
Fix with P6: Verifying Programmable Switches at Runtime

Apoorv Shukla1,* Kevin Hudemann2,* Zsolt Vági3,* Lily Hügerich4

Georgios Smaragdakis4,6 Artur Hecker1 Stefan Schmid5 Anja Feldmann6

1Huawei Munich Research Center 2SAP 3Swisscom 4TU Berlin 5Faculty of Computer Science, University of Vienna 6MPI-Informatics

Abstract—We design, develop, and evaluate P6, an auto-
mated approach to (a) detect, (b) localize, and (c) patch
software bugs in P4 programs. Bugs are reported via a
violation of pre-specified expected behavior that is captured
by P6. P6 is based on machine learning-guided fuzzing
that tests P4 switch non-intrusively, i.e., without modifying
the P4 program for detecting runtime bugs. This enables
an automated and real-time localization and patching of
bugs. We used a P6 prototype to detect and patch existing
bugs in various publicly available P4 application programs
deployed on two different switch platforms: behavioral model
(bmv2) and Tofino. Our evaluation shows that P6 significantly
outperforms bug detection baselines while generating fewer
packets and patches bugs in large P4 programs such as
switch.p4 without triggering any regressions.

I. INTRODUCTION

Programmable networks herald a paradigm shift in the
design and operation of networks. While programmable
networks enable to break the tie between vendor-specific
hardware and proprietary software, they facilitate an in-
dependent evolution of software and hardware. With the
P4 language [1], [2], one can define in a P4 program,
the instructions for processing the packets, e.g., how the
received packet should be read, manipulated, and forwarded
by a network device, e.g., a P4 switch.

However, with these new capabilities, also new chal-
lenges are unleashed, related to the P4 software verification,
i.e., ensuring that the software fully satisfies all the expected
requirements. The P4 switch behavior depends on the
correctness of the P4 programs running on them. We realize
that a bug in a P4 program, i.e., a small fault such as a
missing line of code or a fat finger error, or a vendor-
specific implementation error, can trigger unexpected and
abnormal switch behavior. In the worst case, it can result
in a network outage, or even a security compromise [3].
Problem Statement. In this paper, we examine and verify
the behavior of P4 switches after the P4 programs are
deployed. We pose the question: “Is it possible to detect,
localize, and patch software bugs in a P4 program
running on P4 switches?”. We believe that being able to
answer this question, even partially, unlocks full potential of
programmable networks, improves their security, and will
hence increase their penetration in operational and mission-
critical networks.

Recently, a panoply of P4 program verification tools [4]–
[10] has been proposed. These verification systems, how-
ever, fail to repair the P4 program containing bugs. Most

*Authors worked on this paper while affiliated with TU Berlin.

of them [4]–[7] aim to statically verify user-defined P4
programs which are later, compiled to run on a target
switch. They mostly find bugs that violate memory safety
properties, e.g., invalid memory access, buffer overflow,
etc. Furthermore, they are prone to false positives and are
unable to verify the runtime behavior on real packets. In
addition, classes of bugs, e.g., checksum-related or ECMP
(Equal-Cost Multi-path) hash calculations-related bugs are
platform-dependent or P4 target switch implementation-
specific and, thus, cannot be detected by static analysis
approaches [4]–[7] or others [11]. Since, runtime verifica-
tion aims to verify the actual behavior against the expected
behavior of a switch by sending specially-crafted input
packets to the switch and observing the behavior, such
verification is complementary to static analysis. Currently,
the development and testing cycles in P4-based systems are
short [12] due to intense competition and need for new
applications which makes runtime verification indispens-
able. Note; this makes the detection of bugs causing the
abnormal runtime behavior a challenging task as the P4
switch does not throw any runtime exceptions. Furthermore,
the detection of bugs is also challenging if there is no
output, i.e., packets are dropped silently instead of being
forwarded. Thus, runtime verification of switch is crucial.

A useful approach to verify the runtime behavior is
fuzz testing or fuzzing [13]–[23], a well-known dynamic
program testing technique that generates semi-valid, ran-
dom inputs which may trigger abnormal program behavior.
However, for fuzzing to be efficient, intelligence needs to
be added to the input generation, so that the inputs are not
rejected by the parser and it maximizes the chances of trig-
gering bugs. This becomes crucial especially in networking,
where the input space is huge, e.g., even a 32-bit destina-
tion IPv4 address field in a packet header introduces 232

possibilities. To make fuzzing more effective, we consider
the use of machine learning, to guide the fuzzing process to
generate smart inputs that trigger abnormal target behavior.
Recently, Shukla et al. [23] have shown that Reinforcement
Learning (RL) [24], [25] can be used to train a verification
system. We build upon [23] by adding (a) static analysis to
the fuzzing process to significantly reduce the input search
space, and thus, adding input structure awareness, and (b)
support for platform-dependent bug detection.

Even if a bug in a P4 program is detected, the localization
of code statements in the P4 code that are responsible
for the bug, is non-trivial. The difficulty stems from the
fact that practical P4 programs can be large with a dense

1

conditional structure. In addition, the same faulty statements
in a P4 program may be executed for both passed as well
as failed pre-defined test cases; this makes it difficult to
pinpoint the actual faulty line/s of code. Tarantula [26]–
[28] is a dynamic program analysis technique that helps in
fault localization by pinpointing the potential faulty lines
of code. To localize the software bugs, we tailor Tarantula
for generic software to P4 programs by building a localizer
called P4Tarantula and integrating it with the bug detection
of machine learning-guided fuzzing. In this paper, we also
show how the detection and localization of bug makes it
possible to patch a number of bugs in P4 programs.
P6. In P4, the automated program repair [29] is an un-
charted territory and becomes increasingly important as the
software development lifecycle in programmable networks
is short [12] with insufficient testing. In this paper, we show
that due to the structure of P4 programs, it is possible to au-
tomate patching of platform-independent bugs (P4 program-
specific software bugs) in P4 programs, if the patch is avail-
able. To this end, we present P6, P4 with runtime Program
Patching, a novel runtime P4-switch verification system
that (a) detects, (b) localizes, and (c) patches
software bugs in a P4 program. P6 improves existing work
on machine learning-guided fuzzing [23] in P4 by extending
it and augmenting it with: (a) automated localization, and
(b) runtime patching. P6 relies on the combination of static
analysis of the P4 program and Reinforcement Learning
(RL) technique to guide the fuzzing process to verify the
P4-switch behavior at runtime.

In a nutshell, in P6, the first step is to capture the
expected behavior of a P4 switch, which is achieved using
information from three different sources: (i) the control
plane configuration, (ii) queries in p4q (§III-B1), a query
language which we leverage to describe expected behav-
ior using conditional statements, and (iii) accepted header
layouts, e.g., IPv4, IPv6, etc., learned via static analysis
of the P4 program. If the actual runtime behavior to the
test packets generated via machine-learning guided fuzzing
differs from the expected behavior through the violation
of the p4q queries, it signals a bug to P6 which then
identifies a patch from a library of patches. If the patch
is available, P6 modifies the original P4 program to fix
the bug signaled by the p4q queries. Then, the patched P4
program is subjected to sanity and regression testing.

We develop a prototype of P6 and evaluate it by testing it
on eight P416 application programs from switch.p4 [30],
P4 tutorial solutions [31], and NetPaxos codebase [32]
across two P4 switch platforms, namely, behavioral model
version 2 (bmv2) [33] and Tofino [34]. Our results show
that P6 successfully detects, localizes, and patches diverse
bugs in all P416 programs while significantly outperforming
bug detection baselines without introducing any regressions.
Related Work. Unlike P6, P4-based verification ap-
proaches [4]–[9], [11], [23], [35], [36] are insufficient in
localizing and patching of runtime bugs. Besides, they

Related work in P4 Runtime Verification Detection Localization Patching Detection of PD bugs
Cocoon [36] 7 X X 7 7

Vera [4] 7 X 7 7 7
p4v [5] 7 X 7 7 7

ASSERT-P4 [6], [7] 7 X 7 7 7
P4NOD [35] 7 X 7 7 7
p4pktgen [8] 7 X 7 7 7

P4CONSIST [9] X X 7 7 7
P4RL [23] X X 7 7 7

P6 X X X X X

TABLE I: Related work in P4 verification. PD corresponds to the
platform-dependent bugs. Note, Xdenotes the capability, (X) denotes

a part of full capability, and × denotes the missing capability.

cannot detect the platform-dependent bugs. Contrary to
them, P6 can automatically detect, localize and patch the
software bugs in the P4 programs. In addition, P6 detects
the platform-dependent bugs. Table I illustrates capabilities
of other P4 verification tools as compared to P6.
Contributions. Our main contributions are:
• We design, implement, and evaluate P6, an end-to-end
runtime P4 verification system that detects, localizes, and
patches bugs in P4 programs non-intrusively. (§III)
• We observe that the success of P6 relies on the increased
patchability of P4 program from old (P414) to the new
version (P416). (§II)
• We present a P6 prototype and report on an evaluation
study. We evaluate our P6 prototype on a P4 switch running
eight P416 programs (including switch.p4 with 8, 715
LOC) from publicly available sources [30]–[32] across
two platforms, namely, behavioral model and Tofino. Our
results show that P6 non-intrusively detects both platform-
dependent and platform-independent bugs, and significantly
outperforms state-of-the-art bug detection baselines. (§IV)
• For platform-independent bugs, P6 localizes bugs and
fixes the P4 program, when a patch is available, without
causing regressions/introducing new bugs. (§III, §IV)
• We release the P6 software and library of ready patches
for all existing bugs in the P4 programs [37].

II. CHALLENGES & OPPORTUNITIES

A. Primer: Packet Processing Pipeline of P4

P4 [1], [2] is a domain-specific language comprising
of packet-processing abstractions, e.g., headers, parsers,
tables, actions, and controls. The P4 packet processing
pipeline evolved from [38] to its current form P416 [2]
in generic Portable Switch Architecture (PSA) [39]
switch platform, e.g., Tofino [34] (Figure 1a and 1b). In
P416 pipeline, there are six programmable blocks that
are platform-independent, namely, ingress parser,
ingress match-action, ingress deparser,
egress parser, egress match-action, and
egress deparser. The programmable blocks are
annotated with a solid line in Figures 1a and 1b. There are
also two platform-dependent blocks (annotated with dashed
lines in Figures 1a and 1b): the packet replication
engine (PRE) and the buffer queuing engine
(BQE). These are non-programmable relying on proprietary
implementations of hardware vendors.

2

Ingress
Match-Action

Packet
Replication

Engine
(PRE) Packet

Egress
Parser

Egress Match-Action

Parser MyParser(...){
(…)

state parse_ipv4 {
pkt.extract(hdr.ipv4);
transition accept;
}
(...)

}

(...)
update_checksum(
 (...)

{ hdr.ipv4.version,
 …
hdr.ipv4.dstAddr },

 (…);)
(...)

Egress
Deparser

Ingress
Deparser

Buffer
Queuing
Engine
(BQE)

Ingress Parser

(a) An example of platform-independent bug in P416 pipeline.

(PRE)

Egress
Parser

Egress
Match-Action

Egress
Deparser

Ingress
Deparser

Buffer
Queuing
Engine
(BQE)

Ingress Parser

Table 1 Table n

Miss:
Drop & Exit

Match:
Clone

...

if (clone_flag != 0)
 {clone}
if (resubmit_flag != 0)
 {resubmit}
elif (mcast_grp! = 0)
 {multicast}
elif (egr_port == 511)
 {Drop} ...

Packet cloned

Ingress
Match-Action

 Packet

(b) An example of platform-dependent bug in P416 pipeline.

Fuzzer

P4 Switch

Localizer

Patcher

3

§3.2§3.3

§3.4

Test
Packets

FeedbackActivate
Patcher

Activate
Localizer

Compile and deploy the patched P4 program

214

5

(c) P6 Workflow. Modules of P6 (in solid green boxes).
Fig. 1: Fig. 1a and Fig. 1b illustrate platform-independent and -dependent bugs respectively. Fig. 1c depicts P6 Workflow.

B. Challenges: Runtime Bugs in P4

Bugs or errors can occur at any stage in the P4 pipeline.
If a bug occurs in any of the programmable blocks, then we
term the bug as platform-independent and software patching
can solve the problem. If the bug appears in the non-
programmable or platform-dependent blocks, namely, the
PRE or BQE, then the vendor has to be informed to fix the
issue if the implementation is hardware-related or vendor-
specific. P4 program verification systems [4]–[7] are able
to detect bugs using static analysis. Unfortunately, static
analysis is (i) prone to false positives, (ii) cannot detect
platform-dependent bugs, and (iii) cannot detect runtime
bugs that require to actively send real packets.

For platform-independent bugs, we consider the Figure 1a
(solid line blocks). It illustrates part of the implementation
of Layer-3 (L3) switch provided in the P4 tutorial solu-
tions [31]. Here, the parser does not check if the IPv4 header
contains IPv4 options or not, i.e., if the IPv4 ihl field is
equal to 5 or not. When updating the IPv4 checksum
of the packets during egress processing, IPv4 options are
not taken into account, hence for those IPv4 packets with
options, the resulting checksum is wrong causing such
packets to be forwarded and incorrectly dropped at the
next hop leading to anomalies in network behavior. Other
bugs that fall in this category are those related to IPv4/6
checksum and ttl in the packet. Such bugs are platform-
independent, as they only result from programming errors.

For a platform-dependent bug, consider the scenario
shown in Figure 1b (dashed line blocks). Here, we assume
a P4 program implements at least two match-action tables.
Any table except the last one could be a longest prefix
match (LPM) table, offering unicast, clone, and drop actions
(ingress match-action block). The last match-action table
implements an access control list (ACL). So, the packets
can either be dropped or forwarded according to the chosen
actions by the previous tables. In this case, it is possible that
conflicting forwarding decisions are made. Consider packets
are matched by the first table (Table 1) and a clone decision
is made, later, those are dropped by the ACL table (Table
n). In such a case, the forwarding behavior depends on the

implementation of the PRE, which is platform-dependent.
The implementation of PRE of the SimpleSwitch target in
the behavioral model (bmv2) is illustrated in Figure 1b. It
would drop the original packet, however, forward the cloned
copy of the packet. Similar bugs can occur, if instead of
the clone action, resubmit action is chosen (blue) or when
implementing multicast (green).

The above motivates us to turn our attention to run-
time detection of bugs. Runtime verification is a useful
and complementary tool in the P4 verification repertoire
that detects both platform-independent bugs resulting from
programming errors as well as platform-dependent bugs.

C. Opportunities for Patching: Structure of a P4 Program

In the evolution of P4, there are two recent versions:
P414 [40] and P416 [2]. P416 allows programmers to use
definitions of a target switch-specific architecture, e.g.,
PSA (Portable Switch Architecture) [39], [41]. P416 is an
upgraded version of P414. In particular, a large number
of language features have been eliminated from P414 and
moved into libraries including counters, checksum units,
meters, etc., in P416. P414 allowed the programmer to
explicitly program three blocks: ingress parser (including
header definitions of accepted header layouts), ingress con-
trol and egress control functions. Recall that P416 allows to
explicitly program six programmable blocks (Figure 1a).

By analyzing programs in the P414 and P416 versions,
we realize that as more blocks of the P4 program get pro-
grammable, there is more onus on the programmer to write
a program that behaves as expected (when it gets compiled
and deployed on the P4 switch). Missing checks or fat finger
errors can cause havoc in the network. However, this is a
blessing in disguise as the more programmable the code
is, the more patchable it is. Thus, programming errors can
be fixed. We observe that the potentially patchable code
percentage increases from P414 to P416 in all applications
(excluding calculator) from P4 tutorial solutions [31] and
NetPaxos codebase [32] in behavioral model (bmv2) switch
platform [33] and other generic PSA switch platforms [39],
[41], e.g., Tofino [34] respectively. The patchable code

3

P4 Source Code
………….
state parse_ipv4 {
 packet.extract(hdr.ipv4);
 transition accept;
}
………….

P4 Source Code
………….
state parse_ipv4 {
 packet.extract(hdr.ipv4);
 transition accept;
}
………….

P4 Source Code
………….
state parse_ipv4 {
 packet.extract(hdr.ipv4);
 verify(hdr.ipv4.version == 4, error.BadHeader);
 verify(hdr.ipv4.ihl == 5, error.BadHeader);
 verify(hdr.ipv4.len >= 20, error.BadHeader);
 verify(hdr.ipv4.ttl >= 2, error.BadHeader);
 transition accept; }
………….
apply {
 if (standard_metadata.parser_error != error.NoError) {
 mark_to_drop();
 return;
 }
………….P4 Source Code with Bugs Localized by P4Tarantula Patched by Patcher

FuzzerLocalizer

Patcher

Fuzzer

P4 Switch

Localizer

Patcher

FuzzerLocalizer

PatcherP4 Switch P4 Switch

Fig. 2: P6 in Action: depicting the automated detection, localization and patching of a bug in a L3 switch P4 program [31].

percentage comes from the six programmable blocks in
P416. Roughly, whatever is programmable, is patchable. In
principle, around 40-45% of a P4 program is patchable in
P416 programs for behavioral model (bmv2) switch plat-
form [33]. This increases to 50-55% if the ingress deparser
and egress parser are programmable for other target switch
platforms, e.g., Tofino [34]. In particular, the parser and
header definitions account for 20-40% of the total patchable
code. If there is no bug in parser or header, packets with
incorrect header get dropped. However, the bug still can be
either in the non-patchable platform-dependent block or in
the application code logic or deparser which is patchable
as it is platform-independent.

Observation: From P414 to P416, P4 program possesses
twice as many programmable blocks increasing the chances
for patchability. Bugs detected in the platform-independent
part can be localized and patched; a platform-dependent
bug may not be patchable if it is hardware-related.

III. P6: SYSTEM DESIGN

A. P6: Overview

P6’s goal (see Figure 1c) is to detect, localize, and
patch the software bugs in a P4 program at runtime.
This is achieved by verifying the actual runtime behavior
against the expected behavior of a P4 switch running a pre-
compiled P4 program to the incoming packets.

The P6 system contains three main modules:
(1) Fuzzer: Generates test packets using RL-guided
fuzzing, static analysis, and p4q queries (§III-B1) to the
P4 switch running the pre-compiled P4 program. (§III-B)
(2) Localizer: P4Tarantula is the Localizer which pinpoints
faulty lines of code causing bugs in the P4 program. (§III-C)
(3) Patcher: Automates patching of the bugs localized by
P4Tarantula Localizer, if patchable. Then, Patcher compiles
and loads the patched P4 program on the P4 switch. (§III-D)
P6 Workflow. P6 is a closed-loop control system. Through
a pre-generated dictionary from control plane configuration,
p4q queries, and static analysis of a P4 program, the
expected runtime behavior of the P4 switch is captured and
sent as an input to the Fuzzer containing the RL Agent
and the Reward System (§III-B). As shown in Figure 1c,
the Fuzzer selects appropriate mutation actions such as

add/delete/modify bytes in a packet to generate test packets
towards the P4 switch running the pre-compiled P4 pro-
gram 1 . If the actual runtime behavior towards the packets
defies the expected behavior through the violation of the
p4q queries, it signals a bug in the form of a reward as a
feedback to the Reward System which is then, exploited by
the RL Agent to improve during the training process by se-
lecting better mutation actions on the packet 2 . After the
bug detection, the Fuzzer automatically triggers Localizer
(§III-C), P4Tarantula (only for platform-independent bugs;
for platform-dependent bugs, the vendor is informed) which
pinpoints the faulty line of code 3 to trigger the Patcher
(§III-D) which searches for the appropriate patch from a
library of patches for the corresponding P4 program 4 .
If the patch is available, Patcher modifies the original P4
program, compiles and loads it on the P4 switch and checks
if the bug is no longer triggered by p4q queries by repeating
the whole-cycle and executing sanity and regression test-
ing 5 . Note, P6 is non-intrusive and thus, requires no
modification to the P4 program for testing before patching.
P6 in Action. Before we dive into the details of Fuzzer,
Localizer, and Patcher, we demonstrate the operation of
P6. Figure 2 illustrates how P6 detects, localizes, and
patches an existing bug in a layer-3 (L3) switch P4 source
code (program) from [31] in an automated fashion. The
left part of Figure 2 shows the P4 program containing a
platform-independent bug in the parser code, i.e., no header
field validation is implemented, hence all IPv4 packets are
incorrectly accepted by the parser. After the P4 program is
deployed on the P4 switch, P6 is triggered. Initially, the
Fuzzer detects the bug violating the corresponding p4q
query based on the feedback (reward) received from the
P4 switch. Then, it triggers the P4Tarantula for localization
(shown in the center of Figure 2) where it pinpoints the
problematic part of the code (highlighted). Afterwards, the
Patcher is triggered automatically, patching the necessary
problematic parts of the code, i.e., adding header field
verification statements (highlighted in right), after checking
if the patch was indeed missing from the P4 program.
Finally, Patcher automatically compiles [42] and deploys
the patched P4 program on the P4 switch, and triggers P6
to ensure that the patches caused no regressions and fixed

4

Add/ modify/
delete bytes
at position X

Mutation actions:

State: Packet header, e.g.:

Ethernet IPv4 TCP/UDP
P4

Switch

Check
behavior &
generate
reward

Agent

Select mutation
action based on
current state

 Apply action to
packet Observe

Send
packet

 Receive Reward

 Input:
header layouts
from static analysis,
p4q queries (§3.2.1)
& control plane configs

2

5

1

0

3
4

Fig. 3: Fuzzer. Reward System (in yellow) and Agent (in pink).

the detected bug.

B. Fuzzer: RL-guided Fuzzing

The goal of Fuzzer is to detect the runtime bugs discussed
in §II-B. We improve [23] by augmenting Fuzzer with the
static analysis of a P4 program which makes the Fuzzer
aware of the input structure or accepted header layouts,
e.g., IPv4, IPv6, etc. and thus, it significantly reduces the
input search space. Indeed, techniques to further reduce the
input search space within the accepted headers are discussed
in [43], which can be augmented to static analysis. We guide
the mutation-based white-box fuzzing [15] via RL [24],
[25]. The feedback in the form of rewards is received
from the switch based on the evaluation of actual against
expected runtime behavior. Note, the expected behavior is
determined using the static analysis, the control plane con-
figuration, i.e., forwarding rules and p4q queries (§III-B1).
p4q queries are conditional queries (if-then-else)
where each query has multiple conditions and each con-
dition acts as a test case. A test case violation represents a
bug detection.

We define states, actions, and rewards as follows:
States: The sequence of bytes forming the packet header.
Actions: The set of mutation actions for each individual
packet header field, e.g., add, modify or delete bytes at
a given position in the packet header. Note, the add and
modify actions either use random bytes or bytes from a
pre-generated dictionary (explained below).
Rewards: The Agent immediately receives the reward, after
a mutated packet was sent to the target switch and the results
of the execution are evaluated. It is likely to experience
sparse rewards when most of the sent packets do not trigger
any bug. Thus, the reward is defined as 0, if the packet did
not trigger a bug and 1, if it successfully triggered a bug.

The input to the Fuzzer is a dictionary (hereafter, referred
to as dict) that comprises information extracted from
static analysis, the control plane configuration, and the
queries defined with p4q (§III-B1). The static analysis
is used to derive the input structure awareness such as
accepted header layouts and available header fields in the
P4 program. The control plane configuration comprises
the forwarding table contents and the platform-dependent
configuration. Boundary values for the header fields may be
extracted from the p4q queries, i.e., when queries explicitly
compare packet header fields with values, e.g., TTL > 0.

Figure 3 depicts the Fuzzer workflow. In step 0 (ini-
tialization), the Reward System receives the dict as an

(ing.hdr.ipv4 &
ing.hdr.ipv4.chksum != calcChksum() ,
egr.egress_port == False,)

(ing.hdr.ipv4 & ing.hdr.ipv4.ver != 4,
egr.egress_port == False,)

(ing.hdr.ipv4 & ing.hdr.ipv4.ihl < 5,
egr.egress_port == False,)

(ing.hdr.ipv4 &
[ing.hdr.ipv4.len < ing.hdr.ipv4.ihl * 4 |
ing.hdr.ipv4.len < 20],
egr.egress_port == False,)

(ing.hdr.ipv4 & ing.hdr.ipv4.ttl < 2,
egr.egress_port == False,)

IPv4 Unicast
(ing.hdr.ipv4,

egr.hdr.eth.srcAddr == ing.hdr.eth.dstAddr &
egr.hdr.eth.dstAddr == table_val() &
egr.hdr.ipv4.ttl == ing.hdr.ipv4.ttl-1 &
egr.hdr.ipv4.chksum == calcChksum() &
egr.egress_port == table_val(),)

IPv4 Clone
(ing.hdr.ipv4,

egr.hdr.eth.srcAddr == ing.hdr.eth.dstAddr &
egr.hdr.eth.dstAddr == table_val() &
egr.hdr.ipv4.ttl == ing.hdr.ipv4.ttl-1 &
egr.hdr.ipv4.chksum == calcChksum() &
egr.egress_port IN {clone_sess()},)

IPv4 Multicast
(ing.hdr.ipv4,

egr.hdr.eth.srcAddr == ing.hdr.eth.dstAddr &
egr.hdr.eth.dstAddr == table_val() &
egr.hdr.ipv4.ttl == ing.hdr.ipv4.ttl-1 &
egr.hdr.ipv4.chksum == calcChksum() &
egr.egress_port IN {mcast_grp()},)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Query 1

Query 2

Query 3

Query 4

Query 5

Query 6

Query 7

Query 8

Fig. 4: p4q Queries. Queries 1-6 represent platform-independent,
and Query 7-8 represent platform-dependent queries respectively.

input. Then, the Agent observes the current state or the
current packet header (see the initialization in §III-B2). The
observed state is the input for the neural networks of the
Agent (§III-B2), which outputs the appropriate mutation
action. The selected action is applied for the given packet,
and the packet is sent to the P4 switch. After the packet
is processed by the switch, the behavior is evaluated, the
reward of 1 is generated when the p4q query specifying the
expected behavior is violated and returned to the Agent. In
particular, the packet which was sent to the P4 switch is
saved together with a final verdict (pass or fail). A packet’s
verdict is considered either passed: if the generated reward
is equal to 0, i.e., actual runtime behavior matches expected
behavior when the p4q query is not violated or failed: if the
generated reward is equal to 1, i.e., actual runtime behavior
does not match expected behavior when the p4q query is
violated. Then, Agent (§III-B2) uses the reward to improve
action selection in subsequent executions (exploitation).
1) p4q: Query Language: Before diving deep in the Agent
training, we explain the query language, p4q [23], written
by the tester or programmer and used for specifying the
expected switch behavior. To achieve the goal of an au-
tomated runtime verification system, the P6 system must
query the actual runtime behavior of a P4 switch against
a specification defining the expected behavior. To extend
the query repertoire of p4q from [23], we augment it with
platform-dependent queries. In a nutshell, p4q queries are
used to compare expected against actual switch behavior.
p4q queries. In a p4q query, the behavior is expressed
using if-then-else statements in the form of tuples.
The programmer can specify conditions for packets to fulfill
at ingress of the switch (if), with corresponding conditions
to fulfill at egress (then). In addition, the programmer can
describe alternative conditions (else), e.g., if the condition
of the then branch is not fulfilled at egress. To define these

5

conditions, the p4q syntax and grammar are used.
Figure 4 illustrates an example of how the packet process-

ing behavior of an IPv4 layer 3 (L3) switch, written in P4,
can be queried easily using p4q. Query 1 (lines 1-3), de-
fines that incoming packets with a wrong IPv4 checksum
are expected to be dropped. Similarly, the following four
queries (lines 4-13) express the validation of the IPv4
version field, the IPv4 header length, the packet length and
the IPv4 time-to-live (TTL) field for packets at ingress of
the switch respectively. However, there are also conditions
for packets at the egress of the switch. These conditions
are described by Query 6 (lines 15-20). Namely, changing
source and destination MAC addresses to the correct values,
decrementing the TTL value by 1, recalculating the IPv4
checksum and emitting the packet on the correct port as
instructed by the control plane configuration (forwarding
rules). Query 7 (lines 22-27) corresponds to the platform-
dependent part of the switch (PRE) and defines conditions
for packets that are cloned by the switch. Such packets need
to fulfill the same conditions as per Query 6, but the egress
port should correspond to the clone session configuration
of the target switch. Query 8 (lines 29-34) expresses the
conditions for multicast packets that need to fulfill the
same conditions as per Query 7 but the egress ports should
correspond to the configured multicast group configuration
of the target switch. Note, the p4q queries are pre-specified
as platform-independent or -dependent.

2) Agent: The Agent houses the RL algorithm, which is
inspired by Double Deep Q Network (Double DQN) [44],
an improved version of Deep Q Networks (DQN) [45] and
based on Q-learning [25], hence a model-free RL algorithm.
Model-free means that the Agent does not need to learn a
model of the dynamics of an environment and how different
actions affect it. This is beneficial as it can be difficult to
retrieve accurate models of the environment. At the same
time, the goal is to provide sample efficient learning, i.e.
reduce the number of packets sent to the target switch
making DDQN an apt choice. The basic concept of the
algorithm is to use the current state (packet header) as an
input to a neural network, which predicts the action the
Agent shall select to maximize future rewards. In addition,
Double DQN algorithm splits action selection in a certain
state from the evaluation of that action. To achieve, it uses
two neural networks: (i) the online network responsible
for action selection, and (ii) the target network evaluating
the selected action. This improves the learning process of
the Agent, as overoptimism of the future reward when
selecting a certain action, is reduced and thus, helps to
avoid overfitting. Furthermore, to counter the scenario of
sparse rewards, a simple form of prioritized experience
replay, inspired by [46], is applied. The memory is sorted
by absolute reward and each experience is prioritized by a
configurable factor and the index.

For our Agent algorithm, we leverage Multi-Layer Per-
ceptron (MLP) [47]. Hereby, we apply an ε-greedy policy,

Algorithm 1: P4Tarantula (Localizer)
Input: P4 source code (SC), sent packets (Ps) and corresponding

verdicts (V)
Output: S[j] - suspiciousness score for the corresponding line j
// V[p] represents the verdict about packet p (pass

or fail)
// SC[j] represents line j of the source code
// Initialization

1 totalFailed = 0, totalPassed = 0
2 foreach p in Ps do
3 if V[p] == pass then
4 totalPassed+ = 1
5 else
6 totalFailed+ = 1
7 end
8 follow p through SC:
9 foreach executed line j in SC do

10 if V[p] == pass then
11 SC[j].pass+ = 1
12 else
13 SC[j].fail+ = 1
14 end
15 S[j] =

SC[j].fail/totalFailed
SC[j].pass/totalPassed+SC[j].fail/totalFailed

16 end
17 end
18 call Patcher

i.e., during training of the Agent, an action is selected ran-
domly by the Agent with probability ε to ensure sufficient
exploration. Once trained on a P4 program, a trained Agent
can be used on other P4 programs to find bugs.

C. Localizer: P4Tarantula

P4Tarantula is the Localizer or the bug localization
module of P6. P4Tarantula is based on a dynamic program
analysis technique for generic software, Tarantula [26], [28].
In case a bug is discovered by Fuzzer, it automatically
notifies P4Tarantula. Note, P4Tarantula will not be notified
in case of platform-dependent bugs, as they are neither
localizable nor patchable in the P4 program. As an input,
P4Tarantula uses the P4 program or source code, the packets
that were sent by Fuzzer as per the p4q query (test cases) to
trigger the bug and the pass (if p4q query is not violated) or
fail verdict (if p4q query is violated) corresponding to those
sent packets. Recall, a verdict corresponds to a condition of
the p4q query which acts as a test case.

Algorithm 1 presents the localization algorithm used
by P4Tarantula. First, P4Tarantula initializes two coun-
ters, measuring the number of passed or failed verdicts
corresponding to the sent packets (Line 1). In the next
step, P4Tarantula increments the counters according to the
verdicts made for the given packet (Lines 3-7). Now, the P4
source code needs to be traversed line-by-line (similar to
symbolic execution but with actual packet header values to
avoid all possible header values), to find the code execution
path for the given packet (Line 8). For each line of the P4
source code executed for the given packet, counters for the
corresponding verdicts are incremented (Lines 10-14). For
the executed lines of the P4 source code, a suspiciousness
score [28] is calculated (Line 15). The suspiciousness score
is between 0 and 1 as the same line/s can be executed for
passed and failed verdicts corresponding to packets. This
score corresponds to the likelihood of a line of code causing

6

a potential bug. The closer it is to 1, the more likely it is
that the corresponding line of code is problematic. Finally,
the P4 program lines are ordered as per their suspiciousness
score to localize the bug. Then, Patcher is notified.

D. Patcher

Patcher is the novel automated patching module of the
P6 system. If a bug is localized by P4Tarantula, it notifies
Patcher. The input for Patcher is the P4 source code,
the results of static analysis of the P4 source code, the
localization results of P4Tarantula, and the violated p4q
query. Patcher compares the localized problematic parts of
the code with appropriate available patches. Note, Patcher
comes with a library of patches for P4 programs, i.e.,
those which violate p4q queries. Nevertheless, it can be
easily extended when, previously unseen bugs, e.g., bugs in
application code logic, are detected.

From the results of the static analysis, Patcher extracts
the required parser state names, header names, header field
names, metadata names and metadata field names for the
patches in the current version of the library of patches. In
P4, metadata is used to pass information from one of the
programmable or non-programmable blocks to another.

Note, in most P4 programs (including the publicly avail-
able programs from [30]–[32]) no variables apart from user-
defined names for parser states or header/metadata fields
are present. Thus, with the gathered knowledge about user-
defined names Patcher can compare through, e.g., regex or
string comparison, if the patch (correct code) is already
present in the P4 source code or if missing, the patch
needs to be applied. Note, if the patches in the patch
library require the analysis of custom variables or stateful
components, e.g., registers and meters, the comparison if
the patch is present or not requires further code analysis.

In case no appropriate patch is available, the programmer
is informed by the Patcher. After Patcher finishes the
execution, it calls the P4 compiler (p4c) to re-compile
the patched version of the P4 program and triggers the
re-deployment of the code on the P4 switch. In addition,
the Fuzzer is notified automatically by Patcher to test the
patched program again, to confirm the patches and ensure
no regressions were caused by the patches by testing via
the p4q queries and executing regression testing.

A patch has the following properties: (a) preferably, few
lines of code, e.g., missing checks in parser, (b) makes the
P4 program conform to the expected behavior, (c) passes
the sanity testing or checks for basic functionality, and (d)
does not cause regressions breaking existing functionality.

Algorithm 2 shows the Patcher algorithm. First, Patcher
imports the needed header or metadata field names, as well
as parser state names for the currently available patches in
the library of patches. Then, for each line in the localization
results, Patcher checks if the suspiciousness score is greater
than the defined threshold of 0.5 (threshold is configurable
as per deployment scenario) (Line 2), as it is highly
likely that the corresponding line of code is responsible

Algorithm 2: Patcher
Input: P4 source code (SC), static analysis results (Sr), localization

results (Lr) and violated p4q query (q)
Output: A patched version of the source-code (PSC)
// The patcher offers a patch only for those lines

where the suspiciousness score ≥ 0.5
1 Import & process user-defined parser state names, header and header field

names, metadata and metadata field names from Sr required for patches
in the patch-library

2 for lines in Lr do
3 if Suspiciousness score ≥ 0.5 then
4 check corresponding line/s of code pinpointed by

P4Tarantula
5 if the patch is missing and violating q then
6 apply the preferred patch
7 else
8 inform the programmer
9 end

10 Goto next line
11 else
12 Goto next line
13 end
14 end
15 Compile & re-deploy the patched P4 program (PSC) and notify

Fuzzer for testing the patches and regressions

for triggering the detected bug. In case the suspiciousness
score is above the defined threshold, Patcher will check the
corresponding line of code. The Patcher, then, checks if the
patch is available, e.g., through string comparison with the
appropriate patch to be applied for the violated p4q query.
If the patch is indeed missing, then the problematic line of
code is patched, else the programmer is informed as the
appropriate patch is not available (Lines 3-8). Once, all the
localization results are processed (Lines 9-12), the patched
P4 program is compiled by triggering the compiler (p4c) to
be re-deployed on the P4 switch and the Fuzzer is triggered
to re-test the patched code (Line 14).

IV. P6 PROTOTYPE & EVALUATION

We developed a P6 prototype using Python version 3.6
with ≈ 3, 100 lines of code (LOC); Fuzzer with ≈ 2, 200
LOC, P4Tarantula with ≈ 490 LOC and Patcher with
≈ 430 LOC. Fuzzer is implemented using Keras [48]
library with Tensorflow [49] backend and Scapy [50] for
packet generation and monitoring. The Agent was trained
separately, for each condition of each query written in p4q.

A. Baselines

We compare P6 against three baseline fuzzers:
(1) Advanced Agent. It represents the intelligent baseline
as it only relies on random fuzz action selection, i.e., with-
out prioritized experience replay. Thus, Advanced Agent
can execute the same mutation actions as P6, but cannot
learn which actions lead to rewards.
(2) IPv4-based fuzzer. It is aware of the IPv4 header layout
and randomizes the different available header fields, except
IP options fields and the destination IP as it prevents packets
from being dropped by the P4 switch forwarding rules.
(3) Naïve fuzzer. It is not aware of any packet header
layouts. It generates and sends Ethernet frames from purely
random mutation of bytes.

7

Bug IDs Bugs Queries (Figure 4)
1 Accepted wrong checksum (PI) Query 1
2 Generated wrong checksum (PI) Query 6 (Line 19)
3 Incorrect IP version (PI) Query 2
4 IP IHL value out of bounds (PI) Query 3
5 IP TotalLen value is too small (PI) Query 4
6 TTL 0 or 1 is accepted (PI) Query 5
7 TTL not decremented (PI) Query 6 (Line 18)
8 Clone not dropped (PD) Query 7 (Line 27)
9 Resubmitted packet not dropped (PD) Query 6 (Line 20)
10 Multicast packet not dropped (PD) Query 8 (Line 34)

TABLE II: Bugs (with Bug IDs) detected by the P6 prototype
through the violation of the corresponding p4q queries (in Figure 4).

Note, PI/PD refer to platform-independent and -dependent.

B. Bugs

Table II provides an overview of existing bug types (with
bug IDs) detected in the publicly available P4 programs
from [30]–[32] by the P6 prototype. These bugs are de-
tected as they violate the corresponding p4q queries (from
Figure 4). In total, P6 prototype can detect 10 distinct bugs
in the P4 programs. Out of these 10 bugs, 7 are patchable
platform-independent (bugs 1 − 7), and 3 are platform-
dependent bugs (bug 8− 10).

C. Experiment Strategy

For conducting our experiments and to evaluate P6
prototype, we ran P6 together with the P4 switch and
control plane module in a Vagrant [51] environment with
VirtualBox [52]. For each program, separate Vagrant ma-
chines, each with 10 CPU cores and 7.5 GiB RAM, are
used. The Vagrant machines ran on a server running Debian
9 OS (Version 4.9.110), with Intel Xeon CPU and 256 GiB
RAM. Each experiment was executed ten times on each of
the eight P416 programs [30]–[32].

D. Metrics

In particular, we ask the following questions:
Q1. How much time does P6 take to detect, localize, and
patch all bugs? (§IV-D1)
Q2. How does P6 perform against the baselines? (§IV-D2)
Q3. How many rewards does P6 generate against the
baseline of an Advanced Agent for Agent training?
(§IV-D3)
Q4. How many packets does P6 generate to detect bugs
against the baselines? (§IV-D4)

1) Performance of P6: To evaluate P6 performance, we
execute the detection, localization, and patching on 8 pub-
licly available P4 programs from the P4 tutorials [31],
NetPaxos [32] and switch.p4 [30] repository.

Figure 5a and 5d show the median bug detection time
of P6 over ten runs for the different programs using
bmv2 SimpleSwitchGrpc and Barefoot Tofino Model, re-
spectively. Note, switch.p4 program is only available
for bmv2 and was not tested using Tofino. In all runs on
bmv2 except for switch.p4 program, P6 was able to
detect all bugs in less than two seconds. In switch.p4,
P6 was able to detect all bugs in less than ten seconds. The
detection time is higher for switch.p4 as compared to
the other tested programs since more packets get dropped
making bug detection more difficult. On Tofino, the median

detection time was slightly higher for four out of seven
programs. The increased bug detection time in the NetPaxos
programs [32] can be due to the required instrumentation
to make them run on CPU intensive Tofino Model.

Figures 5b and 5e illustrate the median bug localiza-
tion time of P6 for the different programs using bmv2
SimpleSwitchGrpc and Barefoot Tofino Model. Overall, all
bugs for 7 of the programs were localized by P6 in just
above 0.12 seconds on bmv2 and Tofino. To our surprise,
the bug localization time for switch.p4 program running
on bmv2 is only increased by a factor of 4×, even though
the program has about 30× more lines of code compared
to the other tested programs. Figures 5c and 5f illustrate
the median time of patching code for bmv2 and Tofino
respectively. P6 is able to patch the P4 programs with
millisecond scale performance (max. 98 ms).
2) P6 vs Baselines: Detection Time: We compare P6
against the three baseline approaches in terms of bug de-
tection time. We observe that the Advanced Agent baseline,
see Figure 6a (with quartiles), was able to detect all the bugs
present in the tested programs, which is due to the similarity
with the P6 Agent but it cannot learn from the rewards,
hence generates more packets and is slower to detect the
bugs than P6 Agent. IPv4-based fuzzer was only able to
detect 4 out of 10 bugs in the seven programs from [31],
[32]. For switch.p4 program [30], IPv4-based fuzzer
was able to detect 3 out of 4 bugs which were IPv4-based. In
Figure 6b (with quartiles), the speedup is defined as infinite
for the test-cases where IPv4-based fuzzer could not detect
the bug. Accordingly, the bars representing these test-cases
range until the top of the figure. Note, Naïve fuzzer was not
able to detect any bugs, even with 16k packets.

Figure 6a shows speedup (Advanced Agent/P6 Agent)
for all bugs detected in the seven tested programs from [31],
[32]. The results show that P6 Agent can detect bugs up to
10.96× faster than the Advanced Agent baseline. Only bug
7 was detected faster by the Advanced Agent in 3 of the
7 P416 applications tested as the Advanced Agent needs
less time for random action selection than P6 Agent for
intelligent action selection, based on its neural networks.
In addition, Advanced Agent can make use of the same
mutation actions and the pre-generated dict, hence when
triggering the bug, the overall execution time will be slightly
lower than that of P6 Agent. In 94% of the test-cases,
Advanced Agent requires more time and packets to detect
the bugs than the P6 Agent. For switch.p4 program [30],
P6 Agent detects bugs 30× faster than the Advanced Agent.

Figure 6b shows the speedup (IPv4-based fuzzer/P6
Agent) for all bugs detected in the 7 tested programs
from [31], [32]. For test-cases where IPv4-based fuzzer
detects the bugs, we observe that in 89% of the test-cases
P6 Agent detects the bugs faster while sending significantly
fewer packets. P6 Agent outperforms IPv4-based fuzzer by
up to 8.88× even when IPv4-based fuzzer sends packets at
a higher rate. For switch.p4 program, P6 Agent detects

8

0 2 4 6 8 10
Seconds

0

0.2

0.4

0.6

0.8

1
C

D
F Basic

Basic-tunnel
MRI
Netpaxos-acceptor
Net paxos-leader
Netpaxos-learner
Advanced tunnel
Switch.p4

(a) Median of bug detection times (bmv2).

0.1 0.2 0.3 0.4 0.5
Seconds

0.2

0.4

0.6

0.8

1

C
D

F Basic
Basic-tunnel
MRI
Netpaxos-acceptor
Netpaxos-leader
Netpaxos-learner
Advanced tunnel
Switch.p4

(b) Median of bug localization times (bmv2).

0.06 0.07 0.08 0.09 0.1
Seconds

0

0.2

0.4

0.6

0.8

1

C
D

F Basic
Basic-tunnel
MRI
Netpaxos-acceptor
Netpaxos-leader
Netpaxos-learner
Advanced tunnel
Switch.p4

(c) Median time of patching the code (bmv2).

0 1 2 3 4 5
Seconds

0

0.2

0.4

0.6

0.8

1

C
D

F Basic
Basic-tunnel
MRI
Netpaxos-acceptor
Net paxos-leader
Netpaxos-learner
Advanced tunnel

(d) Median of bug detection times (Tofino).

0.08 0.085 0.09 0.095 0.1 0.105 0.11 0.115
Seconds

0

0.2

0.4

0.6

0.8

1

C
D

F Basic
Basic-tunnel
MRI
Netpaxos-acceptor
Netpaxos-leader
Netpaxos-learner
Advanced tunnel

(e) Median of bug localization times (Tofino).

0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09
Seconds

0

0.2

0.4

0.6

0.8

1

C
D

F Basic
Basic-tunnel
MRI
Netpaxos-acceptor
Netpaxos-leader
Netpaxos-learner
Advanced tunnel

(f) Median time of patching the code (Tofino).

Fig. 5: Bug detection, localization and patching times of P4 programs in bmv2 and Tofino. Each plot represents a median over 10 runs.

Bas
ic

Bas
ic-

tu
nn

el

Adv
an

ce
d-

tu
nn

el M
RI

Net
pa

xo
s-

ac
ce

pt
or

Net
pa

xo
s-

lea
de

r

Net
pa

xo
s-

lea
rn

er

Programs

0

5

10

S
pe

ed
up

1
2
3
4
5
6
7
8

(a) Speedup of median bug detection times: P6 vs
Advanced Agent. Bug IDs (Table II) in the legend.

Bas
ic

Bas
ic-

tu
nn

el

Adv
an

ce
d-

tu
nn

el M
RI

Net
pa

xo
s-

ac
ce

pt
or

Net
pa

xo
s-

lea
de

r

Net
pa

xo
s-

lea
rn

er

Programs

0

5

10

S
pe

ed
up

1
2
3
4
5
6
7
8

(b) Speedup of median bug detection times: P6 vs
IPv4-based fuzzer. Bug IDs (Table II) in the legend.

0 50 100 150 200
Number of sent packets

0

10

20

30

40

50

M
ea

n
C

um
ul

at
iv

e
R

ew
ar

d

P6
Advanced agent

(c) Training: P6 vs Advanced Agent (random
action selection) in the case of bug 4 (Table II).

Fig. 6: P6 vs Baselines. Each plot represents a median over 10 runs.

bugs up to 30× faster than IPv4-based fuzzer.

3) P6 vs Advanced Agent Training: To verify that P6
Agent is able to effectively learn to detect bugs, we compare
P6 Agent against an Advanced Agent, that only relies on
random action selection. Advanced Agent is just not as
intelligent as P6 Agent. Advanced Agent can still execute
same mutation actions but is not able to reason about which
actions lead to maximized rewards. Figure 6c shows a
comparison of the mean cumulative reward (MCR) of the
training process of both agents for bug ID 4 of Table II. We
observe that the P6 Agent is able to outperform the baseline
by a factor of 3.56× Especially, the prioritized experience
replay helps the P6 Agent to quickly learn about which
actions lead to reward, hence trigger bugs in the program.
Since, the P6 Agent is trained only using experiences which
are valuable for the training. P6 Agent is trained for each
condition of each query shown in Figure 4 using same set of
hyper-parameters. Overall, P6 Agent outperforms baselines.

4) P6 vs Baselines: Dataplane Overhead: Table III illus-
trates the number of packets sent by P6 and the baselines.
This shows the usefulness of the P6 Agent which gener-

P416 Applications P6 Advanced Agent IPv4-based Naïve
basic.p4 [31] 13 59 8, 035 16, 000

basic_tunnel.p4 [31] 11 59 6, 044 14, 000
advanced_tunnel.p4 [31] 12 57 6, 038 14, 000

mri.p4 [31] 10 61 6, 058 14, 000
netpaxos-acceptor.p4 [32] 11 52 6, 021 14, 000
netpaxos-leader.p4 [32] 9 49 6, 024 14, 000
netpaxos-learner.p4 [32] 12 44 6, 026 14, 000

switch.p4 [30] 28 113 2, 132 14, 000

TABLE III: P6 vs Baselines. Median #packets sent over 10 runs.

ates less packets by learning about rewards, and generates
packets that trigger bugs. In this case, the Advanced Agent
is almost similar. IPv4-based fuzzer can detect 4 out of 10
bugs, but generates around 6k packets per run. For each
test-case, naïve fuzzer sends around 2k packets (in total
between 12k and 16k) but it could not trigger any bug.

V. CONCLUSION

We presented P6, a system that enables runtime verifica-
tion of P4 switches in a non-intrusive fashion. We believe
P6 is an important foray into self-driving networks [53],
which come with stringent requirements on dependability
and automation. As a part of our future agenda, we plan to
apply P6 on commercial-grade P4 programs and networks
to report on our experience.

9

ACKNOWLEDGEMENT

We thank Lalith Suresh, Bhargava Shastry, and the anony-
mous reviewers for their helpful feedback. This work and
its dissemination efforts were conducted as a part of Verify
project supported by the German Bundesministerium für
Bildung und Forschung (BMBF) Software Campus grant
01IS17052, the European Research Council (ERC) Starting
Grant ResolutioNet (ERC-StG-679158), and the Vienna
Science and Technology Fund project ICT19-045, 2020-
2024.

REFERENCES

[1] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker.
P4: Programming Protocol-independent Packet Processors. ACM
CCR, 44(3), 2014.

[2] P4 Language Consortium. P416 language specs, version 1.1.0, 2018.
[3] P. Kazemian. Network path not found? https://bit.ly/2FzpEEZ, 2017.
[4] R. Stoenescu, D. Dumitrescu, M. Popovici, L. Negreanu, and

C. Raiciu. Debugging P4 programs with Vera. In ACM SIGCOMM,
2018.

[5] J. Liu, W. Hallahan, C. Schlesinger, M. Sharif, J. Lee, R. Soulé,
H. Wang, C. Caşcaval, N. McKeown, and N. Foster. P4v: Practical
Verification for Programmable Data Planes. In ACM SIGCOMM,
2018.

[6] M. Neves, L. Freire, A. Schaeffer-Filho, and M. Barcellos. Verifi-
cation of P4 Programs in Feasible Time Using Assertions. In ACM
CoNEXT, 2018.

[7] L. Freire, M. Neves, L. Leal, K. Levchenko, A. Schaeffer-Filho, and
M. Barcellos. Uncovering Bugs in P4 Programs with Assertion-based
Verification. In ACM SOSR, 2018.

[8] A. Nötzli, J. Khan, A. Fingerhut, C. Barrett, and P. Athanas.
P4pktgen: Automated test case generation for p4 programs. In ACM
SOSR, 2018.

[9] A. Shukla, S. Fathalli, T. Zinner, A. Hecker, and S. Schmid.
P4CONSIST: Towards Consistent P4 SDNs. In IEEE Journal on
Special Areas in Communication (JSAC)- NetSoft, 2020.

[10] A. Shukla. Towards runtime verification of programmable networks.
Doctoral thesis, Technische Universität Berlin, Berlin, 2020.

[11] S. Kodeswaran, M. Arashloo, P. Tammana, and J. Rexford. Tracking
p4 program execution in the data plane. In SOSR, 2020.

[12] Cisco Systems. daPIPE: DAta Plane Incremental Programming
Environment. https://p4.org/assets/P4WS2019/p4workshop19 −
final16.pdf, 2019.

[13] M. Zalewski. American Fuzzy Lop: A Security-oriented Fuzzer.
http://lcamtuf. coredump. cx/afl/, (visited on 6/4/2019), 2010.

[14] Llvm Compiler Infrastructure: libfuzzer: a library for coverage-
guided fuzz testing. http://llvm.org/docs/LibFuzzer.html.

[15] P. Godefroid, M. Y. Levin, and D. Molnar. SAGE: whitebox fuzzing
for security testing. Comm. of the ACM, 55(3), 2012.

[16] Peach Fuzzer. https://www.peach.tech/.
[17] OpenRCE: sulley. https://github.com/OpenRCE/sulley.
[18] Radamsa. https://gitlab.com/akihe/radamsa.
[19] ZZUF - MULTI-PURPOSE FUZZER. http://caca.zoy.org/wiki/zzuf.
[20] H. Peng, Y. Shoshitaishvili, and M. Payer. T-fuzz: fuzzing by

program transformation. In IEEE Symposium on Security and
Privacy, 2018.

[21] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna. Driller: Augmenting
fuzzing through selective symbolic execution. In NDSS, 2016.

[22] A. Shukla, S. J. Saidi, S. Stefan, M. Canini, T. Zinner, and A. Feld-
mann. Towards Consistent SDNs: A Case for Network State Fuzzing.
In IEEE Transactions on Network and Service Management, 2019.

[23] A. Shukla, K. N. Hudemann, A. Hecker, and S. Schmid. Runtime
Verification of P4 Switches with Reinforcement Learning. In ACM
SIGCOMM NetAI, 2019.

[24] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduc-
tion. MIT press, 2018.

[25] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall Press, 3rd edition, 2009.

[26] J. A. Jones, M. J. Harrold, and J. T. Stasko. Visualization for Fault
Localization. In ACM/IEEE ICSE Workshops, 2001.

[27] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test
information to assist fault localization. In ACM/IEEE ICSE, 2002.

[28] J. A. Jones and Mary J. Harrold. Empirical evaluation of the tarantula
automatic fault-localization technique. In IEEE/ACM ASE, 2005.

[29] C. Le Goues, M. Pradel, and A. Roychoudhury. Automated program
repair. In Comm. of the ACM, 2019.

[30] switch.p4. https://github.com/p4lang/switch.
[31] P4 Tutorial. https://github.com/p4lang/tutorials.
[32] NetPaxos. https://github.com/usi-systems/p4xos-public.
[33] P4.org. Behavioral model repository.

https://github.com/p4lang/behavioral-model, October 2015.
Accessed: 2018-12.

[34] Tofino. https://www.barefootnetworks.com/products/brief-tofino.
[35] N. Lopes, N. Bjørner, N. McKeown, A. Rybalchenko, D. Talayco,

and G. Varghese. Automatically verifying reachability and well-
formedness in P4 Networks. Microsoft Technical Report, Tech. Rep,
2016.

[36] L. Ryzhyk, N. Bjørner, M. Canini, J. Jeannin, C. Schlesinger, D. B.
Terry, and G. Varghese. Correct by construction networks using
stepwise refinement. In NSDI, 2017.

[37] A. Shukla, K. Hudemann, and Z. Vági. P6 Software.
https://gitlab.inet.tu-berlin.de/apoorv/P6, 2020.

[38] P. Bosshart, G. Gibb, H. S. Kim, G. Varghese, N. McKeown,
M. Izzard, F. Mujica, and M. Horowitz. Forwarding metamorphosis:
Fast Programmable Match-action Processing in Hardware for SDN.
ACM CCR, 43(4), 2013.

[39] P416 Portable Switch Architecture (PSA)- Version 1.1: Pro-
grammable Blocks. https://p4.org/p4-spec/docs/PSA-v1.1.0.htmlsec-
programmable-blocks.

[40] P4 Language Consortium. the p4 language specifications, version
1.0.5.

[41] P416 Portable Switch Architecture (PSA)- Version 1.1: Ingress
Deparser and Egress parser. https://p4.org/p4-spec/docs/PSA-
v1.1.0.htmlappendix-rationale-ingress-deparser-egress-parser.

[42] P4 Language Community. P4c, 2019.
[43] S. Moon, J. Helt, Y. Yuan, Y. Bieri, S. Banerjee, V. Sekar, W. Wu,

M. Yannakakis, and Y. Zhang. Alembic: automated model inference
for stateful network functions. In NSDI, 2019.

[44] H. van Hasselt, A. Guez, and D. Silver. Deep Reinforcement
Learning with Double Q-Learning. In AAAI, 2016.

[45] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller. Playing atari with deep reinforce-
ment learning. arXiv preprint arXiv:1312.5602, 2013.

[46] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized
experience replay. arXiv preprint arXiv:1511.05952, 2015.

[47] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Parallel
Distributed Processing: Explorations in the Microstructure of Cog-
nition, Vol. 1. chapter Learning Internal Representations by Error
Propagation. 1986.

[48] Keras: The Python Deep Learning library. https://keras.io/.
[49] TensorFlow. https://www.tensorflow.org/.
[50] Scapy. https://scapy.net/.
[51] Vagrant. https://www.vagrantup.com/.
[52] VirtualBox. https://www.virtualbox.org/.
[53] N. Feamster and J. Rexford. Why (and how) networks should run

themselves. arXiv preprint arXiv:1710.11583, 2017.

10

