopes of discouraging others from selecting them

as neighbors.

65

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 2 3 4 5 6 7 8In
di

vi
du

al
 c

os
t/c

os
t w

ith
 c

he
at

er

k

one cheater, n=50
Cheater

Non cheaters

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0 2 4 6 8 10 12 14 16In
di

vi
du

al
 c

os
t/c

os
t w

ith
 c

he
at

er
s

population of cheaters

many cheaters, n=50, k=2
Cheaters

Non cheaters

Figure 3·6: PlanetLab experiments with cheater showing the robustness
of neighbor selection policies (normalized with respect to BR) as a function
of the number of neighbors k in the presence of one cheater (top) and many
cheaters for k = 2 (bottom) for a 50-node EGOIST overlay.

As described in Section 3.3.3, one could add mechanisms to detect when cheaters make

such false representations. These mechanisms would take the form of passive or active

measurement audits from other nodes. Determining how often nodes should perform such

random audits and what these nodes do when cheating nodes are identified can be complex.

Thus, it would be preferable if one can show that the impact from such abuse is minimal.

Clearly, an assessment of the impact of the full spectrum of possible false announcements

is beyond the scope of this paper. Thus, we only consider the impact from inflated delay

announcements by a single node and by a variable fraction of the nodes.

In Figure 3·6 (left), we show the impact from a single cheater announcing link costs that

are twice as high as the real ones. The figure shows the individual cost for both the cheater

and for all other normal nodes for different values of k. The cost for both types of nodes is

very close to the cost without the presence of the cheater. We also evaluate the robustness

of EGOIST in the presence of many cheaters (up to one-third of the population). These

results, shown in Figure 3·6 (right), yield consistent observations even when the number

of outgoing links is very small (k = 2), which is the setting in which the impact of bad

re-wirings is amplified. These results provide evidence that EGOIST is fairly robust to

66

abuse by cheaters, even without the deployment of auditing mechanisms.8

3.5 Scalability Issues

In this section we address potential scaling limitations of EGOIST by describing methods

that sample the large space of possible neighbors and compute BR wirings based on only

these samples. We also propose a layered architecture where some of the nodes (e.g.,

commodity or super nodes) are participating in EGOIST, while others use them as relays

to route traffic.

3.5.1 Scalability via Sampling

A sampling technique might not be necessary for current overlay networks that are of

small to moderate sizes, such as PlanetLab, but are likely to become essential in emerging

overlays of massive scale. One such example we foresee is that of future “P2P reincarna-

tions” of overlay routing that allow participating nodes to opportunistically choose overlay

routes with minimal overhead. Unlike today’s systems such as RON, which require central

installation and maintenance by an interested party, these large systems would likely be

self-organizing and self-regulating.

There are several aspects of an overlay routing network that become potentially prob-

lematic at scale: the overhead of the underlying link-state protocol, the cost of performing

local search to compute BR, and scaling questions associated with the sampling process

itself. We view the scaling issues associated with link-state routing as modest, since in

EGOIST we limit the number of monitored and announced links to much less than O(n2)

(i.e., when k ≪ n), and thus the per-node communication complexity scales as a function

of k, not n.

A more significant scaling issue is imposed by the computational complexity of comput-

ing best responses. As mentioned before, computing an exact BR is an NP-hard problem.

8Similar observations were also obtained when the abuse amounted to advertising lower values than the
actual delays.

67

Approximate solutions based on local search perform well in practice. However, even local

search [6], imposes substantial computational burden (polynomial number of iterations,

each one requiring nO(p), p ∈ [1, k] being a parameter of the algorithm). Such high order

polynomial complexity becomes difficult to handle for large n, especially when nodes must

re-wire frequently to cope with the dynamics of the network. To handle such cases, we pro-

pose scaling down the input by computing BR based on a limited number of samples from

the residual overlay graph. This enables us to run a computationally efficient algorithm

(sampling) on the large input, and then run a computationally expensive BR algorithm on

the scaled input. Later we will show that with an appropriate sampling technique in place,

BR retains its performance edge over the other heuristics.

A natural approach would be to compute vi’s BR based on a sample ofm nodes obtained

through unbiased random sampling of the total n nodes of G−i. This would limit the input

to the parts of the distance function dG−i
that involve pairs that belong to the chosen

sample. Also vi would need to measure its distance to only those m samples. As we will

show experimentally, such an approach has some value, but there is much more to gain by

a simple biased sampling.

Topology-Based Biased Random Sampling: The basic idea is to take m′ > m random

samples and apply topological filters to keep thosem that are likely to yield the best results.

The heuristic approach we apply is to bias our samples towards nodes with the largest

neighborhoods of radius r (e.g., with the highest number of distinct nodes reachable in r

hops). Defining F (vj) to be the size of the neighborhood of radius r around vj , we give

consideration to |F (vj)| as well as the distances of nodes within F (vj) from the perspective

of the source vi. This reflects the intuition that an ideal candidate for vi has a large

neighborhood of nodes, many of which are relatively close to vi. Our ranking function bij

establishes a priority order on candidates vj as follows:

bij =
|F (vj)|

∑

u∈F (vj)
d(vi, u)

Using this ranking function, vi chooses a sample of m nodes with the highest bij values

68

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

 6 8 10 12 14 16 18 20

ne
w

co
m

er
’s

 c
os

t/B
R

-n
o

sa
m

pl
in

g
co

st

size of the sample

on a BR graph with n=295 nodes, k=3
k-Random
k-Regular
k-Closest

BR
BRtp

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

 6 8 10 12 14 16 18 20

ne
w

co
m

er
’s

 c
os

t/B
R

-n
o

sa
m

pl
in

g
co

st

size of the sample

on a k-Random graph with n=295 nodes, k=3
k-Random
k-Regular
k-Closest

BR
BRtp

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

 6 8 10 12 14 16 18 20

ne
w

co
m

er
’s

 c
os

t/B
R

-n
o

sa
m

pl
in

g
co

st

size of the sample

on a k-Closest graph with n=295 nodes, k=3
k-Random
k-Regular
k-Closest

BR
BRtp

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

 6 8 10 12 14 16 18 20

ne
w

co
m

er
’s

 c
os

t/B
R

-n
o

sa
m

pl
in

g
co

st

size of the sample

on a k-Regular graph with n=295 nodes, k=3
k-Random
k-Regular
k-Closest

BR
BRtp

Figure 3·7: PlanetLab Simulation. The cost incurred by simple wiring
strategies (k-Random, k-Regular, k-Closest with random sampling), BR
with random sampling, and BR with topology-based biased random sam-
pling (normalized against the cost of BR with no sampling) in a BR
(top-left), k-Random (top-right), k-Closest (bottom-left), and k-Regular
(bottom-right) graph.

and computes its BR based on these nodes only.

Finally, we need to verify that this sampling procedure itself is not prohibitive. Standard

random-walk based methods can query a set of m′ pseudorandomly-generated nodes in a

k-regular graph with suitable expansion properties using O(m′ log n/ log k) messages. Each

node must be able to approximately maintain and express the number of nodes within its r-

radius neighborhood, which requires O(kr) space. Nodes also must compute the bij values,

which requires O(m′kr) distance lookups. All of this amounts to a reasonable overhead for

the small fixed values of r and k that we focus on in this work.

69

Experimental Validation: To assess scalability, instead of our 50 node PlanetLab proto-

type, we use a publicly available trace 9 containing delays obtained using pings between all

pairs of existing PlanetLab sites.10 We use these data sets to conduct simulations. We test

the four neighbor selection strategies of Section 3.3.2. In our simulation, an n-node network

is constructed incrementally using the BR strategy (without sampling). A newcomer joins

the network using one of the following strategies: k-Random, k-Regular, k-Closest, and

BR, each with random sampling, and BR with topology-based sampling. In the simulation,

n = 295, k = 3, and the neighborhood size r = 2. In Figure 3·7 (top-left), we plot the

ratio of the newcomer’s cost to the cost of using BR with no sampling for different sample

sizes. The line labeled “BR” denotes the ratio when the newcomer uses BR with random

sampling; “BRtp” denotes BR with topology-based sampling.

Our general observations across the experiments are that BR with sampling fares better

than any of the three empirical rules, and that even for small m/n, the newcomer’s cost

ratio is not much larger than 1. We also find that topology-awareness in sampling improves

the BR wiring significantly in all cases considered. It is also worth mentioning that the

performance of simple heuristics with random sampling in a BR graph is good, due to its

highly optimized structure. In graphs formed by nodes that follow the previously mentioned

random or myopic heuristics, we observed that the performance gain of topology-biased

random sampling is substantially better compared to any other wiring policy which is based

on random sampling (see Figures 3·7).

3.5.2 Layered Architecture

An architectural way to achieve sampling is to deploy a layered version of EGOIST, where

some of the nodes e.g., commodity or supernodes, are responsible to relay traffic of nodes

that do not participate in EGOIST, henceforth called non-overlay nodes. The non-overlay

sender first initiates a request to the bootstrap server to receive a list of overlay nodes that

9http://ping.ececs.uc.edu/ping/, accessed on July 10, 2006.
10We are interested in sampling one node per AS, in order to achieve a more representative view of the

network.

70

participate in EGOIST. The same process is initiated by the non-overlay receiver. The

receiver non-overlay node contacts the non-overlay sender and sends the IP of the overlay

node to which he will receive service. The previous “hand-shaking” also ensures that both

parties agree to exchange traffic. The sender then encapsulates the IP of the receiver,

adds as a destination of each packet the IP of the overlay node attached to the receiver and

sends the packets to its closest overlay nodes. The packets are routed using EGOIST (if the

attached overlay nodes of the sender and receiver are not identical), and when the packet

reaches the overlay node attached to the receiver, the overlay node decapsulates the header

and sends the packet to the non-overlay receiver. An application programming interface

(API) to support this application in provided as an artifact of EGOIST (see Section 3.7).

3.6 Applications

EGOIST is a general purpose overlay routing network that can be used by applications to

supplement traditional IP routing. The main difference between an EGOIST overlay and

other routing overlays is that by virtue of its BR-wiring strategy, an application contacting

its local EGOIST node can be assured that this node will provide better paths than a

node that connects to the overlay non-selfishly, e.g., using previously-mentioned random

or myopic heuristics. Stated otherwise, the selfish selection of neighbors in EGOIST is

just a manifestation of the desire of local applications to get the best possible service for

themselves.

An application can connect to an EGOIST node by using a protocol interface that the

latter exposes. This is an example of an application instance using EGOIST as a virtual

router to communicate over the overlay with another application instance getting access to

the overlay from a different EGOIST node. In the artifacts section we provide information

on how to access our publicly available implementation which permits using PlanetLab

nodes as such virtual routers.

A second option is to integrate EGOIST directly into an application through an API and

a corresponding library which we have implemented and made available. In this case, both

71

the application and its local EGOIST instance run at the same node. We have evaluated

the performance benefits that EGOIST offers to different kinds of applications on top of

EGOIST, including multiplayer P2P games, multi-path file transfer, and real-time traffic

over IP.

3.6.1 Multiplayer P2P Games

Recently there has been intense interest [11, 10] for porting online multi-player games into

P2P architectures that scale bett er and do not require dedicated expensive infrastructure.

In this section we demonstrate the potential value of EGOIST for such applications.

We obtained from [10] a trace containing the movements of 100 players (artificial in-

telligence bots) participating in a game of Quake III. In Quake III, players are located in

a virtual 3D world and interact frequently as they come into contact to fight each other.

Two common events of the game are the creation of a new object (e.g., a missile), and the

update of an existing object (e.g., update of its coordinates). Each update is about 230

bytes. All these updates have to be delivered to all the players that are in the vicinity of

the affected object in the virtual world. This requires for building a multicast tree rooted

at each player that is updating some of its objects.

We distributed the 100 players among our 25 EGOIST nodes on PlanetLab and used

the EGOIST overlay to deliver the updates. We set k = 2 and mapped the L3 distance of

players i and j in the virtual world into the preference weight pij that defines the preference

that the local EGOIST node of i has for sending messages to the local EGOIST node of

j. Since the main requirement in this case is for high interactivity, we employed the delay-

based version of BR. With this mapping, nodes pick as neighbors other nodes that host

players that are closer in the virtual world which implies interaction, and thus requirement

for small end-to-end delay. The value k = 2 is justified from the fact that due to human

perceptual limitations, players usually pay attention and interact with a small number of

other players [10].

In the above setting, we replayed the trace for a period of three minutes involving

72

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450

C
D

F

update latency (msecs)

BR
k-Closest

k-Random
k-Regular

Figure 3·8: Comparison of update latencies for various neighbor selection
policies.

more than 108,000 events. We compared the update latencies when sent over EGOIST

and over k-Random, k-Closest and k-Regular wiring policies. The cumulative distribution

function of update latencies is illustrated in Figure 3·8. Both the median (∼65 msecs)

and the 95th-percentile update latency over EGOIST is less than half of the corresponding

latencies over k-Random and k-Regular, and less than two-thirds of those over k-Closest.

Experimentally, it has been shown that update latency higher than 200 msecs may effect

the quality of user’s experience [10]. More than 90% of packets sent over EGOIST were

delivered earlier than 200 msecs and only 60-70% under the other topologies.

3.6.2 Multipath File Transfer

File transfer applications can take advantage of redirection opportunities offered by (bandwidth-

based) EGOIST to increase their effective end-to-end transmission rates by performing

multipath transfers through first-hop neighbors. The idea is quite simple: Source node vi

uses EGOIST to establish up to k parallel sessions to a target node vj , each one redirected

through a different first-hop EGOIST neighbor vl ∈ si. Each session requires establishing

two virtual channels over EGOIST: vi → vl (single-hop overlay path) and vl → vj (multi-

hop overlay path). The purpose of redirection through neighbors is to take advantage of

73

.............

EGOIST Routing

vi

vj

v1 v2 v3

1Mbps2Mbps
ASA ASB

AS1 AS2
AS3

Figure 3·9: Source node vi sending to target vj through its k = 3 im-
mediate EGOIST neighbors v1, v2 and v3. vi takes full advantage of its
2-homed ASi: vi → v1 and vi → v2 use the maximum allowed bandwidth at
the peering point with ASA (2 Mbps), whereas vi → v3 uses the maximum
allowed bandwidth at the peering point with ASB (1 Mbps). Assuming no
bottlenecks exist further down, this gives an aggregate transmission rate of
3 Mbps, whereas any single-path scheme (even with parallel connections)
would have limited to 1 or 2 Mbps.

potentially multihomed source and target ASes (henceforth ASi and ASj) and thus alle-

viate bottlenecks caused by session-level11 traffic shaping and rate-limiting at AS peering

points. 12 As long as the number of EGOIST neighbors k is sufficiently larger than |ASi|,

the number of ASes to which ASi has a peering relationship, there is good chance that at

least one overlay neighbor is behind each peering point. Redirecting through this neighbor

permits vi to utilize up to the maximum allowed rate at that peering point (see Figure 3·9

for an illustration). If peering points permit a given maximum rate for each session, the

aforementioned multi-path redirection can increases the maximum total rate out of vi by

up to a multiplicative factor |ASi| (observe that establishing the same number of parallel

connections going over the same path would not yield the same benefit, since they will

all be part of a single session, and hence be subject to the same rate limits at peering

points). Of course, the real end-to-end benefit can be much smaller due to bottlenecks on

the overlay paths from vl to vj , especially in the last hops before closing-in on the target vj

(large |ASj |’s working again in favor of the application). To get a feeling for the potential

11A session identified as a (source,target) IP pair.
12http://www.wired.com/software/webservices/news/2007/08/p2p

74

 1
 2
 3
 4
 5
 6
 7
 8
 9

 2 3 4 5 6 7 8
av

ai
la

bl
e

ba
nd

w
id

th
 g

ai
n

k

Metric: Available Bandwidth

peers allow multipath redirections
source establ. parallel connections

Figure 3·10: PlanetLab experiment showing the available bandwidth gain
between source node ui and target node uj when the source establishes k
parallel connections and when all the peering points between the aforemen-
tioned nodes, allow multi-path redirection in our 50-node EGOIST overlay.

benefits on a real topology, we perform the following experiment.

In our 50-node EGOIST overlay, we select a source-target pair and we estimate the

available bandwidth that can be realized if the source establishes k parallel connections

going through its immediate neighbors. Then we compare this value with the available

bandwidth that is realized when the source routes the traffic using the unique path to the

destination offered by IP. We repeat the experiment for all source-target pairs and we plot

the average along with the 95th-percentile confidence intervals in Figure 3·10. Furthermore,

we estimate the theoretically maximum available bandwidth that can be realized when all

peers allow multipath redirections for all source-target pairs (i.e., when the total bandwidth

becomes equal to a max-flow from vi to vj).

3.6.3 Real-time Traffic over IP

Applications that transmit real-time (i.e., delay- and loss-sensitive) traffic can use the

redirection infrastructure of (delay-based) EGOIST to send additional copies of the original

stream through multiple disjoint paths, thus improving the chance that at least one copy

of every packet will reach its destination before the designated playout time [62]. Some

P2P voice-over-IP (VoIP) applications, like Skype, are already in position to implement

such schemes as they have achieved a huge user-base that provides ample opportunities for

75

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6

 2 3 4 5 6 7 8
N

um
be

r
of

 d
is

jo
in

t p
at

hs

k

Metric: Delay

Figure 3·11: PlanetLab experiment showing the available bandwidth the
number of disjoint paths between the source node ui and target node uj

when the source establishes k parallel connections in our 50-node EGOIST
overlay.

redirection. EGOIST on the other hand can assist applications that have not yet achieved

high penetration (e.g., high quality video-conferencing) and thus would otherwise have to

rely on delay jitter-prone single-path delivery. Substantiating this claim requires measuring

precise timing information and making sure that OS introduced delays do not interfere with

the purpose of the experiment. We leave such elaborate experiments to future work. Our

initial results show that the number of disjoint paths increases linearly with the number of

parallel connections, as illustrated in Figure 3·11.

3.7 Artifacts

Our EGOIST prototype is currently deployed on PlanetLab. A live demonstration of the

overlay routing topolopy maintained by EGOIST can be accessed from the EGOIST project

web site at http://csr.bu.edu/sns/. Traces from all experiments used in this paper are

also available from the project web site. EGOIST source code has also been released to

the research community.

76

3.8 Chapter Summary

In this section we have shown how recent theoretical results on Selfish Neighbor Selection

(SNS) could be leveraged for overlay routing applications. Through the development and

deployment of our EGOIST prototype routing network on PlanetLab, we have established

that Best-Response (BR) neighbor selection strategies can indeed be realized in practice,

that they provide a substantial performance boost when compared to simpler empirical

strategies, and that they scale much better than full-mesh approaches which require in-

tensive monitoring of O(n2) links. We have substantiated these benefits under different

performance metrics, active and passive link monitoring strategies, in static and churn-

prone environments, and in the presence of truthful and untruthful nodes. Furthermore,

we proactively equipped EGOIST nodes with the ability to compute their best responses

based on samples of the residual network, so as to be in position to handle possible future

scale growth in overlay routing networks.

77

Chapter 4

Swarming on Optimized Graphs

In previous Chapters we provided evidence in support of the potential benefits selfish

neighbor selection in the network layer offers to network creation and maintenance. Left

unanswered in this previous work, though, is whether the selfish neighbor selection primi-

tives are superior when the neighbor selection takes place in the application layer. To that

end, we focus on file-sharing applications.

In modern file-sharing systems, swarming, i.e., parallel download of chunks of a file

from multiple peers with concurrent upload to other requesting peers, has been one of the

most efficient methods for multicasting bulk data. Many file-sharing systems, including the

popular BitTorrent [24], are using the swarming principle to deliver voluminous amount of

content. A fundamental characteristic of the existing swarming-based systems like BitTor-

rent is that the overlay graph resulting from its bootstrap and choke/unchoke1 algorithms is

mostly ad-hoc, in the sense that it is the outgrowth of random choices of neighboring peers.

This is justified given the scale of P2P file swapping networks. Moreover, to address scala-

bility issues the local scheduling of chunks in the network is based on the well established

Local Rarest First (LRF) heuristic [66] that looks at the peer-set and issues a request for

any missing chunk that is among the least replicated ones in the peer-set. Most of the work

to improve swarming applications focused on changing the choke/unchoke algorithm [24] or

the local scheduling procedures [12]. We argue that any performance improvement that can

be achieved by enhancing the above mechanisms is tied to the topological characteristics

of the file-sharing network. The optimization of the topology might not be critical for P2P

1The choke/unchoke mechanism is responsible to select the immediate neighbors to exchange traffic.

78

file swapping applications, like BitTorrent, where a user might be patient to download the

file. On the other hand, there are many high-performance file-sharing applications, where

the enhancement of the topology is critical.

In this Chapter we consider n-way broadcasting — a class of applications, in which

each one of n overlay nodes must push a very large chunk of data (a distinct file) to all

other n − 1 peers, as well as pull the n − 1 files pushed by these other peers. Once com-

pleted, this push-pull cycle may be repeated with new sets of files. Applications using

n-way broadcasting would involve small/medium-sized networks, as they are inherently

of n2 nature. Examples include high-performance applications like distribution of large

scientific data-sets in grid computing, distribution of large traffic log files for network-

wide distributed intrusion/anomaly detection schemes [68], synchronization of distributed

databases [9], and several other enterprise applications. Contrary to the prevailing as-

sumption underlying the design of BitTorrent-like systems, the nodes that make up such

networks are basically cooperative in routing each other traffic (at an extreme case they

belong to the same administrative authority).

Even for relatively small networks, n parallel broadcasts of distinct large files can create

data volumes that are impossible to handle via centralized solutions: uploading each file to

a centralized server and then copying it back to all destinations in a point-to-point manner

means that the same file is transmitted O(n) times over the same link, i.e., imposing an

O(n) stress on the physical links.

n-way broadcast via swarming: Swarming is clearly an attractive approach to sup-

porting n-way broadcast applications. The obvious solution is to outsource the push-pull

functionality to BitTorrent: set-up n different torrents, each one seeded by a different node.

In this Chapter, we question the effectiveness of BitTorrent for n-way broadcasting

(which is not what it is primarily designed to support). In particular, we note that Bit-

Torrent runs on the topologies that result from the composition of its bootstrapping and

choke/unchoke algorithms. These topologies are mostly unoptimized. Indeed, the only

topological optimization in BitTorrent is a local one: under the choke/unchoke algorithm,

79

fast peers are matched up with other fast peers from within the same randomly bootstrapped

neighborhood. By virtue of the relatively small size of neighborhoods compared to the entire

network, the resulting topology is close to being random. While randomly-bootstrapped

graphs may possess desirable theoretical properties (such as small diameters), they are

likely to be inefficient when compared to graphs that are systematically constructed to

optimize a specific application. Notice that BitTorrent’s matching of fast nodes is mostly

in the protocol as an efficient tool against free-riding, rather than as a conscious attempt

to optimize the overall overlay topology for applications such as n-way broadcast.

Swarming over optimized overlays: For n-way broadcast applications (as well as for

other potential classes of applications), the overriding goal is to optimize the efficiency of

the entire overlay as opposed to creating a tit-for-tat environment to reign in selfish, free-

riding behavior of individual nodes. Also, the scale of the applications we envision makes

it possible/practical to optimize the construction of the overlay, especially if distributed

optimization is used.

Armed with this realization, our goal will be to construct highly efficient topologies to be

used by swarming protocols for n-way broadcast. Specifically, we construct an optimized,

common overlay network, upon which swarming is used. In order to control the stress of

the physical links supporting the overlay, we impose an upper bound on the degree of the

nodes in the constructed overlay network.

Next we present justification for several of the salient features of our solution – features

that will be developed and presented fully later in the chapter.

Why swarming on top of an overlay? Because hop-by-hop relay of the entire file over a

shortest-path tree embedded on the overlay topology and rooted at the seed node would

take too long. We want to harness the power of parallel downloads as exemplified in

BitTorrent.

Why use a common overlay? Because a topological optimization requires monitoring the

performance of overlay links, and we want to amortize the cost of such monitoring — pay

it only once per link and reuse the result for the benefit of all n transmissions (and avoid

80

monitoring the same link up to n times as can happen if one builds n independent overlays).

How could swarming benefit from an end-to-end optimized overlay? Our overlays are opti-

mized for end-to-end performance over multi-hop paths, e.g., by maximizing the minimum

available bandwidth to any destination over multiple paths, or by maximizing the total

available bandwidth to all destinations over all available paths. From a single node’s per-

spective, swarming involves point-to-point transfers within the neighborhood of that node.

Each node, however, has in its neighborhood nodes that also belong to other “adjacent”

neighborhoods. Noting this, one can see that, through swarming, data chunks eventually

reach their destinations through multi-hop paths formed through single hop transfers be-

tween neighborhoods. If these multi-hop paths are end-to-end optimized, then swarming

will be more effective in operating upon them as compared to upon unoptimized paths.

Why optimize the overlay based solely on network characteristics, without consideration of

data availability? Arguably, one could conceive of more general overlay constructions in

which neighbors are selected based on criteria involving both the network characteristics

and the availability of chunks at each candidate connection point. In our work, we adopt a

bandwidth-centric/data-agnostic approach to the construction of the overlay for two main

reasons: (1) for large objects it is high bandwidth that leads to small delivery completion

times and high object throughput; (2) the global state in terms of available chunks per

node changes too frequently (with each successful chunk exchange between two nodes),

resulting in an optimized topology that changes too frequently to be of practical use. The

fact that we do not consider data availability in the construction of the overlay does not

mean that data availability does not play a role in our approach: it does, but not at

the overlay construction time-scale. Specifically, we advocate a “two-pronged approach”

operating at two distinct time scales: at a coarse time scale, we address issues related to

network characteristics through the construction of a dynamic, distributively optimized

overlay, and at a finer time scale, we address issues related to data availability through the

upload/download scheduling algorithms employed in the swarming protocol that runs on

top of the overlay.

81

4.1 Background

This work is the fusion of two very recent thrusts in networking research: network creation

games and swarming protocols. Network creation games appeared in computer science with

the work of Fabrikant et al. [34] in which a set of nodes forms a network in a distributed

manner driven by self-interest — each node pays for the creation of a number of links to

other “neighbors” so as to minimize a hybrid cost that captures the purchase cost of these

links and the delay for routing packets to all other destinations using own and remote

links. The model targeted the creation of physical telecommunication networks through

peering agreements between ISPs (hence the explicit modeling of the cost of buying a link).

In Chapter 2, we studied the “capacitated” version of the above problem, targeting the

construction of overlay routing networks — each node is given a bound on the number

of immediate peering relationships that it can establish (defined by the protocol that im-

plements such an overlay network) and selects the best neighbors so as to minimize its

sum of distances to all destinations through shortest-path routes over the resulting overlay

topology. These works differ fundamentally from the one presented in the Chapter in that

they target routing, i.e., they assume that a packet from v to u is of interest only to u.

Intermediate nodes w that lay on the overlay path from v to u are there just to assist in

the routing of the packet. In the setting described in this Chapter, each node is broad-

casting a file to all destinations and thus intermediate nodes are also receivers in addition

to being relay points. More fundamentally, in our case the delivery of information from

v to u occurs not through a single path but (potentially) through all the available con-

nected paths between the two end-points (because the file is cut into chunks which travel

in parallel along different paths on the overlay). For this reason we employ max-flows as

building blocks for designing the overlay (as opposed to shortest-paths which are used in

point-to-point routing presented in the previous Chapters. Max-flows reflect better the

nature of our application (broadcasting) as well as the nature of the employed technique

for implementing it (swarming).

82

The BitTorrent protocol [24] has established swarming as one of the most fresh and

promising ideas in contemporary networking research and thus has kicked-started a (tidal)

wave of research articles in the area. Our fundamental difference from this body of work,

whether analytic, e.g., Qiu and Srikant [93], Massoulie and Vojnovic [80], Kumar and

Ross [57], experimental, e.g., Bharambe [12], or measurement based, e.g., Izal et al. [48],

Legout et al. [66], is that we have substituted the (close to) random graph resulting from

BitTorrent’s bootstrap and choke/unchoke algorithms with a highly efficient distributively

optimized graph. As we show later on, such a switch boosts the performance of a swarming

protocol running on top of it. We are able to obtain such highly efficient graphs because

our interest is on smaller networks. We show that at such scales one can do much better

than close to random.

Some other relevant works are the following ones. Massoulie et al. [79] recently showed

that a simple distributed randomized algorithm can achieve the theoretical optimal broad-

cast rate given by Edmond’s theorem [31] for a source node in a flow network. Compared

to this work, we let each node select its neighbors and thus participate in the construction

of the flow network, as opposed to taking it for granted. Gkantsidis and Rodriguez [40]

have proposed the use of network coding as an alternative to BitTorrent’s chunk scheduling

algorithm. The performance benefit/added complexity ratio of employing network coding

is not yet generally agreed upon [66]. Although we focus on BitTorrent-like swarming here,

our optimized topologies should also benefit network-coding based swarming because they

are oblivious to whether network coding is used or not.

Guo et al. [44] and Tien et al. [114] look at the design of multi-torrent systems. Their

contribution is mostly on the measurement and the design of inter-peer incentive mech-

anisms for peers that participate in multiple torrents concurrently. They do not look at

overlay construction issues. Interestingly, Tien et al. [114] provide justification for one of

our design choices, which is to enforce that at any time there should be only one active

torrent between any two nodes (more in Section 4.3). They show that deviating from this

choice and allowing transferring between two nodes multiple chunks in parallel (one for

83

each torrent), slows down the system by over-partitioning the upload bandwidth of nodes.

Other end-system multicast systems such as SplitStream from Castro et al. [19] and

Bullet from Costic et al. [55] could be used to support n-way broadcasting by creating

a separate overlay for each source. The problem with this approach is that there is no

coordination across different overlays and thus there can be performance inefficiencies as

well as significant overheads due to the redundant monitoring of the same physical paths

multiple times from different overlays. Our approach is to construct one overlay for all

sources and thus jointly optimize as well as share the monitoring cost.

The only work we are aware of on the intersection of overlay creation and BitTorrent

is a very recent one from Zhang et al. [120]. It looks at the formation of Nash equilibria

topologies in view of download-selfish peers that participate in a single torrent. Our over-

lay formation, although distributed and based on local utility functions is: (1) primarily

targeting the optimization of the social utility of the network, meaning that all nodes are

assumed to be under common control, and (2) considering both upload and download per-

formance for multiple torrents, one at each node. We examine selfishness issues and how

these could be addressed towards the end of our article, but this is just a supplement of

our main contribution.

4.2 Peer-set Selection

Let V = {v1, v2, . . . , vn} denote a set of nodes. Node vi selects k other nodes to be in

its peer-set si = {vi1 , vi2 , . . . , vik} and establishes bidirectional links to them. Let S =

{s1, s2, . . . , sn} denote the edge set of the overlay graph G = (V, S) resulting from the

superposition of the individual peer-sets. Each link of G is annotated with a capacity cij

which captures the available bandwidth [50] (availbw) on the the underlying IP layer path

that goes from vi to vj . Capacities can be asymmetric, meaning that cij 6= cji in the

general case. Let MF (vi, vj , S) denote the resulting max-flow from vi to vj under S. Let

also Φ(vi, S) and Ψ(vi, S) denote the minimum max-flow from vi to any other node under

S, and the sum of max-flows from vi to all other nodes under S, respectively, i.e.:

84

Φ(vi, S) = min
vj∈V−i

MF (vi, vj , S),

Ψ(vi, S) =
∑

vj∈V−i

MF (vi, vj , S)

In the above definitions, each max-flow from vi to an individual destination is computed

independently of other max-flows from the same node to different destinations (i.e., each

one is computed on an empty flow network G). These definitions should not be confused

with multi-commodity flow problems in which multiple distinct flows co-exist. 2

Definition 9 (Max-Min and Max-Sum peer-sets) A peer-set si is called Max-Min if it

maximizes the minimum max-flow of node vi, i.e., Φ(vi, {si} + S−i) ≥ Φ(vi, {si′} + S−i),

∀si′ 6= si, where S−i denotes the superposition of the peer-sets of all nodes but vi. Similarly,

a peer-set is called Max-Sum if Ψ(vi, {si} + S−i) ≥ Ψ(vi, {si′} + S−i), ∀si′ 6= si.

Lemma 1 Finding a Max-Min or Max-Sum peer-set for vi given S−i is an NP-hard prob-

lem.

Proof: See Appendices C and D.

These peer-set selection policies optimize the connectivity of a given node to the re-

maining network. One could say that this constitutes selfish behavior. This is indeed

the case if the nodes use this connectivity to only disseminate their own file. However,

when they also indiscriminately relay the files of others, which is the assumption for the

applications we consider, then optimizing one’s connectivity boosts the aggregate social

performance of the network. Later on, in Section 4.6 we discuss what happens when the

swarming protocol (running above the overlay) ceases to be indiscriminate with respect to

the upload quality it gives to local and remote files.

Why Max-Min and Max-Sum? Given a flow network G, the broadcast problem asks

what is the maximum (broadcast) rate at which a source vi can deliver its stream con-

currently to all other nodes. Edmonds showed in [31] that the broadcast rate is equal

2Note also that to derive a social objective function for n-way broadcasting is too complex.

85

to minvj∈V−i
mincut(vi, vj), which in view of the max-flow/min-cut theorem is equal to

minvj∈V−i
MF (vi, vj). Therefore, the Max-Min peer-set is the peer-set that maximizes the

broadcast rate of a node, or conversely the delivery rate to the slowest receiving peers. It

does so by placing the links so as to boost the max-flow to these slowest peers. Of course

for this to be possible there must be available bandwidth to be utilized at the IP level (this

is reflected on the cij ’s which steers the peer-set selection, and which are obtained through

measurements as explained in Section 4.3). Edmonds gave an exponential time centralized

algorithm for achieving the broadcast rate, which was later improved to a small polyno-

mial time by Lovasz, Gabow and others [46]. Recently, Massoulie et al. [79] showed that

a simple randomized decentralized algorithm can achieve a delivery rate that is arbitrarily

close to the broadcast rate.

A Max-Sum peer-set on the other hand is a peer-set that maximizes the theoretical

maximum aggregate transmission rate from a node. Contrary to the Max-Min peer-set that

maximizes a provably attainable broadcasting rate, the Max-Sum maximizes only an upper

bound on the aggregate rate which, in the general case, is not attainable due to contention

for link bandwidth when max-flows from the same source to different destinations share

common overlay links.3 We elaborate with an example.

Consider the flow network of Figure 4·1 (top-left) in which all links have unit capacity

and node 1 is the source. Computing each max-flow on an empty network we get that

the max-flow from the source to nodes 2, 3, and 4 is equal to 1 whereas that to nodes 5

and 6 is equal to 2, thereby Ψ(1) = 7. Consider now the maximum real flows that can

exist concurrently from the source to nodes 5 and 6 (top-center). Breaking the file into

two equal parts A and B the source can transmit A at full rate over the dotted paths

(1 → 2 → 5 and 1 → 4 → 6) and B at full rate over the dashed path (only once over

link (1,3)) and achieve concurrent real flows that match the capacity of corresponding

3The contention between max-flows “from” different sources does not come explicitly in these objective
functions. It is captured in our framework through the measured availbw cij : the availbw on a direct
overlay link from vi to vj depends on the capacity of the underlying physical path and the amount of this

capacity already captured by the competing max-flows from other sources. At this level the problem is indeed

a multi-commodity flow.

86

2

1

6

5

4

3
B

1

2

3

4

5

6

A

A 6

1
A,B

A,B

A,B

2

3

4

5

6

1

2

3

4

5

2

1
B

A

A

6

5

4

3

2

1

A’,B’

A’,B’

A’,B’

6

5

4

3

Figure 4·1: Mixing max-flows. Left: empty network. Middle: RF(1,5) and
RF(1,6) co-existing. Right: RF(1,2), RF(1,3), RF(1,4), RF(1,5), RF(1,6)
co-existing. Top: initial network. Bottom: Initial augmented with edges,
(3,2) and (3,4).

max-flows on an empty graph, i.e., RF(1,5)=MF(1,5)=2 and RF(1,6)=MF(1,6)=2. This

is possible because a single transmission of B on the edge (1,3) suffices for contributing to

both RF(1,5) and RF(1,6). Thus the two flows don’t compete for bandwidth on the shared

link and can achieve the same capacity as the corresponding max-flows on empty networks.

This is not, however, generally possible. On the top-right part of the figure we depict the

situation when sending from the source to all destinations (nodes 2-6) concurrently. In

this case the entire file (both A and B) has to go over links (1,2), (1,3), and (1,4) and

thus RF(1,5)=RF(1,6)=1<MF(1,5)=MF(1,6)=2 leading to a real aggregate rate Ψ̃(1) = 5

smaller than the bound Ψ(1) = 7.

Generally, the bound becomes less tight with increasing link density k/n. On the

bottom-left part of Figure 4·1 we add to the previous network two new links: (3,2) and

(3,4). It is easy to verify that the max-flow from the source to nodes 2, 4, 5, and 6 is now

2 and to node 3 is 1, leading to Φ(1) = 9. As before, if we consider only the flows to 5

and 6, it is easy to see that their max-flow values can co-exist. Considering, however, the

flows to all destinations, we see that any partition of the file into parts will inevitably lead

again to all real flows being 1, whereas the corresponding max-flows with the exception

87

of MF(1,3) are now 2.4 In other words, although the new links increased both MF(1,2)

and MF(1,4) by 1 compared to the previous network, they cannot increase any of the real

flows and thus widen the gap between the bound (Φ(1) = 9) and the maximum attainable

aggregate rate (Φ̃(1) = 5).

To sum up, we propose and study these peer selection policies for the following reasons:

(1) Max-flows are used to capture the fact that in a swarming protocol the chunks of a

source node vi travel towards a sink node vj over (potentially) all the available paths of the

overlay graph of point-to-point peer relationships. (2) The gap between the bound on the

aggregate rate Ψ(vi, S) given by a Max-Sum peer-set and the actual maximum attainable

aggregate rate Ψ̃(vi, S) which factors in the sharing of overlay links from multiple max-

flows to different destinations, is reduced by the fact that swarming protocols guarantee

that any chunk is transmitted at most once between any two peers; therefore, Ψ̃(vi, S) can

use an overlay link multiple times (for different max-flows) but would seize bandwidth only

once, thereby reducing its gap from the bound Ψ(vi, S) that assumes that the entire flow

network is available to each individual max-flow from vi. (3) The overlay network has to

be rather sparse (small k) so as to limit the stress on the physical links. Thus the bound

Max-Sum won’t be very much off from the actual achievable aggregate rate and it makes

sense optimizing the peer-set based on it. Regarding Max-Min, this is provably attainable,

and optimal for broadcast rate as discussed earlier.

Since a node cares to both upload its local file to all other nodes as well as download

from them all remote files, we combine the previous definitions in the following objective

functions:

Φ̇(vi, si) = αΦ(vi, {si} + S−i) + (1 − α) min
vj∈V−i

MF (vj , vi, {si} + S−i),

Ψ̇(vi, si) = αΨ(vi, {si} + S−i) + (1 − α)
∑

vj∈V−i

MF (vj , vi, {si} + S−i)

4The fact that the entire file has to go over the edge (1,3), eliminates any chance for increasing the real
flows to nodes 2, 4, 5, and 6 beyond 1.

88

In the above functions, the parameter α regulates the relative importance between

upload and download quality in selecting a peer-set. If the link capacities are symmetric,

then optimizing Φ̇ or Ψ̇ reduces to optimizing Φ or Ψ, independently of α.

4.3 Node Architecture

Nodes consist of the following components: a peer selection module implementing the peer-

set selection algorithms described in Section 4.2; a downloader module, responsible for

issuing requests to neighboring nodes and downloading missing chunks; and an uploader

module, responsible for sending back local and in-transit chunks (an in-transit chunk is a

chunk that does not belong to the local source file). In this Section we describe these three

modules under the assumption that nodes are cooperative in routing each other traffic

(therefore we don’t need mechanisms like choke/unchoke). Later on, in Section 4.6 we

discuss the necessary changes for dealing with selfishly behaving nodes. This should not

lead to the conclusion that nodes are not selfishly re-wire in order to minimize the max flow

to the slowest destination, or maximizing the sum of the max flows to all the destinations

in the overlay. Nodes are cooperative in only routing each other traffic, and may re-wire

to satisfy their abovementioned utilities.

4.3.1 Peer Selection Module

Every time period T , a node: (1) measures its available bandwidth to all other nodes using

pathChirp [98], (2) executes a peer-set selection algorithm from Section 4.2 and connects

to the corresponding nodes (incoming links are left untouched). Since both Max-Min and

Max-Sum are NP-hard, we use fast local-search heuristics to compute approximately opti-

mal peer-sets (which we verified to be always within 1% of the exact optimal for all problem

sizes on which we were able to use integer linear programming to compute the latter). Once

links are established, the node keeps monitoring them (including the incoming ones) and re-

lays their capacity to all other nodes through an overlay link-state announcement protocol.

Remote nodes need this information to compute their own peer-sets. Although each node

89

measures O(n) overlay links every re-wiring epoch T , the monitoring and announcement

overhead is only O(kn) and not O(n2) since only the O(k) established links are monitored

and announced in between the (infrequent) rewiring epochs, where k ≪ n.

4.3.2 The Downloader Module

The downloader module monitors the available chunks on the peer-set and issues requests

for downloading missing ones. The selection is based on the well established Local Rarest

First (LRF) heuristic [66] that looks at the peer-set and issues a request for any missing

chunk that is among the least replicated ones in the peer-set. New requests are triggered

either upon the completion of a download, or if an overlay link is inactive, upon the

detection on the other side of the link of a missing chunk.

4.4 The Uploader Module

The uploader receives requests and sends back chunks. Our baseline uploader allows for up

to 1 active upload (chunk) per overlay link (neighbor). It implements this by maintaining

a FIFO queue for each overlay connection. This choice bounds the number of concur-

rent uploads by the number of neighbors thereby avoiding excessive fragmentation (over

partitioning) of the upload bandwidth of the local (physical) access link of a node (this

choice is backed-up by results appearing in [114]). We also experimented with an uploader

that allows up to 1 active chunk per source file per connection, but this can lead to up

n− 1 parallel uploads per overlay link, which becomes problematic as n increases. Indeed,

over-partitioning the upload bandwidth defeats the entire concept of swarming: it takes

too much time to upload an entire chunk, and during this time the downloading node is

under utilizing its upload bandwidth as it cannot relay the chunk before it completes the

reception. We want to note, however, that our baseline design is by no means claimed to

be optimal. For an example consider a node that can upload to its first k − 1 neighbors

with rate x and to the last one with rate larger than k · x. Then as long as this last neigh-

bor can always find k missing chunks from our node, and can also itself disseminate them

90

further down in the network faster than the k−1 slow neighbors, then the system would be

better off allowing up to k parallel uploads to the fast one at the expense of the slow ones.

Such situations though are rather peculiar and even if they arise, it is difficult to check the

necessary conditions for taking advantage of them, so we leave their investigation to future

work and stick to the simple one-chunk-per-connection policy.

4.5 Performance Evaluation

In this Section we compare the performance of Max-Min and Max-Sum peer selection

policies against three reference selection policies: Random (node vi selects k peers at

random from the set of all nodes in V−i); k-Widest (node vi selects node vj if cij is among

the k largest ones across all nodes in V−i); Rand k-Widest (vi performs k-Widest on a

random subset of V−i of size β · k). Rand k-Widest is included in the evaluation to mimic

the effect of combining random bootstrapping with choke/unchoke in BitTorrent. Unless

otherwise noted, we used β = 2.

We compare these policies in terms of (node,remote file) finish times. We denote f(j, i)

the time that the sink vj completes downloading the file of source vi, assuming that all

exchanges start at time 0. In all experiments we assume that nodes are fully cooperative

in routing each other traffic (they belong to the same authority) and thus follow exactly

and truthfully the peer-selection policies of Section 4.2 and the swarming protocol of Sec-

tion 4.3 (i.e., no choke/unchoke mechanism is employed). We discuss the impact of selfishly

behaving nodes in Section 4.6.

Our performance evaluation is done in two settings. In the first, we assume that the

n-way broadcast is to be carried over the Internet. We do so by evaluating the performance

of a prototype implementation of our architecture on PlanetLab. In the second, we assume

that the n-way broadcast is to be carried on a closed (controlled/isolated) network. We do

so by evaluating the performance of a prototype implementation of our architecture on a

discrete event simulator of the closed network.

91

4.5.1 Case Study I: A PlanetLab Prototype

In this setting, we compare the performance of different overlay topologies when the un-

derlying physical network is the Internet and the overlay nodes are single-homed, i.e.,

all overlay links of a node go over the same physical access link. For this purpose we

selected n = 15 PlanetLab nodes. The distribution of nodes is as follows (we tried to

use operationally stable and geographically diverse node set) : ten in North America

(planetlab4.csail.mit.edu, planetlab2.millennium.berkeley.edu, planetlab2.utep.edu, planet

lab2.acis.ufl.edu, planetlab-8.cs.princeton.edu, planetlab-2.cs.colostate.edu, planetlab5.cs.

duke.edu, planetlab1.cs.northwestern.edu, planetlab3.flux.utah.edu, planetlab01.cs.washi

ngton.edu), one in South America (planetlab-02.ece.uprm.edu), three in Europe (planet2.

zib.de, planet2.colbud.hu, planetlab3.xeno.cl.cam.ac.uk), and one in Asia (planetlab1.net

media.gist.ac.kr). Each one of the aforementioned nodes disseminated a unique 100MBytes

file and allow it to connect to k = 2 neighbors (and accept additional incoming links). No-

tice that we limited our experiment to only 15 nodes and only 100MBytes per node so

as to keep the amount of exchanged traffic on PlanetLab at reasonable levels, while also

allowing us to monitor the network throughout the experiment. Notice that if data were to

be transfered in a point-to-point manner, then it would amount to over a Terabyte for each

execution of the entire experiment: 5 different peer-set selection policies, each one generat-

ing 15 ·14 ·100MBytes of data at each run, and repeated 10 times to get confidence intervals

(the experiment was performed between June 4th and June 30th). We let the re-wiring

epoch be T = 10 minutes and the measurement/announcement epoch for existing links

be 2 minutes. Also we set α = 0.5 to indicate that nodes care equally for download and

upload quality. In all our experiments we used pathChirp [98], a light, fast and accurate

tool, which fits well with the PlanetLab-specific constraints, namely it does not impose a

high load on PlanetLab nodes, since it does not require the transmission of long sequences

of packet trains, and does not exceed the max-burst limits of PlanetLab. pathChirp is

an end-to-end active probing tool, which requires the installation of sender and receiver

module of the aforementioned tool in each node. The additional overhead of the tool in

92

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

av.bwth

C
D

F

2 4 6 8 10 12 14

2

4

6

8

10

12

14

peer id

pe
er

 id

20

40

60

80

100

120

140

160

180

Figure 4·2: PlanetLab experiment, empirical CDF and scatter plots of
available bandwidths.

terms of bandwidth consumption is negligible and does not affect the performance of the

content distribution. We limited the maximum experiment duration to 10 seconds per

peer (thus a full estimation for the available bandwidth from any node to all the other

nodes was achieved in less than 2 minutes) and we used as available bandwidth the average

available bandwidth (per peer) observed during the experiment. In Figure 4·2 we plot the

cumulative distribution function (CDF) of the pairwise available bandwidth as well as the

scatter plot illustrating the available bandwidth among nodes of a typical experiment in

PlanetLab. The diversity of available bandwidth between peers that observed was moder-

ate. We did not observe huge variability of the available bandwidth while performing our

experiments (variability was limited to the available bandwidth among a few nodes only).

In order to perform the experiment, we modified both the client and the tracker part.

We used the mainline 4.0.2 BitTorrent client (written in python). We disabled the

choke, unchoke and optimistic unchoke functionality and we set no limits for both the

upload and download rate as well as the number of active peers. Although we are aware

of the intrinsic limitations of PlanetLab as well as the PlanetLab policy of fair sharing

of bandwidth among slices that use the same node, we were able to achieve very high

upload and download rates (close to the estimated available bandwidth). To minimize the

interaction of our experiment with other bandwidth demanding experiments, we performed

the experiments after monitoring the activity of competing slices for bandwidth in the

selected nodes.

93

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

RandomRnd kWkWMaxSumMaxMin

N
or

m
al

iz
ed

 ti
m

e

average finish time per topology

 0

 0.5

 1

 1.5

 2

 2.5

RandomRnd kWkWMaxSumMaxMin

N
or

m
al

iz
ed

 ti
m

e

worst finish time per topology

Figure 4·3: PlanetLab experiment, performance evaluation of different
wiring strategies.

We used the phpbttrkplus-2.2 BitTorrent tracker, which is a php-based tracker that

maintains records about the activity of nodes (in a mysql database). We installed the

aforementioned tracker in one of our machines (egoist.bu.edu), and we modified it in

order to reply to requests initiated by nodes, by providing the summary of the requested

peer set (ip, port, status) and not of a random peer set (as was initially designed).

For a node vj , we compute its maximum finish time max(j) = maxi6=j f(j, i), i.e., the

time at which it has completed downloading all n−1 remote files, as well as its average finish

time avg(j) = 1/(n − 1)
∑

i6=j f(j, i). For peer-set selection policy X , we let max(X) =

maxj max(j) denote its maximum finish time across all nodes, and avg(X) = 1/n
∑

j avg(j)

denote its average finish time across all nodes.

On the left-hand-side of Figure 4·3 we present the normalized average finish time of each

policy with respect to the average finish time of the Max-Sum policy. On the right-hand-

side, we present the normalized maximum finish time of each policy with respect to the

maximum finish time of the Max-Min policy. These results show that the various policies

perform quite similarly with respect to average finish time. When looking at maximum

finish times though, the picture is completely different. Max-Min manages to complete all

downloads anywhere between 40% and 120% faster than the heuristics and almost 30%

faster than Max-Sum. This can be very significant for Bulk Synchronous Parallel (BSP)

applications [14], in which the global progress depends on the finish time of the slowest

94

node. It is worth noting that optimizing the worst case finish time is much more difficult

than optimizing the average, and thus it should come as no surprise that the heuristics

perform well on average but fail to improve the worst case.

4.5.2 Case Study II: A Dedicated Network Prototype

In this setting, we examine overlay networks whose links are dedicated, meaning that

they do not compete for bandwidth on the underlying physical network. This model

is plausible for (multi-homed) networks set-up in support of an enterprise through the

acquisition of dedicated links to connect its various locations. Such link acquisitions could

be done through SLA contracts with ISPs, or through virtualization technologies such as

those envisioned for GENI.5 In either cases, a dedicated link could be set up between two

enterprise nodes i and j for a given price. Any such dedicated link will have a nominal

capacity cij , which may depend on any number of factors (e.g., physical constraints of

the underlying technology, the demand at the ISP for carrying traffic between these two

locations, or the price paid for various links. Since setting up a complete network to

connect all n nodes directly to each other may not be feasible (especially for systems of

moderate sizes), designers of such enterprise networks are likely to construct the network

so as to maximize its utility with respect to some objective function. Independent of which

process/strategy is used to construct the optimized overlay, the resulting network would

allow all enterprise nodes to communicate either directly or through overlay paths.

The construction we propose for optimizing the overlay for n-way broadcast proceeds

as follows. First, we order the nodes according to their ids. Next, we proceed in rounds

in which nodes take turns in selecting their peer-sets (as discussed in Section 4.2). This

process is repeated until we converge by reaching a round that does not introduce changes

in the constructed topology.6

5http://geni.net
6It is worth noting that the convergence of the above procedure relates to a question regarding the

existence of pure Nash equilibria, and their reachability through local improvement paths, in a strategic
game with Max-Min or Max-Sum as its payoff function. Although interesting from a theoretical standpoint,
the question is not directly relevant here as we have assumed that nodes forward indiscriminately local and

95

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

av.bwth(Mbps)

C
D

F

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

peer id

pe
er

 id

0

50

100

150

200

250

300

350

Figure 4·4: Sprint topology, empirical CDF and scatter plots of available
bandwidths.

Towards our goal of evaluating the impact of various peer selection policies on the

performance of n-way broadcast in this setting, we developed a discrete-event simulator

that is able to run over dedicated overlay networks. We constructed the dedicated overlay

(enterprise) network using the procedure described above, using the publicly available

trace of Sprint’s physical topology taken from Rocketfuel [107].7 In particular, we assumed

that the dedicated capacity that could be acquired from the ISP (Sprint) would reflect an

“equal-share” partitioning, which we approximated as follows. We counted the number of

shortest-paths (for all physical node pairs) that go over a physical link and set the available

bandwidth of that link to be its real capacity divided by this number. 8 Then, for an overlay

link (i, j) we set ci,j to be equal to the available bandwidth of the tightest physical link

on the induced shortest-path over the physical topology. This produces the amount of

available bandwidth that the ISP can guarantee for the new application if it admits it into

its network and treats it equally with pre-existing ones. In Figure 4·4 we plot the CDF

of the pairwise available bandwidth as well as the scatter plot illustrating the available

in-transit chunks. In all our experiments we got fast convergence but could also stop prematurely after a
maximum number of iterations so as to deal with inexistence, unreachability, or slow convergence to stable
topologies.

7The topology was inferred using the methodology described in [107]. The link weights we used for the
shortest path algorithm are those inferred in [76]. The capacities of the links were publicly available by
Sprint.

8The idea is that each pair of physical nodes represents a different application that is assigned an equal
share of the physical capacity of all links on which it competes with other applications.

96

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

 0.04 0.06 0.08 0.1

tim
e

(s
ec

s)

k/n

average finish time per link density

Max-Min
Max-Sum
k-Widest

Rnd k-Widest
Random

 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400
 2600

 0.04 0.06 0.08 0.1

tim
e

(s
ec

s)

k/n

worst finish time per link density

Max-Min
Max-Sum
k-Widest

Rnd k-Widest
Random

Figure 4·5: Simulation of a closed network based on Sprint’s topology.

bandwidth among nodes of a typical experiment. The diversity of available bandwidth

between peers is more intense (compared to the PlanetLab experiment), as there are nodes

which are connected to other nodes achieving very high available bandwidth and others

that are connecting achieving very low available bandwidth.

One advantage of simulations (compared to PlanetLab prototyping) is that it allows

us to consider a bigger network. In particular, in the experiments that follow, we study

overlays of size n = 50 nodes, which are randomly selected9 from the physical Sprint

network — each node holding a 500Mbytes file. As in the PlanetLab prototype, there is no

notion of choke, unchoke and optimistic unchoke. The local piece selection follows a rarest

first policy, there is no limit in the upload and download rate and the files are cut into

256Kbytes long chunks (that maintains blocks of 16Kbytes which is the actual transmission

unit).

In Figure 4·5 we compare the average and maximum finish times of different policies

for different link densities (k/n). Compared to the previous results from PlanetLab, we

observe a qualitatively similar behavior. The gap, however, between Max-Min and the

rest in terms of maximum finish time widens substantially: Max-Min is able to finish 2-

3 times faster in this setting, even for relatively large k/n (∼10%). The reason is that

Max-Min has more real bandwidth to work with in this case: When it places a link (i, j),

9the CDF of available bandwidths for the sampled set is similar with the one when consider all the nodes
of the Sprint dataset.

97

the capacity (both upload and download) of the two end-points increases by the capacity

of the newly-added dedicated overlay link, whereas in PlanetLab the physical bandwidth

is fixed, so when Max-Min places an overlay link it can only benefit by whatever unused

bandwidth exists on the underlying physical network.

It is worth noticing that Max-Sum may lead to poor performance when the ratio k/n is

low.10 This is expected as the rational behind the Max-Sum wiring strategy is to maximize

the average maximum flow from one node to all the other nodes. Nodes that do not

contribute significantly in increasing the maximum flow are not popular, thus not a lot

of connections are established (by other overlay nodes) to these nodes. As more network

resources (links) are allowed to available to overlay nodes, they establish connections that

do not contribute a lot in the maximum flow, improving the worst finish time. This is

observed in Figure 4·5(right); the worst finish time of Max-Sum decreases significantly as

the link density increases. Similar observations are made for the average finish time (see

Figure 4·5(left)), although there are no significant differences among the performance of

different wirings.

Another important observation is that under any wiring strategy the worst finish time

of the nodes is almost identical (see Figure 4·5(right)) . This is another indication that the

finish time is dominating by the slowest pieces (see also Figure 4·6). It is worth mentioning

that the performance of k-Widest may be worst than the performance of Rand k-Widest,

as a globally greedy selection of peers may penalize more the slowest peers than a local

greedy one.

In order to characterize the graphs obtained by Max-Min and Max-Sum, we compare

them with the construction where each node can guarantee the best output rate (to all the

other destinations) for itself. Such a construction is rather utopian, as paths between nodes

are not disjoint. Let maxout(v) be the sum of the bandwidths of the node v’s outgoing

links (assuming that node v established k links and n−k−1 links are established by other

10This should not be confused with the discussion in Section 4.2 on the tight bound of Max-Sum under
low link density.

98

0 10 20 30 40 50
0

1000
2000
3000

M
ax

−
S

um

0 10 20 30 40 50
0

1000
2000
3000

worst finish time (y−axis in secs)

M
ax

−
M

in

0 10 20 30 40 50
0

1000
2000
3000

kW
id

0 10 20 30 40 50
0

1000
2000
3000

R
nd

 k
W

0 10 20 30 40 50
0

1000
2000
3000

node id

R
nd

Figure 4·6: Worst finish time per node based on Sprint’s topology with
link density k/n = 0.04. The dashed line indicates the worst finish time on
the Max-Min topology.

nodes). In the aforementioned graph, node v’s total output rate cannot exceed:

s(v) =
∑

∀u 6=v

min(maxout(v),maxout(u))

Let us define the
∑

∀v s(v) as the Utopian Max-Sum social rate. Define as the Utopian

Max-Min rate the value of

smin = min
∀u,v

(min(maxout(v),maxout(u))

The Max-Sum and Max-Min social rates are defined accordingly for any wiring where mi

(n− 1 ≥ mi ≥ k) links are used by any node vi, on a given topology.

In Figure 4·7, we illustrate the Max-Sum and Max-Min social rate obtained by the Max-

Sum and the Max-Min wiring normalized by the Utopian Max-Sum and Utopian Max-Min

social rate (left and right figure) respectively, for different values of link density. Both the

Utopian social rates increase with link density and Max-Min social rate of the Max-Min

wiring is close to the Utopian once even for low link density.

99

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.04 0.06 0.08 0.1

N
or

m
al

iz
ed

 r
at

e

k/n

Normalized rate wrt Utopian Max-Sum rate

Max-Min
Max-Sum

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.04 0.06 0.08 0.1

N
or

m
al

iz
ed

 r
at

e

k/n

Normalized Max-Min rate wrt Utopian

Max-Min
Max-Sum

Figure 4·7: Normalized Max-Sum and Max-Min rate with respect to the
Utopian one, on Sprint topology.

In Figure 4·8, we illustrate the node degree; in the x-axis nodes are ranked according

to their maxout, i.e., the node with the lowest maxout is ranked last for low link density

(qualitatively similar observations are obtained for higher link density). As was expected,

on the Max-Min topology, nodes with low maxout have high degree. It is worth noting,

that simple heuristics like link establishment between any node with the node with the

lowest maxout may be useful only in the extreme scenario where there is only one node

with low maxout (as we will comment in the next section). In general the distribution of

the degree of the nodes depends on the distribution of the maxout, thus it is difficult to

construct heuristics that can work well in practice.

Turning our attention to the average and worst time needed for a document to be

disseminated, we observed that the Max-Min wiring strategy has the tendency to (slightly)

increase the average download time, but the decrease of the worst time of any file to be

disseminated is significant. The delay is mainly due to the injection of rare pieces by the

slowest node or nodes. To get a feeling of this we plot the CDF of the average and worst time

needed for a document to be delivered for low link density (see Figure 4·9). Qualitatively

similar observations are obtained for higher link density. Finally, an important observation,

is that it seems that there are always pieces to be requested (thus the assumption of utilized

parallel downloads with TCP is valid). This is consistent with observations obtained in the

PlanetLab prototype. Contrary to the case of a single torrent, in multi-torrent applications

100

0 10 20 30 40 50
0

10
20
30

M
ax

−
S

um

0 10 20 30 40 50
0

10
20
30

M
ax

−
M

in

degree per node

0 10 20 30 40 50
0

10
20
30

kW
id

0 10 20 30 40 50
0

10
20
30

R
nd

 k
W

0 10 20 30 40 50
0

10
20
30

R
an

do
m

rank (descend based on maxout)

Figure 4·8: Node degree on different topologies for k/n = 0.04.

pieces from different files are distributed among the nodes, thus the chances that there is

always a piece to forward is high.

4.5.3 Case Study III: The Effect of an Outlier

In this Section we study the case where there is a very slow node (the maxout of this

node significantly deviates from the value of maxout of the other nodes) using again the

Spint dataset. In Figure 4·10, we illustrate the average and worst finish time under different

wiring strategies. In the presence of a very slow node, the performance of Max-Min topology

is superior compared with the performance of the other wiring strategies, for worst finish

time and for the average finish time for high link density. Max-Min is able to finish 3-6

times faster even for relatively large k/n.

Moreover, as it is illustrated in Figure 4·11, the average delay that is introduced for

the dissemination of the documents, except the one that is uploaded by the slowest node,

is negligible. On the other hand, the improvement of the worst finish time in the Max-Min

topology is significant. It is worth mentioning that in the presence of a very slow node the

performance of the Max-Sum can be very bad. In this setting, the performance of a simple

101

 0

 0.2

 0.4

 0.6

 0.8

 1

 500 1000 1500 2000

C
D

F

time (secs)

average finish time per file

Max-Min
Max-Sum
k-Widest

Rnd k-Widest
Random

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 1500 2000

C
D

F

time (secs)

worst finish time per file

Max-Min
Max-Sum
k-Widest

Rnd k-Widest
Random

Figure 4·9: CDF of the average and worst delivery time of a file to all the
nodes for link density k/n = 0.04.

 300

 400

 500

 600

 700

 800

 900

 1000

 0.04 0.06 0.08 0.1

av
er

ag
e

fin
is

h
tim

e
(s

)

k/n

average finish time per node

Max-Min wiring
Max-Sum wiring

k-Widest
Rnd k-Widest

Random

 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 0.04 0.06 0.08 0.1

m
ax

im
um

 fi
ni

sh
 ti

m
e

(s
)

k/n

maximum finish time per node

Max-Min wiring
Max-Sum wiring

k-Widest
Rnd k-Widest

Random

Figure 4·10: Simulation of a closed network, based on Sprint’s topology,
in the presence of a very slow node.

heuristic where each node establishes connections with the slowest node may improve the

worst finish time (although still the Max-Min will provide the lower worst finish time as it

takes into consideration the capability of each node).

4.6 Dealing with Selfish Behavior

Up to now we have assumed that nodes are fully cooperative in routing each other traffic,

which is a realistic assumption for the applications enumerated in the introduction. In this

Section we will try to explore ways to accommodate applications that involve selfish nodes.

We will focus on the following definition of selfishness:

Definition 10 (Upload-selfishness) An upload-selfish node is a node that wants to use as

much of its upload capacity as possible for forwarding its local chunks and avoid “wasting”

it in relaying the in-transit chunks that it holds.

102

 0

 0.2

 0.4

 0.6

 0.8

 1

 1500 3000 4500 6000 7500 9000

C
D

F

time (secs)

average finish time per file

Max-Min
Max-Sum
k-Widest

Rnd k-Widest
Random

 0

 0.2

 0.4

 0.6

 0.8

 1

 1500 3000 4500 6000 7500 9000

C
D

F

time (secs)

worst finish time per file

Max-Min
Max-Sum
k-Widest

Rnd k-Widest
Random

Figure 4·11: CDF for the average and worst delivery time of a file to all
the nodes for link density k/n = 0.04, in the presence of a very slow node.

4.6.1 A Brief Taxonomy of Deterrence Mechanisms

The amount of extra benefit for an upload-selfish node (and potential harm to others)

depends on the mechanisms that the network deploys for discouraging such behavior. We

examine the following cases.

Case 0 (neutral): Here the network stays neutral and does not deploy any deterrence

mechanism. In such a setting, the upload-selfish node could simply upload its own chunks

and ignore all other requests. The harm to cooperative nodes can easily be quantified for

this case, so we don’t discuss it further; it will be proportional to the number of upload-

selfish nodes, and cooperative nodes will be slowed down and at an extreme case will be

unable to receive some files (e.g., when all their neighbors are upload-selfish, which is

similar to the case of an eclipse attack [105]).

Case 1 (oblivious retribution): A network can employ several retribution mechanisms

to punish a node that fails to deliver a chunk after a request. The choke/unchoke [24]

mechanism of BitTorrent, or modified versions based on bit-level tit-for-tat [12, 44] are

two established existing proposals. Contrary to the original BitTorrent, such mechanisms

are marginally useful here because they are oblivious to whether a node uploads local or

in-transit chunks. An upload-selfish node will appear to be contributing by the mere fact

that it is certainly uploading its own chunks. Thus oblivious strategies fail to punish nodes

that “free-ride” by not uploading in-transit chunks.

103

Case 2 (non-oblivious retribution): Now, let’s assume that there exists a non-oblivious

retribution mechanism that punishes a node that fails to service requests11 for in-transit

chunks that it holds. What can a selfish node do against such mechanism? The simplest

strategy is to hide (by not announcing) the availability of in-transit chunks it holds, and

thus get rid of the burden of having to service requests for these chunks. This can be

addressed with a simple two-hop announcement strategy in which a node that uploads

to another node announces on its behalf the availability of the chunk (using HAVE mes-

sages [24]) to downloaders belonging to the peer-set of the receiving node. This requires

obtaining upon bootstrap (and re-wiring) second hop neighbors. Assuming that the ret-

ribution is severe enough, the upload-selfish node will have to honor all requests. Despite

that, the upload-selfish node still has some room to game the system by changing the

uploader and the downloader as follows.

– The upload-selfish node can substitute each FIFO queue at its uploader with a selfish

FIFO (S-FIFO) that gives priority (preemptive or non preemptive) to requests for local

chunks.

– The upload-selfish node can switch from Least Replicated First to Most Replicated First

(MRF) downloads. Highly replicated chunks receive fewer requests and thus reduce the

“waste” of upload bandwidth for sending in-transit chunks, is smaller (most nodes already

have these chunks, and any requests for these chunks will be divided over many peers).

Since it is difficult to detect such deviations from the protocol, we instead quantify

their impact.

4.6.2 Quantifying the Impact of Selfish FIFO/MRF

We quantify the advantage for a single upload-selfish node by looking at the ratio between

the time it takes to upload its file to all other nodes when it is selfish and when it is

cooperative, granted that all other nodes are cooperative. We examined this ratio for

11We do not want to punish nodes that don’t have enough in-transit content for whatever reason (slow
local link or peer-set) but would relay if they had, so we only punish when a request exists and is not
honored.

104

different overlays built on the Sprint trace and for different choices with respect to the

choice of selfish node. We consider three cases, where the selfish node is : (1) the slowest

node, i.e., the one whose adjacent links have the minimum aggregate upload capacity; (2)

the fastest node; or (3) a typical node (median upload capacity).

On the Max-Min overlay the selfish node reduced its maximum upload finish time by

30% when it was the slowest one. There is also, on average, a 15% reduction on the worst

finish time of all the other nodes. When it was a typical (or the fastest one), then it got

almost no benefit, since in these cases the bottleneck is at the downloading nodes (so a

local selfishness behavior cannot help). In all other overlays, the selfish node got almost

no benefit, even when it was the slowest node. Unlike the Max-Min, the other overlays are

not optimized for the slowest node, so even if this bottleneck node tries to selfishly upload

its file, it cannot really benefit because it has very limited bandwidth.

From the above, it is clear that there exist cases in which upload-selfishness pays sub-

stantially. Granted that upload-selfishness is hard to detect, we also look at its impact on

the cooperative nodes. We consider again a single selfish node (one can easily extrapo-

late for multiple selfish nodes). The impact depends on the considered metric and on the

identity of the selfish node. If we care about the worst-case download time of cooperative

nodes and let the selfish node be the slowest node, then counter-intuitively, the impact on

the cooperative nodes is positive. This is simply because by being selfish, the slowest node

helps all other nodes improve their (bottleneck) downloads from it. To get a feeling of this

we show a scatter-plot on the first row (left plot) of Figure 4·12 with the download time for

each pair (node,remote file) when the topology is random and all the nodes are cooperative.

The solid black line that stands out corresponds to the slowest node (node 29), whose file

is the last one to be downloaded by all others. Qualitatively similar observations12 are

obtained for any other wiring strategy except the Max-Min one (see the first two rows

of Figure 4·12). To contrast this, we plot in the last row the corresponding times when

the topology is Max-Min (left plot) and when the topology is Max-Min with the slowest

12Note that the slowest node may not be the same among different topologies.

105

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

file id

pe
er

 id

500

1000

1500

2000

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

file id

no
de

 id

0

200

400

600

800

1000

1200

1400

1600

1800

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

file id

pe
er

 id

0

200

400

600

800

1000

1200

1400

1600

1800

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

file id

pe
er

 id

0

200

400

600

800

1000

1200

1400

1600

1800

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

file id

pe
er

 id

200

400

600

800

1000

1200

1400

1600

1800

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

file id

no
de

 id

0

200

400

600

800

1000

1200

1400

1600

1800

Figure 4·12: Maximum finish time for all nodes and all files under different
wirings (from left to right, top to bottom): MaxSum, Random, k-Widest,
Rnd k-Widest, MaxMin strategies with non upload-selfish nodes and Max-
Min with upload-selfish slowest node (k/n=0.04).

106

node is upload-selfish (right plot). A first observation is that the Max-Min topology does a

pretty good job at smoothing out the differences in the maximum finish times with slight

increase on the average finish time (note that some cells may be darker on the Max-Min

topology compared to the corresponding cells on other topologies). As it can be seen, the

combination of Max-Min topology and upload-selfish scheduling on the slowest node (see

last row, right plot) does even a better job at smoothing out the differences in maximum

finish times. If, on the other hand, the selfish node is a typical node, or the fastest node,

then its effect on the download quality of others is rather marginal. First, its own file

is not a bottleneck. Second, the relay of in-transit chunks is largely carried by the other

n−1 nodes. Third, S-FIFO and MRF impact primarily first-hop neighbors and have small

impact on nodes further away. Qualitatively similar observations are obtained even in the

presence of a very slow node (node 44), as it is illustrated in Figure 4·13.

Overall, upload-selfishness, unlike its name suggest, is not necessarily bad. A socially

inclining global scheduling policy, for example, would certainly make slow nodes upload

only their own chunks so as to reduce the severity of the bottlenecks that they cause. More

generally, for social optimality, one should split the upload bandwidth of a node between

local and in-transit chunks according to the relative speed of the node. Nodes who are

fast should contribute heavily in relaying in-transit chunks. Nodes who are slow, should

focus only on uploading their own chunks so as to avoid becoming bottleneck points.

Stated differently, a single uploading policy across all nodes cannot be socially optimal.

We postpone the investigation of node-dependent upload scheduling for future work (see

Section VI of [61] for a similar discussion based on our previous work on selfish caching).

4.6.3 Download-Selfishness

It is tempting to ask whether a notion of download-selfishness would make sense. Our an-

swer leans towards the negative. First, there is no contention between local and in-transit

chunks in the incoming direction towards a node — only in-transit chunks flow there.

Second, as long as the downloader keeps all its overlay connections busy by immediately

107

identifying and requesting missing chunks, its download-finish time will be the same, so

it gets no foreseeable benefit by deviating from LRF. Finally, trying to manipulate the

system by advertising false cij ’s for the established links can be disclosed by having nodes

periodically “audit” others by measuring some remote cij ’s and comparing with the adver-

tised values on the link-state protocol. Such methods are quite elaborate and fall outside

the scope of the current work.

4.7 Chapter Summary

In this Chapter we showed that swarming protocols for bulk data transfers perform much

better when operating over optimized overlay topologies that take into consideration the

end-to-end performance characteristics of the underlying network. Such topologies im-

prove the aggregate transmission capacity of nodes, but where they make a huge difference

compared to existing heuristic approaches, is on relieving bottleneck points. Random and

myopic heuristics used in practice lack the required sophistication for overcoming such

bottlenecks.

Our optimized topologies are oblivious to the details of the swarming protocol that runs

on top. They leverage the available bandwidth of the underlying network and abstract the

swarming protocol by viewing it as a series of max-flows. Thus they can benefit a variety of

swarming protocols with different upload/download scheduling characteristics. Since our

topologies are data-blind, it is the job of the swarming protocol to make the best use of

the end-to-end bandwidth that they offer. To that end, we have shown that a commonly

parametrized swarming protocol is far from being optimal.

108

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

file id

pe
er

 id

1000

2000

3000

4000

5000

6000

7000

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

file id

pe
er

 id

1000

2000

3000

4000

5000

6000

7000

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

file id

pe
er

 id

0

1000

2000

3000

4000

5000

6000

7000

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

file id

pe
er

 id

0

1000

2000

3000

4000

5000

6000

7000

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

file id

pe
er

 id

0

1000

2000

3000

4000

5000

6000

7000

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

file id

pe
er

 id

0

1000

2000

3000

4000

5000

6000

7000

Figure 4·13: Maximum finish time for all nodes and all files under different
wirings (from left to right): MaxSum, Random, k-Widest, Rnd k-Widest,
MaxMin strategies with non upload-selfish nodes and Max-Min with upload-
selfish slowest node, in the presence of a very slow node (k/4=0.04).

109

Chapter 5

Distributed Server Migration

Selfish wiring strategies have significant implications to service provisioning. A selfish

overlay node would connect to the server that provides the best service, while at the same

time would use its demand to bias the deployment of the service toward locating more

servers in its network vicinity. On the other hand, a service provider, would like to deploy

a network of servers to satisfy its clients demand, while keeping deployment cost minimal

by following a pay-as-you-go model.

In this Chapter, we examine the use of distributed and scalable approaches that enable a

provider to determine the number and location of servers for optimal delivery of content or

service to its selfish users. The classical, centralized service provisioning approach requires

knowledge of a-priori demand and topological information, both of which are intractable

to obtain in large-scale dynamic networks. To leverage recent advances in virtualization

technologies [90] we develop and evaluate a distributed protocol to migrate servers based

on end-users demand and only local topological knowledge. Results under a range of

workloads and network topologies suggest that the performance of the proposed approach

is comparable to that of the optimal but unscalable centralized one. Surprising, our results

indicate that selfish wiring on behalf of end-users can be a powerful tool towards fully

decentralized overlay network deployment.

Imagine a large-scale bandwidth/processing-intensive service such as the real-time dis-

tribution of software updates and patches [39], a distributed data-center [60], a cloud com-

puting platform [38, 28], etc. Such services must cope with the typically voluminous and

bursty demand — both in terms of overall load and geographical distribution of the sources

110

of demand — due to recently observed flash-crowd phenomena. To deploy such services,

decisions must be made on: (1) the location, and optionally, (2) the number of nodes (or

hosting infrastructures) used to deliver the service. Two well-known formulations of classic

Facility Location Theory [83] can be used as starting points for addressing decisions (1) and

(2), respectively: The uncapacitated k-median (UKM) problem prescribes the locations for

instantiating a fixed number of service facilities so as to minimize the distance between

users and the closest facility capable of delivering the service. In the uncapacitated facility

location (UFL) problem, the number of facilities is not fixed, but jointly derived along with

the locations as part of a solution that minimizes the combined service hosting and access

costs. For the rest of the Section we will use the terms facility and server interchangeably.

Limitations of existing approaches: Even though it provides a solid basis for analyzing

the fundamental issues involved in the deployment of network services, facility location

theory is not without its limitations. First and foremost, proposed solutions for UKM

and UFL are centralized, so they require the gathering and the transmission of the entire

topological and demand information to a central point, which is not possible (not to mention

practical) for large networks. Second, such solutions are not adaptive in the sense that

they do not allow for easy reconfiguration in response to changes in the topology and the

intensity of the demand for service. To address these limitations we propose distributed

versions of UKM and UFL, which we use as means of constructing an automatic service

deployment scheme.

A scalable approach to automatic service deployment: We develop a scheme in

which an initial set of service facilities are allowed to migrate adaptively to the best network

locations, and optionally to increase/decrease in number so as to best service the current

demand. Our scheme is based on developing distributed versions of the UKM problem (for

the case in which the total number of facilities must remain fixed) and the UFL problem

(when additional facilities can be acquired at a price or some of them be closed down). Both

problems are combined under a common framework with the following characteristics: An

existing facility gathers the topology of its immediate surrounding area, which is defined

111

by an r-ball of neighbors – nodes that are within a radius of r hops from the facility.

The facility also monitors the demand that it receives from the nodes that have it as

closest facility. It keeps an exact representation of demand from within its r-ball, and an

approximate representation for all the nodes on the ring of its r-ball (nodes outside the

r-ball that receive service from it). In the latter case, the demand of nodes on the “skin”

of the r-ball is increased proportionally to account for the aggregate demand that flows in

from outside the r-ball through that node. When multiple r-balls intersect, they join to

form more complex r-shapes. The observed topology and demand information is then used

to re-optimize the current location (and optionally the number of) facilities by solving the

UKM (or the UFL) problem in the vicinity of the r-shape.

The trade-off between scalability and performance: Reducing the radius r decreases

the amount of topological information that needs to be gathered and processed centrally at

any point (i.e., at facilities that re-optimize their positions). This is a plus for scalability.

On the other hand, reducing r harms the overall performance as compared to centralized

solutions that consider the entire topological information. This is a minus for performance.

We examine this trade-off experimentally using synthetic (Erdös-Rényi [32] and Barabási-

Albert [8]) and real (AS-level [112]) topologies. We show that even for very small radii, e.g.,

r = 1 (i.e., facility migration is allowed only to first-hop neighbors), or r = 2 (i.e., facility

migration is allowed only up to second-hop neighbors), the performance of the distributed

approach tracks closely that of the centralized one. Thus, increasing r much more is not

necessary for performance, and might also be infeasible since even for relatively small r, the

number of nodes contained in an r-shape increases very fast (owing to the small, typically

O(logn), diameter of most networks, including the aforementioned ones).

A case study — large-scale timely distribution of customized software: Con-

sider a large scale software update system, similar to that used for Microsoft Windows

Update.1 Such a system not only delivers terabytes of data to millions of users, but also

it has to incorporate complex decision processes for customizing the delivered updates to

1http://update.microsoft.com

112

the peculiarities of different clients [39] with respect to localization, previously-installed

updates, compatibilities, and optional components, among others. This complex process

goes beyond the dissemination of a single large file, where a peer-to-peer approach is an ob-

vious solution [55]. Moreover, it is unlikely that software providers will be willing to trust

intermediaries with such processes. Rather, we believe that such applications are likely

to rely on dedicated or virtual hosts, e.g., servers offered for lease through third-party

overlay networks – a la Akamai or Planet Lab, or the newest breed of Cloud Computing

platforms (e.g., Amazon EC22). To that end, we believe that the use of our distributed

facility location approach presents significant advantages in terms of optimizing the cost

and efficiency of deploying such applications.3 In the remainder of this section, we provide

a mapping from the aforementioned software distribution service to our abstract UKM and

UFL problems.

Service providers, hosts, and clients: We envision the availability of a set of network

hosts upon which specific functionalities may be installed and instantiated on demand.

We use the term “Generic Service Host” (GSH) to refer to the software and hardware

infrastructure necessary to host a service. For instance, a GSH could be a well-provisioned

Linux server, a virtual machine (VM) slice similar to that used in Planet Lab4 or that

envisioned in GENI5, or a set of resources in a Cloud Computing platform (e.g., an Amazon

Machine Image (AMI) in the context of EC2).

A GSH may be in Working (W) or Stand-By (SB) mode. In W mode, the GSH

constitutes a service facility that is able to respond to client requests for service, whereas

in SB mode, the GSH does not offer the actual service, but is ready to switch to W if it is so

directed.6 Thus the set of facilities used to deliver a service is precisely the set of GSHs in

2http://aws.amazon.com/ec2
3It is important to note that the large-scale timely distribution of customized content is hardly unique to

the dissemination of software updates, as it could be equally instrumental for “Virtual Product Placement”
in live content as well as in video-on-demand services, to mention two examples.

4http://www.planet-lab.org
5http://www.geni.net/GDD/GDD-06-08.pdf
6Switching to W might involve the transfer of executable and configuration files for the service from

other GSHs or from the service provider.

113

W mode. By switching back and forth between W mode and SB mode, the number as well

as the location of facilities used to deliver the service could be controlled in a distributed

fashion. In particular, a GSH in W mode (i.e., a facility) monitors the topology and the

corresponding demand in its vicinity and is thus capable of re-optimizing the location of

the facility.

Third-party Autonomous Systems (AS) may host the GSHs of service providers, possi-

bly for a fee.7 In particular, the hosting AS may charge the service provider for the assets

it dedicates to the GSHs, including the software/hardware infrastructure supporting the

GSHs as well as the bandwidth used to carry the traffic to/from GSHs in W mode.

The implementation of the above-sketched scenarios requires each GSH to be able to

construct its surrounding AS-level topology up to a radius r. This can be achieved through

standard topology discovery protocols.8 We also assume that a client is selfish thus is able

to locate the facility closest to it and can be informed by a GSH of the service regarding

GSH’s W or SB status. Both of these could be easily achieved with simple standard resource

discovery mechanisms like server selection [17], DNS re-direction [91, 33] (appropriate for

application-level realizations of our distributed facility location approach), proximity-based

or density-based anycast routing [67] (appropriate for network layer realizations). Further-

more, we show in Section 5.6 that the performance of our scheme degrades gracefully as

re-direction becomes more imprecise.

5.1 Background

Let G = (V,E) represent a network defined by a node set V = {v1, v2, . . . , vn} and an

undirected edge set E. Let d(vi, vj) denote the length of a shortest path between vi and vj ,

and s(vj) the (user) service demand originating from node vj . Let F ⊆ V denote a set of

facility nodes – i.e., nodes on which the service is instantiated. If the number of available

7Notice that each AS (or a smaller organizational unit therein) is also a client of the service, with demand
proportional to the aggregate number of requests originating from its end-users (e.g., number of downloads
of a service pack).

8http://www.caida.org/tools/measurement/skitter

114

facilities k = |F | is given, then the specification of their exact locations amounts to solving

the following uncapacitated k-median problem:

Definition 11 (UKM) Given a node set V with pair-wise distance function d and service

demands s(vj), ∀vj ∈ V , select up to k nodes to act as medians (facilities) so as to minimize

the service cost C(V, s, k):

C(V, s, k) =
∑

∀vj∈V

s(vj)d(vj ,m(vj)), (5.1)

where m(vj) ∈ F is the median that is closer to vj.

On the other hand, if instead of k, one is given the costs f(vj) for setting up a facility

at node vj , then the specification of the facility set F amounts to solving the following

uncapacitated facility location problem:

Definition 12 (UFL) Given a node set V with pair-wise distance function d and service

demands s(vj) and facility costs f(vj), ∀vj ∈ V , select a set of nodes to act as facilities so

as to minimize the joint cost C(V, s, f) of acquiring the facilities and servicing the demand:

C(V, s, f) =
∑

∀vj∈F

f(vj) +
∑

∀vj∈V

s(vj)d(vj ,m(vj)), (5.2)

where m(vj) ∈ F is the facility that is closer to vj.

For general graphs, both UKM and UFL are NP-hard problems [53]. A variety of

approximation algorithms have been developed under metric distance using a plethora of

techniques, including rounding of linear programs [21], local search [54, 6], and primal-dual

methods [49].

There is a huge literature on facility location theory. Initial results are surveyed in the

book by Mirchandani and Francis [83]. A large number of subsequent works focused on

developing centralized approximation algorithms [21, 54, 6, 49]. The authors of [16] have

proposed an alternative approach for approximating facility location problems based on

a continuous “high-density” model. Recently, generalizations of the classical centralized

facility location problem have appeared in [77, 37]. The first mention of distributed facility

115

location seems to have been from Jain and Vazirani [49] while commenting on their primal-

dual approximation method, but they do not pursue the matter further. To the best of our

knowledge, the only work in which distributed facility location has been the focal point

seems to be the recent work of Moscibroda and Wattenhofer [85]. This work, however, is

mostly focused on deriving worst-case performance bounds for distributed facility location.

It is based on primal-dual techniques that are amenable to such analysis, but which are

too complicated for practical implementation purposes, as compared to our work. Fur-

thermore, [85] does not include any experimental results or implementation guidelines of

practical purposes. The online version of facility location, in which request arrive one at

a time according to an arbitrary pattern, has been studied by Meyerson [82] that gave a

randomized online O(1)-competitive algorithm for the case that requests arrive randomly

and a O(log n)-competitive algorithm for the case that arrival order is selected by an ad-

versary. Oikonomou and Stavrakakis [87] have proposed a fully distributed approach for

service migration — their results, however, are limited to a single facility (representing a

unique service point) and assume tree topologies.

Several application-oriented approaches to distributed service deployment have ap-

peared in the literature, e.g., Yamamoto and Leduc [117] (deployment of multicast re-

flectors), Rabinovich and Aggarwal [95] (deployment of mirrored web-content), Chambers

et al. [20] (on-line multi-player network games), Cronin et al. [27] (constrained mirror place-

ment), and Krishnan et al. [56] (cache placement). The aforementioned works are strongly

tied to their specific applications and do not have the underlying generality offered by the

distributed facility location approach adopted in our work. Relevant to our work are also

the works of Oppenheimer et al. [88] on systems aspects of a distributed shared platform

for service deployment, and Loukopoulos et al. [74] on the overheads of updating replica

placements under non-stationary demand.

116

5.2 A Limited Horizon Approach to Distributed Facility Location

In this section we develop distributed versions of UKM and UFL by utilizing a natural

limited horizon approach in which facilities have exact knowledge of the topology of their

r-ball (surrounding topology up to r-hop neighbors), exact knowledge of the demand of

each node in their r-ball and approximate knowledge of the aggregate demand from nodes

on the ring surrounding their r-ball. Our distributed approach will be based on an iterative

method in which the location and the number of facilities (in the case of UFL only) may

change between iterations.

5.2.1 Definitions

We make use of the following definitions, most of which are superscripted by m, the ordinal

number of the current iteration. Let F (m) ⊆ V denote the set of facility nodes at the mth

iteration. Let V
(m)
i denote the r-ball of facility node vi, i.e., the set of nodes within radius

r from vi. Let U
(m)
i denote the ring of facility node vi, i.e., the set of nodes not contained

in V
(m)
i , but are being served by facility vi, or equivalently, the nodes that have vi as their

closest facility. The domain W
(m)
i = V

(m)
i

⋃

U
(m)
i of a facility node consists of its r-ball

and the surrounding ring.

From the previous definitions it is easy to see that V = V (m)
⋃

U (m), where V (m) =
⋃

vi∈F (m) V
(m)
i , U (m) =

⋃

vi∈F (m) U
(m)
i .

5.2.2 The Distributed Algorithm

Our distributed algorithm starts with an arbitrary initial batch of facilities, which are then

refined iteratively through relocation and duplication until a (locally) optimal solution is

reached. It includes the following steps:

Initialization: Pick randomly an initial set F (0) ⊆ V of k0 = |F (0)| nodes to act as

facilities. Let F = F (0) denote a temporary variable containing the “unprocessed” facilities

from the current batch. Also, let F− = F (0) denote a variable containing this current batch

of facilities.

117

Iteration m: Pick a facility vi ∈ F and process it by executing the following steps:

1. Construct the topology of its surrounding r-ball by using an appropriate neighbor-

hood discovery protocol (see [78] for such an example).

2. Test whether its r-ball can be merged with the r-balls of other nearby facilities. We

say that two or more facilities can be merged (to actually mean that their r-balls can

be merged), when their r-balls intersect, i.e., when there exists at least one node that

is within distance r from all the facilities . Let J ⊆ F (m) denote a set composed of vi

and the facilities that can be merged with it.9 J induces an r-shape GJ = (VJ , EJ),

defined as the sub-graph of G composed of the facilities of J , their neighbors up to

distance r, and the edges between them. We can place constraints on the maximal

size of r-shapes to guarantee that it is always much smaller than O(n).

3. Re-optimize the r-shape GJ . If the original problem is UKM, solve the |J |-median

within the r-shape — this can produce new locations for the |J | facilities. If the

original problem is UFL, solve the UFL within the r-shape — this can produce new

locations as well as change the number of facilities (make it smaller or larger than |J |).

In both cases the re-optimization is conducted by using a centralized algorithm.10 The

details regarding the optimization of r-shapes are given in Section 5.2.3.

4. Remove processed facilities, both the original vi and the ones merged with it, from

the set of unprocessed facilities of the latest batch, i.e., set F = F\ (J
⋂

F−). Also

update F (m) with the new locations of the facilities after the re-optimization.

5. Test for convergence. If F 6= ∅ then some facilities from the latest batch have not

yet been processed, so perform another iteration. Otherwise, if the configuration of

facilities changed with respect to the initial one for the latest batch, i.e., F (m) 6= F−,

9The merging operation is recursive. When an initial r-ball merges with a second one, then additional
facilities that can merge with the second one merge as well, and so on.

10The numerical results presented in Sections 5.4 and 5.5 are obtained by using Integer Linear Program-
ming (ILP) formulations [83] and local-search heuristics [6] for solving UKM and UFL within r-shapes.
Since both perform very closely in all our experiments, we don’t discriminate between the two.

118

then form a new batch by setting F = F (m) and F− = F (m), and perform another

iteration. Else (if F (m) = F−), then no beneficial relocation or elimination is possible,

so terminate by returning the (locally) optimal solution F (m).

5.2.3 Optimizing r-shapes

As discussed in Section 5.1, the input of a UKM problem is defined completely by a tuple

〈V, s, k〉, containing the topology, the demand, and the number of allowed medians. A

UFL problem is defined by a tuple 〈V, s, f〉, similar to the previous one, but with facility

creation costs instead of a fixed constraint on the number of allowed facilities. For the

optimization of an r-shape, we set:

• V = VJ , and

• k = |J |, for the case of UKM, or f = {f(vj) : ∀vj ∈ VJ}, for the case of UFL.

Regarding service demand, a straightforward approach would be to set s = {s(vj) :

∀vj ∈ VJ}, i.e., retain in the re-optimization of the r-shape the original demand of the

nodes of the r-shape. Such an approach would, nonetheless, be inaccurate since the facil-

ities within an r-shape service the demand of the nodes of the r-shape, as well as those

in the corresponding ring of the r-shape. Since there are typically a few facilities, each

one has to service a potentially large number of nodes (e.g., of order O(n)), and thus

the rings are typically much larger than the corresponding r-shapes.11 Re-optimizing the

arrangement of facilities within an r-shape without considering the demand that flows-in

from the ring would, therefore, amount to disregarding too much information (as compared

to the information considered by a centralized solution). Including the nodes of the ring

into the optimization is, of course, not an option, as the ring can be arbitrarily large (O(n))

and, therefore, considering its topology would contradict our prime objective — to perform

facility location in a scalable, distributed manner.

11Notice that r is intentionally kept small to limit the size of the individual re-optimizations.

119

Our solution for this issue is to consider the demand of the ring implicitly by mapping it

into the local demand of the nodes that constitute the skin of the r-shape. The skin consists

of nodes on the border (or edge) of the r-shape, i.e., nodes of the r-shape that have direct

links to nodes of the ring. This intermediate approach bridges the gap between absolute

disregard for the ring, and full consideration of its exact topology. The details of the

mapping are as follows. Let vi denote a facility inside an r-shape GJ . Let vj ∈ U denote a

node in the corresponding ring, having the property that vi is vj ’s closest facility. Let vk

denote a node on the skin of GJ , having the property that vk is included in a shortest path

from vj to vi. To take into consideration the demand from vj while optimizing the r-shape

GJ , we map that demand onto the demand of vk, i.e., we set: s(vk) = s(vk) + s(vj).

5.3 A More Detailed Examination of Distributed Facility Location

The previous section has provided an overview of the basic characteristics of the proposed

distributed facility location approach. The section goes beyond that to look closer at some

important albeit more complex properties of the proposed solution.

5.3.1 Convergence of the Iterative Method

We start with the issue of convergence. First we show that the iterative algorithm of

Section 5.2.2 converges in a finite number of iterations. Then we show how to control the

convergence speed so as to adapt it to the requirements of practical systems.

Proposition 3 The iterative local search approach for distributed facility location con-

verges in a finite number of iterations.

Proof: Since the solution space is finite, it suffices to show that there cannot be loops,

i.e., repeated visits to the same configuration of facilities. A sufficient condition for this

is that the cost (either Equation (5.1) or (5.2) depending on whether we are considering

distributed UKM or UFL) be monotonically decreasing between successive iterations, i.e.,

c(m) ≥ c(m+1). Below, we show that this is the case for the UKM applied to r-shapes with

120

.
.x

y

vθ

W
(m)
θ

W
(m+1)
θ

C

B

A

γ

here Φ = Ψ = γ

Figure 5·1: Depiction of the move of a facility from X to Y and of the sets
A, B, and C.

a single facility. The cases of UKM applied to r-shapes with multiple facilities, and of UFL

follow from straightforward generalizations of the same proof.

Suppose that during iteration m+ 1 facility vθ is processed and that between iteration

m and m+ 1, vθ is located at node x, whereas after iteration m+ 1, vθ is located at node

y (see also Figure 5·1). If x ≡ y, then c(m) = c(m+1). For the case that x 6= y, we need to

prove that c(m) > c(m+1).

For the case in which W
(m)
θ ≡ W

(m+1)
θ , it is easy to show that c(m) > c(m+1). Indeed,

since the facility moves from x to y it must have been that this reduces the cost of the

domain of vθ, i.e., c(W
(m)
θ) > c(W

(m+1)
θ), which implies c(m) > c(m+1), since no other

domain is affected.

The case in which W
(m)
θ 6= W

(m+1)
θ is somewhat more involved. It implies that there

exist sets of nodes A, B: A ∪ B 6= ∅, A = {z ∈ V : z /∈ W
(m)
θ , z ∈ W

(m+1)
θ } and

B = {z ∈ V : z ∈ W
(m)
θ , z /∈ W

(m+1)
θ }. A is actually the set of nodes that were not served

by facility vθ before the m+1 iteration and are served after the m+1 iteration. Similarly,

B is the set of nodes that were served by facility vθ before the m+ 1 iteration and are not

served after the m + 1 iteration. Let C = {z ∈ V : z ∈ W
(m)
θ , z ∈ W

(m+1)
θ } be the set

of nodes that remained in the domain of vθ after its move from x to y (Figure 5·1 depicts

the aforementioned sets). Since W
(m)
θ = B ∪ C (B,C disjoint) and the re-optimization of

W
(m)
θ moved the facility vθ from x to y, it must be that:

121

c(B, x) + c(C, x) > c(B, y) + c(C, y) (5.3)

where c(B, x) denotes the cost of servicing the nodes of B from x (similar definitions for

c(C, x), c(C, y)).

Let Φ denote the set of facilities that used to service the nodes of A before they entered

the domain of vθ at m + 1. Similarly, let Ψ denote the set of facilities that get to service

the nodes of B after they leave the domain of vθ at m+ 1. From the previous definitions

it follows that:

c(A, y) < c(A,Φ) (5.4)

c(B, y) > c(B,Ψ) (5.5)

Using Equation (5.5) in Equation (5.3) we obtain:

c(B, x) + c(C, x) > c(B,Ψ) + c(C, y) (5.6)

Applying Equations (5.6) and (5.4) to the difference c(m) − c(m+1), we can now show the

following:

c(m) − c(m+1) =
(

c(B, x) + c(C, x) + c(A,Φ)

)

−

(

c(A, y) + c(C, y) + c(B,Ψ)

)

=

(

c(B, x) + c(C, x) − c(B,Ψ) − c(C, y)

)

+

(

c(A,Φ) − c(A, y)

)

> 0

which proves the claim also for the W
(m)
θ 6= W

(m+1)
θ case, thus completing the proof.

We can control the convergence speed by requiring each turn to reduce the cost by a

factor of α, in order for the turn to be accepted and continue the optimizing process; i.e.,

accept the outcome from the re-optimization of an r-shape at the mth iteration, only if

c(m) ≥ (1 + α)c(m+1). In this case, the following proposition describes the convergence

speed.

122

D

C

A

B
E x

r

y .

.
.
.

.
U

(m)
i

V
(m)
i

φvj

vi

u

Figure 5·2: Example of a possible facility movement from node vi to node
vj with respect to a particular node u ∈ Ui.

Proposition 4 The iterative local search approach for distributed facility location con-

verges in O(log1+α n) steps.

Proof: Let c(0), c(M), c∗ denote the initial cost, a locally minimum cost obtained at the

last (Mth) iteration, and the minimum cost of a (globally) optimal solution, respectively.

Here we consider M to be the number of “effective” iterations, i.e., ones that reduce the

cost by the required factor. The total number of iterations can be a multiple of M up to a

constant given by the number of facilities. Since we are interested in asymptotic complexity

we can disregard this and focus on M .

For m < M we have required that c(m) ≥ (1 + α)c(m+1), or equivalently, c(0) ≥ (1 +

α)mc(m). Thus when the iteration converges we have:

c(0) ≥ (1 + α)Mc(M) ⇒M ≤ log1+α

c(0)

c(M)
≤ log1+α

c(0)

c∗
(5.7)

Given the definition of the cost and the fact that node service demands (s(v)’s) are con-

stants with respect to the size of the input (n), it is easy to see that c(0) can be upper

bounded by O(n2) and c∗ be lower bounded by Ω(n). This leads to an O(n) upper bound

for c(0)

c∗ . Substituting in Equation (5.7) gives the claimed upper bound for the number of

iterations.

123

5.3.2 The Mapping Error and its Effect on Local Optimizations

In this section we discuss an important difference between solving a centralized version

of UKM or UFL (Definitions 11, 12) applied to the entire network and our case where

these problems are solved within an r-shape based on the demand that results from a fixed

mapping of the ring demand onto the skin. In the centralized case, the amount of demand

generated by a node is not affected by the particular configuration of the facilities within

the graph, since all nodes in the network are included and considered with their original

service demand. In our case, however, the amount of demand generated by a skin node can

be affected by the particular configuration of facilities within the r-shape. In Figure 5·2 we

illustrate why this is the case. Node u on the ring has a shortest path to facility node vi

that intersects the skin of vi’s r-ball at point B, thereby increasing the demand of a local

node at B by s(u). As the locations of the facilities may change during the various steps

of the local optimizing process (e.g., the facility moves from C to D, Figure 5·2), the skin

node along the shortest path between u and the new location of the facility may change

(node/point E in Figure 5·2). Consequently, a demand mapping error is introduced by

keeping the mapping fixed (as initially determined) throughout the location optimization

process. Let ∆i(r, j, u) denote the amount of mapping error attributed to ring node u with

respect to a move of the facility from vi to vj under the aforementioned fixed mapping and

radius r. Then the total mapping error introduced in domain Wi under radius r is given

by:

∆i(r) =
∑

vj∈Vi
vj 6=vi

∑

u∈Uivj 6=vi

∆i(r, j, u). (5.8)

The mapping error in Equation (5.8) could be eliminated by re-computing the skin

mapping at each stage of the optimizing process (i.e., for each new intermediate facility

configuration). Such an approach not only would add to the computational cost but – most

important – would be practically extremely difficult to implement as it would require the

collection of demand statistics under each new facility placement, delaying the optimization

process and inducing substantial overhead. Instead of trying to eliminate the mapping error

124

one could try to assess its magnitude (and potential impact) on the effectiveness of the

distributed UKM/UFL. This is explored next.

The example depicted in Figure 5·2 helps derive an expression for the mapping er-

ror ∆i(r, j, u), assuming a two-dimensional plane where nodes are scattered in a uniform

and continuous manner over the depicted domain. ∆i(r, j, u) corresponds to the length

difference of the two different routes between node u (point A) and node vj (point D).

Therefore,

∆i(r, j, u) = |AB| + |BD| − |AD|. (5.9)

Note that for those cases in which the angle φ̂ between AC and CD, is 0 or π, |AB|+|BD| =

|AD|, and therefore, ∆i(r, j, u) = 0. For any other value of φ̂, AB, BD and AD correspond

to the edges of the same triangle and therefore, |AB|+ |BD| − |AD| > 0 or ∆i(r, j, u) > 0.

Based on Equation (5.9), it is possible to derive an upper bound regarding the total

mapping error ∆i(r) for this particular environment. In Appendix E, we prove that:

∆i(r) ≤ 2π2r3(R2 − r2), (5.10)

where R is the radius of the particular domain Wi (for simplicity we assume that the

domain is also a circle).

According to Equation (5.10), the upper bound for ∆i(r) is close to 0, when r → 0 or

r → R. We are interested in those cases where the r-ball is small. This corresponds to small

values of r for the particular (two-dimensional continuous) environment. Therefore, a small

radius r in addition to being preferable for scalability reasons has the added advantage

of facilitating the use of a simple and practical mapping with small error and expected

performance penalty.

5.4 Synthetic Results on ER and BA Graphs

In this section we evaluate our distributed facility location approach on synthetic Erdös-

Rényi (ER) [32] and Barabási-Albert (BA) [8] graphs generated using the BRITE gener-

125

ator [81]. For ER graphs, BRITE uses the Waxman model [116] in which the probability

that two nodes have a direct link is P (u, v) = α ·e−d/(βL), where d is the Euclidean distance

between u and v, and L is the maximum distance between any two nodes. We maintain the

default values of BRITE α = 0.15, β = 0.2 combined with an incremental model in which

each node connects to m = 2 other nodes. For BA graphs we also use incremental growth

with m = 2. This parametrization creates graphs in which the number of (undirected)

links is almost double the number of vertices (as also observed in real AS traces that we

use later in the paper).

5.4.1 Node Coverage with Radius r

Figure 5·3 depicts the fraction of the total node population that can be reached in r hops

starting from a certain node in ER and BA graphs, respectively. We plot the mean and the

95% confidence interval of each node under different network sizes n = 400, 600, 800, 1000,

representing typical populations of core ASes on the Internet as argued later on. The figures

show that a node can reach a substantial fraction of the total node population by using

a relatively small r. In ER graphs, r = 2 covers 2% − 10% of the nodes, whereas r = 3

increases the coverage to 10% − 32%, depending on network size. The coverage is even

higher in BA graphs, where r = 2 covers 4% − 15%, whereas r = 3 covers 20% − 50%,

depending again on network size. These observations are explained by the fact that larger

networks exhibit longer shortest paths and diameters and also because BA graphs, owing

to their highly skewed (power-law) degree distribution, possess shorter shortest paths and

diameters than corresponding ER graphs of the same link density.

5.4.2 Performance of distributed UKM

In this section we examine the performance of our distributed UKM of radius r, hereafter

referred to as dUKM(r), when compared to the centralized UKM utilizing full knowledge.

We fix the network size to n = 400 (matching measurement data on core Internet ASes that

we use later on) and assume that all nodes generate the same amount of service demand

126

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

co
ve

ra
ge

radius r

ER

n=200
n=400
n=600
n=800

n=1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

co
ve

ra
ge

radius r

BA

n=200
n=400
n=600
n=800

n=1000

Figure 5·3: Average coverage of a node for different size of ER and BA
graphs.

s(v) = 1,∀v ∈ V . To ensure scalability, we don’t want our distributed solution to encounter

r-shapes that involve more that 10% of the total nodes, and for this we limit the radius

to r = 1 and r = 2, as suggested by the node coverage results of the previous section. We

let the fraction of nodes that are able to act as facilities (i.e., service hosts) take values

k/n = 0.1%, 0.5%, 1%, 2%, and 5%. We perform each experiment 10 times to reduce the

uncertainty due to the initial random placement of the k facilities.

The plots on the left-hand-side of Figure 5·4 depict the cost of our dUKM(r) approach

normalized over that of the centralized UKM, with the plot on top for ER graphs and

the plot on the bottom for BA graphs. For both ER and BA graphs, the performance

of our distributed solution tracks closely that of the centralized one, with the difference

diminishing fast as r and k are increased. The normalized performance for BA graphs

converges faster (i.e., at smaller k for a given r) to ratios that approach 1. This owes

to the existence of highly-connected nodes (the so call “hubs”) in BA graphs — building

facilities in few of the hubs is sufficient for approximating closely the performance of the

127

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 0 5 10 15 20

co
st

 r
at

io
 w

ith
 r

es
pe

ct
 to

 U
K

M

k

dUKM - ER n=400

c(dUKM(1))/c(UKM)
c(dUKM(2))/c(UKM)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20

nu
m

be
r

of
 it

er
at

io
ns

k

dUKM, iterations - ER n=400

dUKM(1)
dUKM(2)

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 0 5 10 15 20

co
st

 r
at

io
 w

ith
 r

es
pe

ct
 to

 U
K

M

k

dUKM - BA n=400

c(dUKM(1))/c(UKM)
c(dUKM(2))/c(UKM)

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20

nu
m

be
r

of
 it

er
at

io
ns

k

dUKM, iterations - BA n=400

dUKM(1)
dUKM(2)

Figure 5·4: The relative performance between dUKM(r) and UKM, and
the number of iterations for the convergence of the former, for r = 1 and
r = 2, and different facility densities k/n = 0.1%, 0.5%, 1%, 2%, and 5%
under ER and BA graphs.

centralized UKM. The two plots on the right-hand-side of Figure 5·4 depict the number of

iterations needed for dUKM(r) to converge. A smaller value of r requires more iterations

as it leads to the creation of a large number of small sub-problems (re-optimizations of

many small r-shapes). BA graphs converge in fewer iterations, since for the same value of

r BA graphs induce larger r-shapes12 and, thus, fewer re-optimizations.

5.4.3 Performance of distributed UFL

In order to evaluate the performance of dUFL(r), we need to decide how to set the facility

acquisition costs f(vj), which constitute part of the input of a UFL problem (see Defi-

12Again it is the hubs that create large r-shapes. Even under a small r, a hub will be close to the facility
that re-optimizes its location, and this will bring many of the hub’s immediate neighbors into the r-shape.

128

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 400 500 600 700 800 900 1000

co
st

n

dUFL - ER

dUFL(1), 0.5F
dUFL(1), F

dUFL(1), 2F
dUFL(2), 0.5F

dUFL(2), F
dUFL(2), 2F

UFL

 1000

 1500

 2000

 2500

 3000

 400 500 600 700 800 900 1000

co
st

n

dUFL - BA

dUFL(1), 0.5F
dUFL(1), F

dUFL(1), 2F
dUFL(2), 0.5F

dUFL(2), F
dUFL(2), 2F

UFL

Figure 5·5: Cost comparison between dUFL(r) and UFL, for r = 1 and
r = 2, and different network sizes under ER and BA graphs and degree-
based facility cost f(vj) = d(vj)

1+αG .

nition 12). This is a non-trivial task, essentially a pricing problem for network services.

Although pricing is clearly out of scope for this paper, we need to use some form of f(vj)’s

to demonstrate our point that, as with UKM, the performance of the distributed version

of UFL tracks closely that of the centralized one. To that end, we use two types of facility

costs: uniform, where all facilities cost the same independently of location (i.e., f(vj) = f ,

∀vj ∈ V) and, non-uniform, where the cost of a facility at a given node depends on the

location of that node. The uniform cost model is more relevant when the dominant cost

is that of setting up the service on the host, whereas the non-uniform cost model is more

relevant when the dominant cost is that of operating the facility (implying that this op-

erating cost is proportional to the desirability of the host, which depends on topological

location).

For the non-uniform case we will use the following rule: we will make the cost of

acquiring a facility proportional to its degree, i.e., proportional to the number of direct

links it has to other nodes. The intuition behind this is that a highly connected node will

most likely attract more demand from clients, as more shortest-paths will go through it and,

thus, building a facility there will create a bigger hot-spot, and therefore the node should

charge more for hosting a service.13 In [51],[52] the authors showed that the “coverage”

13As sketched in the introduction, a node may correspond to an AS that charges for allowing network

129

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 400 500 600 700 800 900 1000

co
st

n

dUFL, uniform facility cost - ER

dUFL(1)
dUFL(2)

UFL

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 400 500 600 700 800 900 1000

co
st

n

dUFL, uniform facility cost - BA

dUFL(1)
dUFL(2)

UFL

Figure 5·6: Cost comparison between dUFL(r) and UFL, for r = 1 and
r = 2, and different network sizes under ER and BA graphs and uniform
facility cost.

of a node increases super-linearly with its degree (or alternatively, the number of shortest

paths that go through it). We, therefore, use as facility cost f(vj) = d(vj)
1+αG , where d(vj)

is the degree of node vj ∈ V and αG is the skewness of the degree distribution of the graph

G. In order to estimate the value of αG, we use the Hill estimator: α̂
(Hill)
k,m = 1/γ̂k,m, where:

γ̂k,m = 1
k

∑k
i=1 log

X(i)

X(k+1)
, X(i) denotes the i-th largest value in the sample X1, ..., Xn. We

prefer the Hill estimator since it is less biased than linear regression.

In Figure 5·5 we plot the cost of dUFL(1), dUFL(2), and centralized UFL, in ER and

BA graphs under the aforementioned degree-based facility cost. For dUFL, we present

three lines for each radius r, corresponding to different initial number of facilities used in

the iterative algorithm of Section 5.2.2. We use k0 = 0.5 ·F , F , and 2 ·F , where F denotes

the number of facilities opened by the corresponding centralized UFL. As evident from the

results, the cost of dUFL is close to that of UFL (around 5-15% for both types of graphs).

As with dUKM, the performance improves with r and is slightly better for BA graphs (see

the explanation in Section 5.4.2). Also we observe a tendency for lower costs when starting

the distributed algorithm with a higher number of initial facilities. Under the non-uniform

(degree-based) cost model, both dUFL and UFL open facilities in 2-8% of the total nodes,

depending on the example.

services to be installed on its local GSH.

130

We also evaluate the performance of dUFL under uniform facility cost f ; the cost

is set at a value that leads to building the same number of facilities as the corresponding

degree-based example. Both the distributed and centralized UFL build the same number of

facilities, and the performance of dUFL is very close to the centralized one, as is illustrated

in Figure 5·6.

Again, we emphasize that our goal here is not to evaluate performance under different

pricing scheme, but rather to show that the performance of distributed UFL tracks well

that of the centralized, optimal approach.

5.5 Results for Real AS-level Topologies

To further investigate the performance of our distributed approach, as well as better sup-

port our sketched application scenario described in the introduction, we include in this

section performance results on real AS-level maps under non-uniform service demand from

different clients.

5.5.1 Description of the AS-level Dataset

We use the relation-based AS map of the Internet from December 200114 obtained us-

ing the measurement methodology described in [112]. The dataset includes two kinds of

relationships between ASes.

• Costumer-Provider: The costumer is typically a smaller AS that pays a larger AS for

providing it with access to the rest of the Internet. The provider may, in turn, be a

costumer of an even larger AS. A costumer-provider relationship is modeled using a

directed link from the provider to the costumer.

• Peer-Peer: Peer ASes are typically of comparable sizes and have mutual agreements

for carrying each other’s traffic. Peer-peer relationships are modeled using undirected

links.

14http://www.cc.gatech.edu/∼mihail/ASdata.html

131

 1

 10

 100

 1000

 10000

 1 10 100 1000

co

st
um

er
 A

S
es

rank of peer-AS

#costumer ASes for a peer-AS

Figure 5·7: Number of costumer ASes for each peer-AS in decreasing order
according to rank.

Overall the dataset includes 12,779 unique ASes, 1,076 peers and 11,703 costumers,

connected through 26,387 directed and 1,336 undirected links. Since this AS graph is not

connected, we chose to present results based on its largest connected component15, which

we found to include a substantial part of the total AS topology at the peer level: 497

peer ASes connected with 1,012 undirected links; we verified that this component contains

all the 20 largest peer ASes reported in [112]. Since it would be very difficult to obtain

the real complex routing policies of all these networks, we did not consider policy-based

routing, but rather asssumed shortest-path routing based on the aforementioned connected

component.

We exploit the relationships between ASes in order to derive a more realistic (non-

uniform) service demand for the peer ASes that we consider. Our approach is to count

for each peer AS the number of costumer ASes that have it as provider, either directly

or through other intermediary ASes. We then set the service demand of a peer AS to be

proportional to this number. In Figure 5·7 we plot the demand profile of peer ASes (in

decreasing order using Log-Log scale). As evident from this plot, the profile is power-law

like (with slight deviation towards the tail), meaning that few core ASes carry the majority

of the demand that flows from client ASes. In the sequel we present performance results in

15There are smaller connected components (2-8 ASes) that are formed by small regional ISPs with peering
relationships.

132

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 5 10 15 20 25

so
ci

al
 c

os
t

k

dUKM - AS-level

dUKM(1)
dUKM(2)

UKM

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25

nu
m

be
r

of
 it

er
at

io
ns

k

dUKM, iterations - AS-level

dUKM(1)
dUKM(2)

Figure 5·8: The cost of dUKM(r) and UKM, and the number of iterations
for the convergence of the former, for r = 1 and r = 2, and different facility
densities k/n = 0.1%, 0.5%, 1%, 2%, and 5% under the AS graph.

which nodes correspond to peer ASs that generate demand that follows the aforementioned

power-law like profile. We seek to identify the peer ASes for building service facilities.

5.5.2 Distributed UKM on the AS-level Dataset

The plots on the left-hand-side of Figure 5·8 show the cost of dUKM(1), dUKM(2), and

the centralized UKM, under the AS-level graph. Clearly, even for small values of r, the

performance of our distributed approaches track closely that of the centralized approach.

Regarding the number of iterations needed for convergence, the same observations apply

as with the synthetic topologies, i.e., they increase with smaller radii. The substantial

benefit from knowledge of only local neighborhood topologies (“neighbors of neighbor”)

has been observed for a number of applications, including [78] which has also investigated

and quantified implementation overhead in an Internet setting.

5.5.3 Distributed UFL on the AS-level Dataset

Table 5.1 presents the performance of dUFL on the AS-level dataset. Again, it is verified

that dUFL is very close in performance to UFL, even for small values of r (within 4% for

r = 2, under both examined facility cost models).

133

cost ratio dUFL(1)/UFL cost ratio dUFL(2)/UFL

mean median mean median

degree-based 1.22 1.20 1.04 1.03

uniform 1.01 1.01 1.01 1.01

Table 5.1: Cost ratio between dUFL(r) and UFL in the AS-level topology.

5.6 Non-Stationary Demand and Imperfect Redirection

Up to now, our performance study has been based on assuming (1) stationary demand, and

(2) perfect redirection of each client to its closest facility node. The stationary demand

assumption is not justified for relatively large time-scales (hours or days), and perfect

redirection can be either too costly to implement or too difficult to enforce due to faults or

excessive load. In this section we look at the performance of distributed facility location

when dropping the aforementioned assumptions. First, we present a measurement study

for obtaining the non-stationary demand corresponding to a multi-player on-line game and

then use this workload to derive a performance comparison between dUFL and UFL. Then,

we assume that mapping a client to its closest facility node has to incur some time lag and

study the performance implications of such an imperfect redirection scheme.

5.6.1 Measuring the demand of a popular multi-player game

We used the Mininova web-site16 to track all requests for joining a torrent corresponding

to a popular on-line multi-player game. By tracking the downloads of the game client,

which is possible to do due to the use of BitTorrent, we can obtain a rough idea about

the demographics of the load put on the game servers, to which we do not have direct

access. We then use this workload to quantify the benefits of instantiating game servers

dynamically according to dUFL.

More specifically, we connected periodically at 30-minute intervals to the tracker serving

this torrent, over a total duration of 42 hours. At each 30-minute interval, we got all the

16http://www.mininova.org

134

IPs of participating downloaders by issuing to the tracker multiple requests for neighbors

until we got all distinct downloaders at this point in time.17 In Figure 5·9 (left) we plot

the number of concurrent downloads at each measurement point. Overall, we were able to

capture a sufficient view of the activity of the torrent and detect expected profiles, e.g.,

diurnal variation over the course of a day. In total, we saw 34,669 unique users and the

population varied from 6,000 to 8,000 concurrent users, i.e., the population variance was

close to 25%.

Moving on, we used Routeviews18 to map each logged IP address to an AS. The variance

in the number of concurrent users from a particular AS was even higher. Focusing on the

most popular AS, we found out that the variance in the number of concurrent users was

as high as 50%, as it is shown in Figure 5·9 (right). Last, we looked at churn at the AS

level by counting the number of new ASes joining and existing ASes leaving the torrent

over time [41]. Formally, we defined churn(t) = Ut−1⊖Ut

max{|Ut−1|,|Ut|}
, where Ut is the set of ASes

at time t, and ⊖ is the set difference operator. In Figure 5·10 we plot the evolution of

churn. One can observe that AS-level churn is quite high, ranging from 6% to 11%, with

no specific pattern. This serves our purpose which is to study the performance of dUFL

under non-stationary demand.

5.6.2 Distributed UFL under non-stationarity demand

We consider a distributed server migration scheme given by dUFL with radius r = 1. The

pricing model for starting a server at an AS is the aforementioned degree-based one of

Section 5.4.3. The evaluation assumes an AS-level topology obtained from Routeviews.

The demand originating from each AS at each particular point in time is set equal to

the value we obtained from measuring the downloads going to the torrent of the game

client. We compare the cost of UFL, dUFL(1), static-min, and static-max. Static-min is a

17Tracker is a server that maintains the set of distinct downloaders of a torrent. Upon a neighbor set
request, the tracker replies with a random subset of the distinct downloaders set. We requested the size of
the distinct downloaders set, and then we repeatedly requested for a new neighbor set until we reach the
same number of distinct IPs.

18http://www.routeviews.org

135

 6000

 6500

 7000

 7500

 8000

08:0024:0016:0008:0024:0016:00

nu
m

be
r

of
 d

ow
nl

oa
ds

time (GMT)

Non-stationary demand, number of downloads

 140

 160

 180

 200

 220

 240

 260

 280

08:0024:0016:0008:0024:0016:00

nu
m

be
r

of
 d

ow
nl

oa
ds

time (GMT)

Non-stationary demand, number of downloads, most popular AS

Figure 5·9: The number of concurrent downloads from all ASes and from
the most popular AS in the torrent of an on-line multi-player game at each
measurement point.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

08:0024:0016:0008:0024:0016:00

ch
ur

n

time (GMT)

Non-stationary demand, churn

Figure 5·10: Churn evolution in the AS-level in the torrent of a popular
on-line multi-player game at each measurement point.

simple heuristic that maintains the same placement across time. The number of maintained

facilities is equal to the minimum number of facilities that UFL opened in the duration

of the experiment. This is used as a baseline for the performance of an under-provisioned

static placement of servers according to minimum load. Static-max captures the cost of

an over-provisioned placement according to peek load. Obviously, static-max suffers from

a high purchase cost of buying a maximum number of servers (in this case 100), whereas

static-min suffers from high communication cost to reach the few bought servers (in this

case 70).

We report the average cost in the duration of the experiment (42 hours) for each one

136

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

08:0024:0016:0008:0024:0016:00

m
ig

ra
tio

n
ra

tio

time (GMT)

Non-stationary demand, dUFL(1), migration of facilities

Figure 5·11: Migration ratio of dUFL(1) in the torrent of a popular on-line
multi-player game at each measurement point.

of the aforementioned policies. For each policy we repeated the experiment 100 times to

remove the effect of the initial random opening of facilities. In Figure 5·12 we plot the

resulting average costs along with 95th percentile confidence intervals. One can see that

dUFL(1) achieves 4 to 7 times lower cost compared to static-min and static-max. Looking

at the close-up, it can also be seen that dUFL(1) is actually pretty close, within 10-20%, of

the performance of the centralized UFL computed at each point in time. Taken together,

these results indicate that dUFL(1) yields a high performance also under non-stationary

demand.

Next, we quantify the number of server migrations required by dUFL(1) to track the

offered non-stationary demand. In Figure 5·11 we plot the percentage of servers that

are migrated, henceforth referred as migration ratio, along with 95th percentile confidence

intervals based on 100 runs. Evidently, migrations are rather rare, typically 0%-3%, after

the servers stabilize from their initial random positions, to where dUFL(1) will have them

at each point in time. These results suggest that dUFL(1) is relatively robust to demand

changes and can typically address them without massive numbers of migrations that are

of course costly in terms of bandwidth, etc. Of course, the number of migrations can be

reduced further by trading performance with laziness in triggering a migration.

137

 20000

 40000

 60000

 80000

 100000

 120000

 140000

08:0024:0016:0008:0024:0016:00

co
st

time (GMT)

Non-stationary demand, performance comparison

static-min
static-max

dFL(1)
UFL

 10000

 11000

 12000

 13000

 14000

 15000

 16000

 17000

08:0024:0016:0008:0024:0016:00
co

st
time (GMT)

dFL(1)
UFL

Figure 5·12: Average cost of static-min, static-max, dUFL(1) and UFL
in the torrent of a popular on-line multi-player game at each measurement
point.

5.6.3 The Effect of Imperfect Redirection

We now move on to dropping the assumption that clients are always redirected to their

closest facility, which pretty much implies that there are no performance penalties for

them due to server migrations. In many cases it has been shown that perfect redirection

is indeed feasible using route triangulation and DNS [33]. In this section, however, we

relax this assumption, and study the effects of imperfect redirection. We do so to cover

cases in which perfect redirection is either too costly to implement, or exists, but performs

sub-optimally due to faults or excessive load.

To this end, we assume that there exists a certain amount of lag between the time

a server migrates to a new node and the time that the migration is communicated to

the affected clients. During this time interval, a client might be receiving service from

138

 2

 4

 6

 8

 10

 0 5 10 15 20

no
rm

al
iz

ed
 c

os
t

lag

Non-stationary demand, effect of lag

static-min
static-max

dUFL(1)

Figure 5·13: Normalized cost of static-min, static-max and dUFL(1) with
respect to the cost of UFL in the torrent of a popular on-line multi-player
game under various levels of lag.

its previously closest facility which, however, may have ceased to be optimal due to one

or several migrations. Since we assume that migrations occur at fixed time intervals, we

measure the lag in terms of number of such intervals (1 facility migration at each interval).

Notice that under the existence of lag, even with stationary demand, the optimization is

no longer guaranteed to be loop-free (as in Section 5.3.1). We solve this by stopping the

iterative re-optimization if it reaches a certain high number of iterations.

In Figure 5·13 we plot the cost ratio between dUFL(1) and dUFL and the 95th percentile

confidence interval under various levels of lag that range from 0 up to 20 (which means

that clients of facility i hear about i’s migration after i+lag has completed its migration).

As expected, lag puts a performance penalty on dUFL. The degradation, however, is quite

smooth, while the performance always remains superior to static-min and static-max.

5.7 Chapter Summary

Selfish wiring by end-users has many implications to service provisioning both for the

users and the service provider. The design of an autonomic deployment to address the

selfish behavior of users has received very little attention. Leveraging recent advances in

139

virtualization technology we described a distributed approach for the problem of placing

servers in large-scale networks. We overcome the scalability limitations of classic central-

ized approaches by re-optimizing the locations and the number of facilities through local

optimizations which are refined in several iterations. Re-optimizations are based on exact

topological and demand information from nodes in the immediate vicinity of a facility,

assisted by concise approximate representation of demand information from neighboring

nodes in the wider domain of the facility. Using extensive synthetic and trace-driven simu-

lations we demonstrate that our distributed approach is able to scale by utilization limited

local information without making serious performance sacrifices as compared to central-

ized optimal solutions. We also demonstrate that our distributed approach yields a high

performance under non-stationary demand and imperfect redirection. Our experimental

results provide evidence in support of the potential benefits end-user selfish server selection

offers towards efficient autonomic service deployment.

140

Chapter 6

Conclusion

While much attention has been paid to the harmful downsides of selfish behavior, the

impact of adopting selfish connectivity in real overlay networks has received little attention.

6.1 Summary

In this thesis, we do not dwell on the negatives, but instead we focus on the potential

benefits of selfish neighbor selection in real overlay networks. Our results indicate that

selfish neighbor selection primitives, apart from the obvious benefits to selfish users, can

be a powerful tool towards distributed overlay network creation, maintenance, monitoring,

and troubleshooting. Indeed, we confirm that selfish neighbor selection is not a problem,

so much as inaction, indifference, or a näıve reaction, all of which incur high individual

and social costs.

We provided a systematic evaluation of the design space for connectivity management in

overlays. This evaluation includes the demonstration of implications and promise, resulting

from adopting a selfish approach to neighbor selection and distributed service provisioning

in real network overlays. We also confirm that local optimization procedures, based on

local search heuristics, are capable of creating optimized topologies for different overlay

application and addressing scalability issues.

Important implications of selfish neighbor selection to system design were derived. In

the context of overlay routing and file sharing, we showed that selfish wiring strategies

are easily realizable and can achieve performance that is substantially better than the one

achieved by heuristics currently used in overlay systems. Such selfish wirings must be

141

a component of overlay systems to protect them from being exploited. In the context of

service provisioning, we showed that distributed service provisioning that relies on end-user

selfish wiring is easily realizable and has deployment cost which is close to the optimal.

In overlays that the optimal neighbor or server selection is provided as a service users

are incented to follow the protocol. Our surprisingly good results obtained under our

framework are robust as the assumption that users will sacrifice their performance towards

improving the overlay’s performance has been relaxed. We also showed that end-user

awareness through selfish neighbor or server selection leads to better overlays.

6.2 Directions for Future Research

Promising future research directions, some of which are part of our current research agenda,

include credit-based selfish neighbor selection, the study of the performance characteris-

tics of pair-wise stable graphs, and applications of SNS in cloud computing and network

neutrality.

Credit-based Selfish Neighbor Selection. Selfish neighbor selection can be used by

a user to increase its revenue. In many contexts like peering agreements between ISPs or

wireless network deployments, users are paid, based on the traffic they receive or relay. A

selfish user would strive to maximize the difference between payments received and given

out, by choosing its first hop neighbors. In [4], the authors studied the case where the

pair-wise pricing function is part of the solution, and the traffic matrix is uniform. We

would like to study the more realistic scenario where the pricing functions are given and the

traffic matrix is not uniform. We would rely on hot-potato routing or optimal scheduling

to one hop neighbors [42], rather than on source routing [3], which is impossible to enforce

in real implementations.

Towards pair-wise stable graphs. Central to this thesis is the study of the existence

and performance of pure Nash equilibria of the SNS game. In pure Nash equilibria, no

user can re-wire unilaterally and reduce its cost. The aforementioned equilibria are not the

only ones that can appear. A more restrictive set of equilibria is that of the pairwise stable

142

equilibria, where no two users can rewire and reduce their costs [25]. This type of stability

is more appropriate in settings where the establishment of connectivity is bidirectional and

requires some level of reciprocation on the pair-exchanged traffic.

Cloud Computing Applications. While nowadays the price of storage is decreasing

rapidly, the administrative cost of data centers increases mainly because manual configu-

rations have to take place [104]. In cloud computing applications a request is forwarded to

many processing and storage units. When a particular request is satisfied, the results are

replicated to different storage units. Moreover, the replicas of data have to be in network

proximity to enhance retrieval and update time. In principle, the redundancy of replicas

makes the data more resilient to loss, but on the other hand it hardens their manage-

ment, which is why their number has to be bounded. To address all the aforementioned

challenges, an autonomic deployment, based on selfish neighbor selection primitives can

be used. The location of replicas, their pairwise distance, along with the available storage

unit capacity and reliability can be part of the objective function that every request strives

to optimize.

Network Neutrality, Anti-censorship and User Satisfaction. The violation of

network neutrality has become the subject of recent debate [1] and includes the following

instances. First, ISPs throttle P2P traffic in order to reduce operational cost because

inter-ISP peering agreements are affected. Second, ISPs and content providers have to

comply with government or intellectual property regulations, regarding universal access

to content. Another problem is that it is impossible to monitor end-user satisfaction in

a huge population of users. All the aforementioned issues can be addressed by selfish

neighbor selection principles. In the context of throttling or censorship, a user can re-

wire in order to gain access through other neighboring users. The metrics that bias this

selection can be network proximity or meta information about the content that each user

has access to. Moreover, selfish neighbor selection can be used as a distributed monitoring

and re-directional mechanism within an ISP to improve end-user satisfaction.

We also believe that results presented in this thesis can be used in contexts other than

143

overlay networks. Our work goes against the conventional thinking that overlay users

conform to a specific protocol, which is a novel way to design communication networks

starting with a clean slate.

144

Appendix A

NP-hardness of maximizing the sum of bottleneck

bandwidths

Consider a node s that wants to connect to a network composed of m nodes vi ∈ C,

1 ≤ i ≤ m and n nodes uj ∈ S, 1 ≤ j ≤ n, so as to maximize the sum of bottleneck

bandwidths to all destinations as described in Section 3.4.1. Each node vi has directed

links of bandwidth b2 to a subset Si of the nodes of S. Node s has k links of bandwidth

b1 which it wants to use for connecting to k distinct nodes of C ∪ S (see Figure A·1 for

an illustration). Establishing a link to a node of S increases the utility of s by at most b1

independently of how it uses its remaining k − 1 links. Establishing a link to a node of C

increases its utility by b1 plus b2 times the number of nodes of S that s reaches by following

the new link. When s can reach a node uj through direct links to more than one nodes vi

we pick exactly one of the paths s→ vi → uj to be the bottleneck path for destination uj

(all have bandwidth min(b1, b2) so it doesn’t matter which one we choose). Granted this

construction, it is clear that s will establish direct links only to nodes of C. More over, it

will have to choose those nodes of C that maximize the number of distinct reachable nodes

of S. Therefore, a solution that maximizes the sum of bottleneck bandwidths to nodes of

C ∪ S implies an optimal solution to the MAX-UNIQUES(k) problem which is shown in

Appendix B to be NP-hard. Therefore, maximizing the sum of bottleneck bandwidths is

also an NP-hard problem.

145

i
S

j
u

m

i

v

v

1
v

s

1
u

un

Figure A·1: Reduction from MAX-UNIQUES(k) to max sum of bottleneck
bandwidths.

146

Appendix B

NP-hardness of maximizing the number of uniques

(MAX-UNIQUES)

Let MAX-UNIQUES(k) be an optimization problem in which one has to select k subsets

Ui, 1 ≤ i ≤ m of a set U with n elements so as to maximize the cardinality of the union

U(k) =
⋃

i∈choice Ui. Let UNIQUES(k) be the corresponding decision problem in which one

asks whether there is a choice leading to |U(k)| = l. UNIQUES(k) is clearly NP-complete

because for l = n a solution to UNIQUES(k) would imply a solution to SET-COVER.

Therefore, MAX-UNIQUES(k) is NP-hard.

147

Appendix C

NP-hardness of maximizing the minimum MAX-

FLOW

Consider a node s that wants to select a set of neighbors σ from a network composed

of m nodes vi ∈ V , n nodes uj ∈ U , and a single node t, so as to maximize its broad-

cast bandwidth defined to be its minimum max-flow to any destination, i.e., Φ(s, σ) =

minx∈(V ∪U∪{t})MF (s, x, σ), where MF (s, x, σ) denotes the max-flow from s to x under

strategy σ. Node s can use k < m links whose bandwidth is b1 if the other end-point

belongs to V , and ǫ ≈ 0 in any other case, implying that an optimal strategy σ for s must

satisfy σ ⊂ V, |σ| = k. Each node vi has directed links of bandwidth b2 to a subset Ui of the

nodes of U . Each node uj has a link of bandwidth b3 to t. Node t has links of bandwidth

b1 to all nodes of V and U (see Figure C·2 for an illustration). Link bandwidths obey:

b1 ≫ b2 ≫ b3 (C.1)

Let φ(s,X, σ) = minx∈X MF (s, x, σ) denote s’s minimum max-flow to any node in the

set X. Combining k < m and (C.1), we get that under any σ, at least one node of V will

get s’s flow only indirectly through t, i.e., :

φ(s, V, σ) = MF (s, t, σ) (C.2)

The max-flow from s to uj is equal to the max-flow from s to t, plus b2 for each connected

path s→ vi → uj under σ, minus the amount of flow that crosses the link from uj to t in a

max-flow from s to t under σ. Since this flow on the (uj , t) link is either 0, or b3 < b2 when

there’s at least one connected path s → vi → uj in σ, we get MF (s, uj , σ) ≥ MF (s, t, σ),

148

t

U
i

n

1

u

u

m

i

v

v

1
v

u

s j

b
1

b
2

b
3

b

b

1

1

Figure C·2: Reduction from MAX-UNIQUES(k) to Max-Min.

∀uj ∈ U , or equivalently:

φ(s, U, σ) ≥MF (s, t, σ) (C.3)

The max-flow to node t is:

MF (s, t) = b3 · paths(s, V, U) (C.4)

where paths(s, V, U) is the number of connected paths s → vi → uj that do not share

(vi, uj) edges, or equivalently the number of nodes uj that carry a non-zero flow in a max-

flow from s to t. Equations (C.2), (C.3) suggest that the maximization of the broadcast

bandwidth calls for the maximization of MF (s, t), which in view of (C.4), is achieved

through the maximization of paths(s, V, U). Maximizing paths(s, V, U) requires choosing

k subsets Vi so as to maximize the cardinality of their union. A straight-forward reduction

from set-cover can be used to show that max paths(s, V, U) is an NP-hard problem (see

Appendix B). Therefore, maximizing the broadcast bandwidth is NP-hard as it implies a

solution to max paths(s, V, U).

149

Appendix D

NP-hardness of maximizing the sum of MAX-FLOWs

Consider a node s that wants to connect to a network composed of m nodes vi ∈ V , n

nodes uj ∈ U , and h nodes wl ∈W , where h is a function of the out-degrees of the vi’s as

will be explained shortly, so as to maximize the sum of its max-flows to all nodes in the

union of V,U,W . Node s can use k < m links whose bandwidth is 1 if the other end-point

belongs to V , and ǫ ≈ 0 in any other case, implying than an optimal strategy σ for s must

satisfy σ ⊂ V, |σ| = k. Each node vi has directed links of unit bandwidth to a subset Ui of

the nodes of U . Each node uj has a link of unit bandwidth to each one of the nodes of W

(see Figure D·3 for an illustration). The cardinality of W is equal to the highest out-degree

of any node in V , i.e., h = max1≤i≤m |Ui|.

Define ψ(s,X, σ) =
∑

x∈X MF (s, x, σ) where MF (s, x, σ) denotes the max-flow from

s to x under strategy σ. Node s wants to select a strategy σ that maximizes Ψ(s, σ) =

ψ(s, V, σ) + ψ(s, U, σ) + ψ(s,W, σ) across all possible strategies. We will show that such

an optimal strategy has to maximize the number of nodes in U to which there exists a

connected path s→ vi → uj .

Notice that MF (s, vi, σ) = 1 iff vi ∈ σ and 0 otherwise, and thus ψ(s, V, σ) = k

independently of the particular strategy σ chosen. Therefore, we only need to care to

maximize ψ(s, U, σ) + ψ(s,W, σ). If s chooses to connect to vi, meaning vi ∈ σ, the

contribution to ψ(s, U, σ) will be |Ui|, because each outgoing link of vi increases by 1 every

max-flow from s to a node u ∈ Ui. The contribution to ψ(s,W, σ) will be h for each node

u ∈ U that is reachable from s if vi is included in σ but becomes unreachable if it is taken

out (“connecting” u increases all max-flows from s to nodes w ∈ W by 1). Therefore if

by switching vi ∈ σ with vi′ /∈ σ we get a strategy σ′ which has a higher number of nodes

150

2

hU

js

u

v
1

v

v

i

m

u

u

1

n

i

w
w

w

1

Figure D·3: Reduction from MAX-UNIQUES(k) to Max-Sum.

of U reachable from s, then we should perform the switch because Ψ(s, σ′) > Ψ(s, σ).

To see that, notice that the switch can hurt ψ(s, U, σ) by at most h − 1, if vi has the

highest degree and vi′ has degree 1 (it must have at least 1 to be increasing the number

of unique u’s reached), whereas it benefits ψ(s,W, σ) by at least h as it increases the

number of nodes of U reachable from s. The above argument implies that an optimal σ

must maximize the number of unique nodes of U reachable from s. Therefore, an optimal

solution to maximizing the sum of max-flows for s implies an optimal solution to the NP-

hard problem MAX-UNIQUES(k) of Appendix B. Therefore, max sum max-flows is an

NP-hard problem.

151

Appendix E

Derivation of an Upper Bound for ∆i(r)

For the rest, a two-dimensional space is considered over which nodes are scattered in a

uniform and continuous manner. The r-ball is considered as a circle with radius r and the

entire domain also as a circle with radius R (see Figure 5·2).

Suppose that a node u ∈ Ui is served by its closest facility node vi. This case is

depicted in Figure 5·2 where u is located at point A and the corresponding facility node vi

is located at point C. Note that line AC intersects with the periphery (skin) of the r-ball

at a particular point denoted by B. Clearly, line AC corresponds to the shortest distance

between points A and C (nodes u and vi, respectively). Denoting as x the length of AB,

|AB| (the distance of node u from the skin of the r-ball) we can write AC = x+r. Line AC

may be regarded as the path over which node u uses the resources of the facility located

at node vi.

Suppose that a node uj ∈ Vi is considered as a possible alternative facility location. Let

D be the point denoting the location of vj and let y denote the distance between node vi and

node vj (i.e., the length of CD, |CD|). The mapping error, ∆i(r, j, u) = |AB|+|BD|−|AD|,

is always positive since |AB|+ |BD| > |AD| (AB, BD and AD correspond to edges of the

same triangle) when AB̂D 6= 0 and AB̂D 6= π. The mapping error becomes zero only in

the exceptional cases where AB̂D = 0 and AB̂D = π (corresponding to φ̂ = π and φ̂ = 0,

respectively, as concluded from Figure 5·2).

Let ∆i(r, j) be the summation of ∆i(r, j, u), ∀u ∈ Ui. Since we have assumed the

network area as a two-dimension continuous space, all nodes u ∈ Ui correspond to the ring

152

area Ui, depicted in Figure 5·2. Consequently, ∆i(r, j) is given by the following integral,

∆i(r, j) =

∫

Ui

∆i(r, j, u)du. (E.5)

Let ∆i(r) denote the total mapping error, or the summation of ∆i(r, j) for all nodes

j ∈ Vi. Therefore,

∆i(r) =

∫

Vi

∆i(r, j)dj. (E.6)

In Appendix F we derive the following analytical expression for ∆i(r, j, u) as a function

of parameters x, y, r and φ̂:

∆i(r, j, u) = x+

√

r2 + y2 − 2yr cos φ̂

−
√

(x+ r)2 + y2 − 2y(x+ r) cos φ̂.
(E.7)

∆i(r, j, u) as it is given by Equation (E.7) is difficult to be analyzed. In addition, an

analytical expression regarding ∆i(r) is not easy to be derived since it is hard to obtain

the corresponding integrals. Therefore, in the sequel we obtain an upper bound ∆i(r) by

using a simple upper bound for ∆i(r, j, u) as explained below.

It is easy to see that r2 +y2−2yr cos φ̂ ≤ r2 +y2 +2yr = (r+y)2, since −1 ≤ cos φ̂ ≤ 1.

Also, (x+ r)2 + y2 − 2y(x+ r) cos φ̂ ≥ (x+ r)2 + y2 − 2y(x+ r) = (x+ r − y)2 (note that

y ≤ r).

Based on Equation (E.7), it is concluded that ∆i(r, j, u) ≤ x+
√

(r + y)2−
√

(x+ r − y)2 =

x+ r + y − x− r + y. Therefore, ∆i(r, j, u) ≤ 2y. Given that y ≤ r,

∆i(r, j, u) ≤ 2r. (E.8)

In order to derive ∆i(r, j), according to Equation (E.5), an analytical expression has to

be derived for the integral
∫

Ui
∆i(r, j, u)du. Note that 0 ≤ ∆i(r, j, u) ≤ 2r,

∫

Ui
∆i(r, j, u)du ≤

∫

Ui
2rdu and R corresponds to the radius of the Ui∪Vi area (note that R ≥ r). Eventually,

∆i(r, j) ≤ 2πr(R2 − r2), (E.9)

153

since the area of the ring Ui is π(R2 − r2).

In order to derive ∆i(r), according to Equation (E.6), an analytical expression has

to be derived for the integral
∫

Vi
∆i(r, j)dj. Note that 0 ≤ ∆i(r, j) ≤ 2πr(R2 − r2) and

∫

Vi
∆i(r, j)dj ≤

∫

Vi
2πr(R2 − r2)dj. Eventually,

∆i(r) ≤ 2π2r3(R2 − r2), (E.10)

since the r-ball area is πr2.

154

Appendix F

Derivation of an Analytical Expression for ∆i(r, j, u)

When one of the angles of a triangle (φ̂) is known as well as the length of both adjacent

edges (r and y), then the length of the third edge is possible to be derived as a function of

φ̂, r, y. Two different cases may be distinguished with respect to the triangle’s particular

form, as depicted in Figure F·4.

A

B C

r

y

Dy1 y2

A

B
C

r

yD y’

a. b.

Figure F·4: The two distinguished cases studied to derive the analytical
expression for ∆i(r, j, u).

For the case depicted in Figure F·4(a), cos φ̂ = y1

r . Since y = y1 + y2, y2 = y − y1 =

y−r cos φ̂. Furthermore, sin φ̂ = |AD|
r and |AD| = r sin φ̂. It holds that |AC|2 = |AD|2+y2

2,

or |AC| =
√

|AD|2 + y2
2, or |AC| =

√

r2 sin2 φ̂+ y2 + r2 cos2 φ̂− 2yr cos φ̂. Eventually,

|AC| =

√

r2 + y2 − 2yr cos φ̂. (F.11)

The same result is also derived for the case depicted in Figure F·4(b), where θ̂ = π− φ̂.

For this case, |AC| =
√

|AD|2 + (y + y′)2. However, |AD| = r sin θ̂ and y′ = r cos θ̂.

Since, sin θ̂ = sin φ̂ and cos θ̂ = − cos φ̂, |AD| = r sin φ̂ and y′ = −r cos φ̂. Eventually,

Equation (F.11) holds for this case as well.

Bibliography

[1] Vinay Aggarwal, Anja Feldmann, and Christian Scheideler. Can ISPS and P2P
users cooperate for improved performance? SIGCOMM Computuer Communication
Review, 37(3):29–40, 2007.

[2] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris. Resilient
Overlay Networks. In SOSP ’01: Proceedings of the 18th ACM symposium on Oper-
ating systems principles.

[3] Elliot Anshelevich, Bruce Shepherd, and Gordon Wilfong. Strategic Network For-
mation through Peering and Service Agreements. In FOCS ’06: Proceedings of the
47th Annual IEEE Symposium on Foundations of Computer Science.

[4] Esteban Arcaute, Ramesh Johari, and Shie Mannor. Network Formation: Bilateral
Contracting and Myopic Dynamics. Transactions on Automatic Control, [to appear],
2008.

[5] Aaron Archer. Inapproximability of the asymmetric facility location and k-median
problems, 2000. unpublished manuscript, available from the author’s web-page.

[6] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala,
and Vinayaka Pandit. Local search heuristics for k-median and facility location
problems. SIAM Journal on Computing, 33(3):544–562, 2004.

[7] Moshe Babaioff, Robert Kleinberg, and Christos H. Papadimitriou. Congestion games
with malicious players. In EC ’07: Proceedings of the 8th ACM conference on Elec-
tronic commerce.

[8] Albert-Laszlo Barabási and Reka Albert. Emergence of scaling in random networks.
Science, 286(5439):509–512, 1999.

[9] Philip A. Bernstein and Nathan Goodman. Concurrency control in distributed
database systems. ACM Computer Surveys, 13(2), 1981.

[10] Ashwin Bharambe, John R. Douceur, Jacob R. Lorch, Thomas Moscibroda, Jeffrey
Pang, Srinivasan Seshan, and Xinyu Zhuang. Donnybrook: Enabling Large-Scale,
High-Speed, Peer-to-Peer Games. In SIGCOMM ’08: Proceedings of the ACM SIG-
COMM 2008 conference on Data communication.

[11] Ashwin Bharambe, Jeffrey Pang, and Srinivasan Seshan. Colyseus: a distributed
architecture for online multiplayer games. In NSDI ’06: Proceedings of the 3rd con-
ference on Networked Systems Design & Implementation.

155

156

[12] Ashwin R. Bharambe, Cormac Herley, and Venkata N. Padmanabhan. Analyzing
and Improving a BitTorrent Network’s Performance Mechanisms. In INFOCOM ’06:
Proceedings of the 25th IEEE International Conference on Computer Communica-
tions.

[13] Ruchir Bindal, Pei Cao, William Chan, Jan Medval, George Suwala, Tony Bates, and
Amy Zhang. Improving Traffic Locality in BitTorrent via Biased Neighbor Selection.
In ICDCS ’06: Proceedings of the 26th IEEE International Conference on Distributed
Computing Systems.

[14] Rob H. Bisseling. Parallel Scientific Computation: A Structured Approach using BSP
and MPI. Oxford University Press, 2004.

[15] Alberto Blanc, Yi-Kai Liu, Amin Vahdat, and Scott Shenker. Designing Incentives
for Peer-to-Peer Routing. In P2PEcon ’04: Proceedings of the 2nd Workshop on the
Economics of Peer-to-Peer Systems.

[16] Craig W. Cameron, Steven H. Low, and David X. Wei. High-density model for
server allocation and placement. In SIGMETRICS ’02: Proceedings of the 2002 ACM
SIGMETRICS international conference on Measurement and modeling of computer
systems.

[17] Robert L. Carter and Mark E. Crovella. On the Network Impact of Dynamic Server
Selection. Computer Networks, 31((23-24)):2529–2558, 1999.

[18] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, and Dan S.
Wallach. Secure routing for structured peer-to-peer overlay networks. In OSDI ’02:
Proceedings of the 8th ACM symposium on Operating systems principles.

[19] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi, Antony
Rowstron, and Atul Singh. SplitStream: high-bandwidth multicast in cooperative
environments. In SOSP ’03: Proceedings of the 10th ACM symposium on Operating
systems principles.

[20] Chris Chambers, Wu chi Feng, Wu chang Feng, and Debanjan Saha. A geographic
redirection service for on-line games. In ACM MULTIMEDIA ’03: Proceedings of
the 11th ACM International Conference on Multimedia.

[21] Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-
factor approximation algorithm for the k-median problem. Journal of Computer and
System Sciences, 65(1):129–149, 2002.

[22] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott Shenker.
Making Gnutella-like P2P systems scalable. In SIGCOMM ’03: Proceedings of the
2003 conference on Applications, technologies, architectures, and protocols for com-
puter communications.

157

[23] Byung-Gon Chun, Rodrigo Fonseca, Ion Stoica, and John Kubiatowicz. Character-
izing selfishly constructed overlay routing networks. In INFOCOM ’04: Proceedings
of the 23rd Annual Joint Conference of the IEEE Computer and Communications
Societies.

[24] Bram Cohen. Incentives build robustness in bit torrent. In Proceedings of the 1st
Workshop on Economics of Peer-to-Peer Systems, 2003.

[25] Jacomo Corbo and David C. Parkes. The Price of Selfish Behavior in Bilateral
Network Formation. In PODC ’05: Proceedings of the 24th annual ACM symposium
on Principles of distributed computing.

[26] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Second Edition. The MIT Press, 2001.

[27] Eric Cronin, Sugih Jamin, Cheng Jin, Anthony R. Kurc, Danny Raz, and Yuval
Shavitt. Constraint mirror placement on the internet. IEEE Journal on Selected
Areas in Communications, 20(7), 2002.

[28] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminath an Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: amazon’s highly available key-value store. In SOSP ’07:
Proceedings of the 21st ACM SIGOPS symposium on Operating systems principles.

[29] Erik D. Demaine, MohammadTaghi Hajiaghayi, Hamid Mahini, and Morteza Zadi-
moghaddam. The price of anarchy in network creation games. In PODC ’07: Pro-
ceedings of the 26th Annual ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing.

[30] Zhenhai Duan, Zhi-Li Zhang, and Yiwei Thomas Hou. Service overlay networks:
SLAs, QoS, and bandwidth provisioning. IEEE/ACM Transactions on Networking,
11(6):870–883, 2003.

[31] Jack Edmonds. Edge-disjoint branchings. In Proceedings of the 9th Courant Com-
puter Science Symposium on Combinatorial Algorithms, Algorithmics Press, pages
91–96, 1972.

[32] Paul Erdös and Alfred Rényi. On random graphs I. Publicationes Mathemaricae
Debrecen, 6:290–297, 1959.

[33] Nathan Faber and Ravi Sundaram. MOVARTO:Server Migration across Networks
using Route Triangulation and DNS. In Proceedings of the VMworld ’07, San Fran-
cisco, CA.

[34] Alex Fabrikant, Ankur Luthra, Elitza Maneva, Christos H. Papadimitriou, and Scott
Shenker. On a network creation game. In PODC ’03: Proceedings of the 22nd ACM
Symposium on Principles of Distributed Computing.

158

[35] Joan Feigenbaum and Scott Shenker. Distributed algorithmic mechanism design:
Recent results and future directions. In Proceedings of the 6th International Workshop
on Discrete Algorithms and Methods for Mobile Computing and Communications,
2002.

[36] Michal Feldman, Kevin Lai, Ion Stoica, and John Chuang. Robust incentive tech-
niques for peer-to-peer networks. In EC ’04: Proceedings of the 5th ACM conference
on Electronic commerce.

[37] Naveen Garg, Rohit Khandekar, and Vinayaka Pandit. Improved approximation for
universal facility location. In SODA ’05: Proceedings of the 16th annual ACM-SIAM
symposium on Discrete algorithms.

[38] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file system.
SIGOPS Operating Systems Review, 37(5):29–43, 2003.

[39] Christos Gkantsidis, Thomas Karagiannis, Pablo Rodriguez, and Milan Vojnovic.
Planet Scale Software Updates. In SIGCOMM ’06: Proceedings of the ACM SIG-
COMM 2006 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications.

[40] Christos Gkantsidis and Pablo Rodriguez. Network Coding for Large Scale Content
Distribution. In INFOCOM ’05: Proceedings of the 24th Annual Joint Conference of
the IEEE Computer and Communications Societies.

[41] P. Brighten Godfrey, Scott Shenker, and Ion Stoica. Minimizing churn in distributed
systems. In SIGCOMM ’06: Proceedings of the ACM SIGCOMM 2006 Conference
on Applications, Technologies, Architectures, and Protocols for Computer Communi-
cations.

[42] David K. Goldenberg, Lili Qiuy, Haiyong Xie, Yang Richard Yang, and Yin Zhang.
Optimizing cost and performance for multihoming. In SIGCOMM ’04: Proceedings of
the ACM SIGCOMM 2004 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication.

[43] Krishna Gummadi, Ramakrishna Gummadi, Steve Gribble, Sylvia Ratnasamy, and
Ion Stoica. The Impact of DHT Routing Geometry on Resilience and Proximity. In
SIGCOMM ’03: Proceedings of the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications.

[44] Lei Guo, Songqing Chen, Zhen Xiao, Enhua Tan, Xiaoning Ding, and Xiaodong
Zhang. Measurements, analysis, and modeling of bittorrent-like systems. In IMC
’05: Proceedings of the 5th Conference on Internet Measurement.

[45] Junghee Han, David Watson, and Farnam Jahanian. Topology aware overlay net-
works. In INFOCOM ’05: Proceedings of the 24th Annual Joint Conference of the
IEEE Computer and Communications Societies.

159

[46] Sandra M. Hedetniemi, Stephen T. Hedetniemi, and Arthur L. Liestman. A survey
of gossiping and broadcasting in communication networks. Networks, 18:319–349,
1988.

[47] Dorit S. Hochbaum. Approximation Algorithms for NP-Hard Problems. PWS Pub-
lishing Company, 1996.

[48] Mikel Izal, Guillaume Urvoy-Keller, Ernst W Biersack, Pascal A Felber, Anwar Al
Hamra, and Luis Garces-Erice. Dissecting BitTorrent: Five Months in a Torrent’s
Lifetime. In PAM ’04: Proceedings of the 5th International Workshop of Passive and
Active Network Measurement.

[49] Kamal Jain and Vijay V. Vazirani. Primal-Dual Approximation Algorithms for Met-
ric Facility Location and k-Median Problems. In FOCS ’99: The 40th Annual Sym-
posium on Foundations of Computer Science.

[50] Manish Jain and Constantinos Dovrolis. End-to-end available bandwidth: measure-
ment methodology, dynamics, and relation with tcp throughput. IEEE/ACM Trans-
actions on Networking, 11(4):537–549, 2003.

[51] Shudong Jin and Azer Bestavros. Small-World Internet Topologies: Possible Causes
and Implications on Scalability of End-System Multicast. Technical Report BUCS-
TR-2002-004, CS Department, Boston University, January 30 2002.

[52] Shudong Jin and Azer Bestavros. Small-world characteristics of internet topologies
and implications on multicast scaling. Computer Networks, 50(5):648–666, 2006.

[53] O. Kariv and S.L. Hakimi. An Algorithmic Approach to Network Location Problems,
Part II: p-medians. SIAM Journal on Applied Mathematics, 37:539–560, 1979.

[54] Madhukar R. Korupolu, C. Greg Plaxton, and Rajmohan Rajaraman. Analysis of a
local search heuristic for facility location problems. In SODA ’98: Proceedings of the
9th Annual ACM-SIAM Symposium on Discrete Algorithms.

[55] Dejan Kostic, Adolfo Rodriguez, Jeannie Albrecht, and Amin Vahdat. Bullet: high
bandwidth data dissemination using an overlay mesh. In SOSP ’03: Proceedings of
the 19th ACM Symposium on Operating Systems Principles.

[56] P. Krishnan, Danny Raz, and Yuval Shavit. The cache location problem. IEEE/ACM
Transactions on Networking, 8(5):568–581, 2000.

[57] Rakesh Kumar and Keith W. Ross. Optimal Peer-Assisted File Distribution: Single
and Multi-Class Problems. In HotWeb ’06: Proceedings of the 1st IEEE Workshop
on Hot Topics in Web Systems and Technologies.

[58] Anukool Lakhina, John Byers, Mark Crovella, and Peng Xie. Sampling biases in IP
topology measurements. In Proc. of IEEE INFOCOM ’03, April 2003.

160

[59] Nikolaos Laoutaris, Laura Poplawski, Rajmohan Rajaraman, Ravi Sundaram, and
Shang-Hua Teng. A Bounded-Degree Network Formation Game. In PODC ’08:
Proceedings of the 27th Annual ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing.

[60] Nikolaos Laoutaris, Pablo Rodriguez, and Laurent Massoulie. ECHOS: edge capacity
hosting overlays of nano data centers. ACM SIGCOMM Computer Communication
Review, 38(1):51–54, 2008.

[61] Nikolaos Laoutaris, Georgios Smaragdakis, Azer Bestavros, Ibrahim Matta, and Ioan-
nis Stavrakakis. Distributed Selfish Caching. IEEE Transactions on Parallel and
Distributed Systems, 18(10):1361–1376, October 2007.

[62] Nikolaos Laoutaris and Ioannis Stavrakakis. Intrastream synchronization for contin-
uous media streams: A survey of playout schedulers. IEEE Network Magazine, 16(3),
May 2002.

[63] Nikolaos Laoutaris, Orestis Telelis, Vassilios Zissimopoulos, and Ioannis Stavrakakis.
Distributed Selfish Replication. IEEE Transactions on Parallel and Distributed Sys-
tems, 17(12):1401–1413, 2006.

[64] Vito Latora and Massimo Marchiori. Economic small-world behavior in weighted
networks. The European Physical Journal B, 32:249–263, 2003.

[65] Jonathan Ledlie, Peter Pietzuch, and Margo Seltzer. Network Coordinates in the
Wild. In NSDI ’07: Proceedings of the 4th USENIX Symposium on Networked Sys-
tems Design & Implementation.

[66] Arnaud Legout, G. Urvoy-Keller, and P. Michiardi. Rarest first and choke algo-
rithms are enough. In IMC ’06: Proceedings of the 2006 ACM SIGCOMM Internet
Measurement Conference.

[67] Vincent Lenders, Martin May, and Bernhard Plattner. Density-based vs. Proximity-
based Anycast Routing for Mobile Networks. In INFOCOM ’06: Proceedings of the
25th IEEE International Conference on Computer Communications.

[68] Xin Li, Fang Bian, Mark Crovella, Christophe Diot, Ramesh Govindan, and Gian-
luca Iannaccone. Detection and identification of network anomalies. In IMC ’06:
Proceedings of the 2006 ACM SIGCOMM Internet Measurement Conference.

[69] Zhi Li and Prasant Mohapatra. Impact of Topology On Overlay Routing Service.
In INFOCOM ’04: Proceedings of the 23rd Annual Joint Conference of the IEEE
Computer and Communications Societies.

[70] Zhi Li and Prasant Mohapatra. QRON: QoS-aware routing in overlay networks.
IEEE JSAC, 22(1):29–40, Jan 2004.

[71] Jian Liang, Rakesh Kumar, and Keith W. Ross. The FastTrack overlay: A measure-
ment study. Computer Networks, 50(6):842–858, 2006.

161

[72] Jyh-Han Lin and Jeffrey Scott Vitter. ǫ-Approximations with Minimum Packing
Constraint Violation. In STOC ’92: Proceedings of the twenty-fourth annual ACM
symposium on Theory of Computing.

[73] Yong Liu, Honggang Zhang, Weibo Gong, and Donald F. Towsley. On the interaction
between overlay routing and underlay routing. In INFOCOM ’05: Proceedings of the
24th Annual Joint Conference of the IEEE Computer and Communications Societies.

[74] Thanasis Loukopoulos, Petros Lampsas, and Ishfaq Ahmad. Continuous Replica
Placement Schemes in Distributed Systems. In ICS ’05: Proceedings of the 19th
annual international conference on Supercomputing.

[75] Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. Search and replication
in unstructured peer-to-peer networks. In ICS ’02: Proceedings of the 15th annual
international conference on Supercomputing.

[76] Ratul Mahajan, Neil Spring, David Wetherall, and Tom Anderson. Inferring link
weights using end-to-end measurements. In IMW ’02: Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet measurment.

[77] Mohammad Mahdian and Martin Pal. Universal facility location. In ESA ’03: Pro-
ceedings of the 11th Annual European Symposium.

[78] Gurmeet Singh Manku, Moni Naor, and Udi Wieder. Know thy neighbor’s neighbor:
the power of lookahead in randomized P2P networks. In STOC ’04: Proceedings of
the 26th annual ACM symposium on Theory of computing.

[79] Laurent Massoulie, Andy Twigg, Christos Gkantsidis, and Pablo Rodriguez. Ran-
domized decentralized broadcasting algorithms. In INFOCOM ’07: Proceedings of
the 26th Annual IEEE Conference on Computer Communications.

[80] Laurent Massoulie and Milan Vojnovic. Coupon replication systems. In SIGMET-
RICS ’05: Proceedings of the 2005 ACM SIGMETRICS International Conference on
Measurements and Modeling of Computer Systems.

[81] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. BRITE: An
Approach to Universal Topology Generation. In MASCOTS ’01: Proceedings of the
9th International Workshop on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems.

[82] Adam Meyerson. Online Facility Location. In FOCS ’01: Proceedings of the 42nd
IEEE symposium on Foundations of Computer Science.

[83] Pitu B. Mirchandani and Richard L. Francis. Discrete Location Theory. John Wiley
and Sons, 1990.

[84] Thomas Moscibroda, Stefan Schmid, and Roger Wattenhofer. On the topologies
formed by selfish peers. In PODC ’06: Proceedings of the 25th Annual ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing.

162

[85] Thomas Moscibroda and Roger Wattenhofer. Facility location: distributed approxi-
mation. In PODC ’05: Proceedings of the 24th annual ACM symposium on Principles
of distributed computing.

[86] Noam Nisan, Tim Roughgarden, Éva Tardos, and Vijay V. Vazirani. Algorithmic
Game Theory. Cambridge University Press, 2007.

[87] Konstantinos Oikonomou and Ioannis Stavrakakis. Service migration: The tree topol-
ogy case. In Med-Hoc-Net ’06: Proceedings of the 5th IFIP Annual Mediterranean
Ad Hoc Networking Workshop.

[88] David Oppenheimer, Brent Chun, David Patterson, Alex C. Snoeren, and Amin Vah-
dat. Service placement in a shared wide-area platform. In USENIX’06: Proceedings
of the 2006 USENIX Annual Technical Conference.

[89] Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. MIT Press,
1994.

[90] Steven Osman, Dinesh Subhraveti, Gong Su, and Jason Nieh. The design and im-
plementation of Zap: a system for migrating computing environments. In OSDI ’02:
Proceedings of the 5th symposium on Operating systems design and implementation.

[91] Jianping Pan, Y. Thomas Hou, and Bo Li. An overview dns-based server selection
in content distribution networks. Computer Networks, 43(6), 2003.

[92] Larry L. Peterson and Bruce S. Davie. Computer Networks: A Systems Approach,
3rd Edition. Morgan Kaufmann Publishers Inc., 2003.

[93] Dongyu Qiu and R. Srikant. Modeling and performance analysis of bittorrent-like
peer-to-peer networks. In SIGCOMM ’04: Proceedings of the ACM SIGCOMM 2004
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communication.

[94] Lili Qiu, Yang Richard Yang, Yin Zhang, and Scott Shenker. On Selfish Routing
in Internet-like Environments. In SIGCOMM ’03: Proceedings of the ACM SIG-
COMM 2003 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication.

[95] Michael Rabinovich and Amit Aggarwal. RaDaR: A scalable architecture for a global
web hosting service. In WWW ’99: Proceedings of the 8th International World Wide
Web Conference.

[96] Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott Shenker. Topologically
aware overlay construction and server selection. In INFOCOM ’02: Proceedings of the
21st Annual Joint Conference of the IEEE Computer and Communications Societies.

[97] Sean Rhea, Daniel Geels, Timothy Roscoe, and John Kubiatowicz. Handling Churn
in a DHT. In USENIX ’04: Proceedings of the 2004 USENIX Annual Technical
Conference.

163

[98] Vinay Ribeiro, Rudolf Riedi, Richard Baraniuk, Jiri Navratil, and Les Cottrell.
pathChirp: Efficient Available Bandwidth Estimation for Network Paths. In PAM
’03: Proceedings of the 4th International Workshop of Passive and Active Network
Measurement.

[99] Bruno Gusmao Rocha, Virgilio Almeida, and Dorgival Guedes. Improving reliability
of selfish overlay networks. In WWW ’06: Proceedings of the 15th International
World Wide Web Conference, Edinbuurgh, UK, 2006.

[100] Tim Roughgarden and Éva Tardos. How bad is selfish routing? Journal of the ACM,
49(2):236–259, 2002.

[101] Stefan Savage, Thomas Anderson, Amit Aggarwal, David Becker, Neal Cardwell,
Andy Collins, Eric Hoffman, John Snell, Amin Vahdat, Geoff Voelker, and John
Zahorjan. Detour: Informed Internet routing and transport. IEEE Micro, 19(1):50–
59, 1999.

[102] Srinivasan Seetharaman and Mostafa Ammar. On the Interaction between Dynamic
Routing in the Overlay and Native Layers. In INFOCOM ’06: Proceedings of the
25th IEEE International Conference on Computer Communications.

[103] Alok Shriram, Margaret Murray, Young Hyun, Nevil Brownlee, Andre Broido, Ma-
rina Fomenkov, and Kimberly C. Claffy. Comparison of Public End-to-End Band-
width Estimation Tools on High-Speed Links. In PAM ’05: Proceedings of the 6th
International Workshop of Passive and Active Network Measurement.

[104] Aameek Singh, Madhukar Korupolu, and Bhuvan Bamba. SPARK: Integrated Re-
source Allocation in Virtualization-Enabled SAN Data Centers. IBM Research Re-
port RJ10407.

[105] Atul Singh, Miguel Castro, Peter Druschel, and Antony Rowstron. Defending against
eclipse attacks on overlay networks. In Proc. of ACM SIGOPS European Workshop,
page 21, 2004.

[106] Georgios Smaragdakis, Nikolaos Laoutaris, Pietro Michiardi, Azer Bestavros,
John W. Byers, and Mema Roussopoulos. Swarming on Optimized Graphs for n-
way Broadcast. In INFOCOM ’08: Proceedings of the 27th Annual IEEE Conference
on Computer Communications.

[107] Neil Spring, Ratul Mahajan, David Wetherall, and Thomas Anderson. Measuring
ISP topologies with rocketfuel. IEEE/ACM Transanctions on Networking, 12(1):2–
16, 2004.

[108] Srinivasan Seetharaman and Voler Hilt and Markus Hofmann and Mostafa Ammar.
Preemptive strategies to improve routing performance of native and overlay layers.
In INFOCOM ’07: Proceedings of the 26th Annual IEEE Conference on Computer
Communications.

164

[109] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, , M. Frans
Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord: A scalable peer-to-peer
lookup protocol for internet applications. IEEE/ACM Transactions on Networking,
11(1):17–32, 2003.

[110] Daniel Stutzbach and Reza Rejaie. Characterizing the two-tier Gnutella topology.
In SIGMETRICS ’05: Proceedings of the 2005 ACM SIGMETRICS International
Conference on Measurements and Modeling of Computer Systems.

[111] Daniel Stutzbach, Reza Rejaie, Nick Duffield, Subhabrata Sen, and Walter Will-
inger. On unbiased sampling for unstructured peer-to-peer networks. In IMC ’06:
Proceedings of the 2006 ACM SIGCOMM Internet Measurement Conference.

[112] Lakshminarayanan Subramanian, Sharad Agarwal, Jennifer Rexford, and Randy H.
Katz. Characterizing the internet hierarchy from multiple vantage points. In INFO-
COM ’02: Proceedings of the 21st Annual Joint Conference of the IEEE Computer
and Communications Societies.

[113] Lakshminarayanan Subramanian, Ion Stoica, Hari Balakrishnan, and Randy H. Katz.
OverQoS: offering internet QoS using overlays. SIGCOMM Computer Communica-
tion Review, 33(1):11–16, 2003.

[114] Ye Tian, Di Wu, and Kam-Wing Ng. Analyzing multiple file downloading in bit-
torrent. In ICPP ’06: Proceedings of the 2006 International Conference on Parallel
Processing.

[115] Vivek Vishnumurthy and Paul Francis. A comparison of structured and unstructured
p2p approaches to heterogeneous random peer selection. In USENIX ’07: Proceedings
of the 2007 USENIX Annual Technical Conference.

[116] Bernard M. Waxman. Routing of multipoint connections. IEEE Journal on Selected
Areas in Communications, 6(9):1617–1622, 1988.

[117] Lidia Yamamoto and Guy Leduc. Autonomous reflectors over active networks: to-
wards seamless group communication. The Interdisciplinary Journal of Artificial
Intelligence & the Simulation of Behaviour, 1(1):125–146, 2001.

[118] Zhongmei Yao, Derek Leonard, Xiaoming Wang, and Dmitri Loguinov. Modeling
Heterogeneous User Churn and Local Resilience of Unstructured P2P Networks. In
ICNP ’06: Proceedings of the 14th IEEE International Conference on Network Pro-
tocols.

[119] Anthony Young, Jiang Chen, Zheng Ma, Arvind Krishnamurthy, Larry L. Peterson,
and Randy Wang. Overlay Mesh Construction Using Interleaved Spanning Trees.
In INFOCOM ’04: Proceedings of the 23rd Annual Joint Conference of the IEEE
Computer and Communications Societies.

165

[120] Honggang Zhang, Giovanni Neglia, Don Towsley, and Giuseppe Lo Presti. On un-
structured file sharing networks. In INFOCOM ’07: Proceedings of the 26th Annual
IEEE Conference on Computer Communications.

[121] Yong Zhu, Constantinos Dovrolis, and Mostafa H. Ammar. Dynamic overlay routing
based on available bandwidth estimation: A simulation study. Computer Networks,
50(6):742–762, 2006.

[122] Artur Ziviani, Serge Fdida, José Ferreira de Rezende, and Otto Carlos Muniz Ban-
deira Duarte. Toward a measurement-based geographic location service. In PAM
’04: Proceedings of the 5th International Workshop of Passive and Active Network
Measurement.

Curriculum Vitae

EDUCATION

Ph.D. Candidate in Computer Science, Boston University, 2003-present.
Dissertation Title: “Overlay Network Creation and Maintenance with Selfish Users”.
Dissertation Committee: Azer Bestavros, Nikolaos Laoutaris, John W. Byers.

Diploma in Electronic and Computer Engineering,
Technical University of Crete, 2002.

HONORS and AWARDS

Boston University Graduate Fellow, 2003 to present

Honorable Mention Award from the Center for Information and Systems Engineering
- Best Posters presented at the Boston University Science and Engineering Research
Symposium, 2007.

2nd Place Award - Best Posters for Boston University/Computer Science Research Day,
2007.

Honorable Mention Award from the Center for Information and Systems Engineering
- Best Posters presented at the Boston University Science and Engineering Research
Symposium, 2006.

2nd Place Award - Best Posters for Boston University/Computer Science Research Day,
2006.

1st ERICSSON Award of Excellence in Telecommunications, 2003.

Graduating ranking second, Class of 2002, Technical University of Crete, 2002.

Annual Scholarship of the Technical Chamber of Greece , 1999-2000.

Annual Scholarship of the Greek National Fellowship Foundation, 1998-2000.

166

167

Academic Excellence Award, Greek Ministry of Labor and Social Affairs, 1998-2000.

Annual Scholarship of the Paidia Foundation, 1999-2000.

Honorary Diploma of the municipality of Piraeus for the Social, Environmental and Eco-
nomic analysis of the City of Piraeus, 1996. 1st Awards of Excellent Studies from Greek
Ministry of Education, 1990-1996.

PUBLICATIONS

REFEREED JOURNALS

I. C. Paschalidis and G. Smaragdakis, Spatio-Temporal Network Anomaly Detection by
Assessing Deviations of Empirical Measures, IEEE/ACM Transactions on Networking, [to
appear].

N. Laoutaris, G. Smaragdakis, A. Bestavros, I. Matta, and I. Stavrakakis, Distributed
Selfish Caching, IEEE Transactions on Parallel and Distributed Systems, vol. 18, no. 10,
pp. 1361–1376, October 2007.

G. Smaragdakis, N. Laoutaris, A. Bestavros, I. Matta, and I. Stavrakakis, Mistreatment-
Resilient Distributed Caching, Computer Networks, vol. 51, no. 11, pp. 2917–2937,
August 2007.

REFEREED CONFERENCES

G. Smaragdakis, N. Laoutaris, P. Michiardi, A. Bestavros, J. W. Byers, and M. Rous-
sopoulos, Swarming on optimized graphs for n-way broadcast, in Proceedings of IEEE
INFOCOM 2008, Phoenix, AZ, April 2008.

N. Laoutaris, G. Smaragdakis, A. Bestavros, and J. W. Byers, Implications of Selfish
Neighbor Selection in Overlay Networks, in Proceedings of IEEE INFOCOM 2007,
Anchorage, AK, May 2007.

N. Laoutaris, G. Smaragdakis, K. Oikonomou, I. Stavrakakis, and A. Bestavros, Dis-
tributed Placement of Service Facilities in Large-Scale Networks, in Proceedings of IEEE
INFOCOM 2007, Anchorage, AK, May 2007.

168

N. Laoutaris, G. Smaragdakis, A. Bestavros, and I. Stavrakakis, Mistreatment in Dis-
tributed Caching Groups: Causes and Implications, in Proceedings of IEEE INFOCOM
2006, Barcelona, Spain, April 2006.

G. Smaragdakis, N. Laoutaris, I. Matta, A. Bestavros, and I. Stavrakakis, A Feedback
Control Approach to Mitigating Mistreatment in Distributed Caching Groups, in Pro-
ceedings of IFIP Networking 2006, Coimbra, Portugal, May 2006.

I. C. Paschalidis and G. Smaragdakis, A Large Deviations Approach to Statistical Traf-
fic Anomaly Detection, in Proceedings of IEEE CDC 2006, San Diego, CA, December 2006.

D. Barman, G. Smaragdakis, and I. Matta, The Effect of Router Buffer Size on HighSpeed
TCP Performance, in Proceedings of IEEE Globecom 2004 - Global Internet and Next
Generation Networks, Dallas, TX, December 2004.

G. Smaragdakis, I. Matta, and A. Bestavros, SEP: A Stable Election Protocol for clustered
heterogeneous wireless sensor networks, in Proceedings of Second International Workshop
on Sensor and Actor Network Protocols and Applications (SANPA 2004), Boston, MA,
August 2004.

UNDER SUBMISSION

G. Smaragdakis, N. Laoutaris, A. Bestavros, J. W. Byers, Selfish Overlay Network
Formation, Under Submission, 2008.

G. Smaragdakis, V. Lekakis, N. Laoutaris, A. Bestavros, J. W. Byers, and M. Roussopou-
los, EGOIST: Overlay Routing using Selfish Neighbor Selection, Under Submission, 2008.

G. Smaragdakis, N. Laoutaris, K. Oikonomou, I. Stavrakakis, and A. Bestavros, Dis-
tributed Server Migration for Scalable Internet Service Deployment, Under Submission,
2008.

N. Laoutaris, G. Smaragdakis, R. Sundaram, and P. Rodriguez, Delay-Tolerant Bulk Data
Transfer on the Internet, Under Submission, 2008.

THESES

G. Smaragdakis, TCP Performance over UMTS Network, Diploma Thesis, Electronic and
Computer Engineering Department, Technical University of Crete, October 2002.

169

PROFESSIONAL SERVICE

IEEE HotWeb 2006 (Publication Chair), IEEE ICNP 2005 (Web Administrator), PAM
2005 (Local Arrangements), IEEE ASWN 2004 (Publication Chair).

Technical Program Committee Member for: ACM CoNEXT 2008 (Shadow).

Reviewer for ACM SIGCOMM Computer Communication Review, Journal of Computer
Networks, IEEE INFOCOM (2007, 2006, 2005), ACM SIGMETRCS (2008, 2007), ACM
PODC 2008, IEEE ICNP (2005, 2004), IEEE Global Internet Symposium 2007, IEEE
ICDCS (2003), IEEE ICC (2005, 2004), IEEE RTSS 2004, ACM Multimedia 2004, IEEE
PIMRC 2005.

INVITED TALKS

“Selfish Overlay Network Formation: Resource Allocation Strategies and Implications
to Protocol Design”, Centre Tecnològic de Telecomunicacions de Catalunya (04/2008);
Deutsche Telekom Laboratories Berlin (03/2008); Telefónica Research Barcelona
(03/2008); Boston University (12/2007).

“Resource Allocation Strategies for Scalable Content Delivery on the Internet”, Boston
University (10/2007).

“The Selfish Neighbor Selection Problem In Overlay Networks”, HotWeb (11/2006),
University of Athens (07/2007).

“A Large Deviations Approach to statistical Traffic Anomaly Detection”, Boston Univer-
sity (02/2006).

RESEARCH EXPERIENCE

Research Intern, Telefónica Research, Barcelona, January-May 2008.

Research and Teaching Fellow, Boston University, Computer Science Department, Web
and Internetworking Group, September 2003 to present.

Affiliated Researcher, Greek National Center for Scientific Research, Institute of Infor-
matics and Telecommunications, April - August 2003.

170

Undergraduate Affiliated Student, Technical University of Crete, Electronic and Computer
Engineering Department, Information and Computer Networks Laboratory, September
2001 - August 2002.

TEACHING EXPERIENCE

Teaching Fellow for: Fundamentals of Computing Systems (CS 350; Spring 2007), Intro-
duction to Data Structures (CS 112; Spring 2005), Quantitative Methods for Information
Systems (MET CS 546; Summer 2005), Introduction to Computers (CS 101; Spring 2006,
Fall 2005, Spring 2004).

PROFESSIONAL EXPERIENCE

Telecommunications Engineer, Value Added Services, NOKIA Networks, NOKIA Hellas,
August - September 2002.

Software Developer, Technical University of Crete, Electronic and Computer Engineering
Department, Laboratory of Distributed Multimedia, Information Systems and Applica-
tions, September 2001 - February 2002.

Programmer, Social Security Institute, Greece, August - September 1999, August 2001.

