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Abstract—Nowadays, there is a fast-paced shift from legacy
telecommunication systems to novel Software Defined Network
(SDN) architectures that can support on-the-fly network recon-
figuration, therefore, empowering advanced traffic engineering
mechanisms. Despite this momentum, migration to SDN cannot
be realized at once especially in high-end cost networks of
Internet Service Providers (ISPs). It is expected that ISPs will
gradually upgrade their networks to SDN over a period that
spans several years. In this paper, we study the SDN upgrading
problem in an ISP network: which nodes to upgrade and when.
We consider a general model that captures different migration
costs and network topologies, and two plausible ISP objectives;
first, the maximization of the traffic that traverses at least one
SDN node, and second, the maximization of the number of
dynamically selectable routing paths enabled by SDN nodes. We
leverage the theory of submodular and supermodular functions
to devise algorithms with provable approximation ratios for
each objective. Using real-world network topologies and traffic
matrices, we evaluate the performance of our algorithms and
show up to 54% gains over state-of-the-art methods. Moreover,
we describe the interplay between the two objectives; maximizing
one may cause a factor of 2 loss to the other.

I. INTRODUCTION

Motivation. Software Defined Networking (SDN) [1] en-
ables unprecedented network management flexibility through
the separation of the network control and data planes, and
the centralization of the former in designated network entities,
referred to as controllers. A controller maintains a global view
of the network state, including network topology, traffic load
and link failures, and can leverage this information to dynam-
ically select the routing paths for each network flow. This
approach departs significantly from traditional IP protocols,
like OSPF, that are destination-based and route traffic along
shortest paths using static link weight metrics. SDN, therefore,
empowers advanced Traffic Engineering (TE) mechanisms
that can respond on-the-fly to network changes, and support
fine-grained routing decisions per flow. This makes SDN a
particularly attractive technology.

However, as it happens with most novel network protocols
and architectures [2], migration to SDN cannot be realized
at once. This is particularly true for the large and expensive
networks of Internet Service Providers (ISPs). Namely, the
one-step SDN upgrade of entire ISP networks is practically
impossible since it poses an enormous operational burden, and
also raises performance and security risks [3]. On top of that,
such upgrades require huge capital expenditures since network
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Fig. 1. A network that is partially upgraded to SDN. The two SDN nodes
can act as firewalls or dynamically control the routing path.

components (e.g., backbone routers) are very expensive. Be-
sides, upgrading newly installed legacy routers is economically
prohibitive1. Given the above, it is expected that ISPs will opt
to migrate to SDN incrementally, i.e., by gradually upgrading
their network nodes over a period that spans several years.
In these incremental SDN deployments, the controllers will
manage only the SDN-enabled nodes, while the remaining
legacy network will still use OSPF-like routing protocols.

Even in such hybrid SDN networks, the ISPs can accrue
important benefits. Namely, for the traffic that crosses at least
one SDN node, it is possible to apply various sophisticated
policies such as access control, firewall actions, and other
middlebox-supported in-network services [5]. Moreover, using
the SDN nodes it is possible to dynamically control the routing
path of the flows by overriding the underlying legacy OSPF
protocol [6]. In line with prior works, we will use the term
programmable traffic to differentiate the traffic that traverses at
least one SDN node from that not traversing any SDN nodes.
Both in-network services and the availability of alternative
routing paths (that can be dynamically selected) are extremely
useful for ISPs. Besides, if the flow crosses more than one
SDN nodes, the ISP has even more dynamic routing options
and hence can further increase the TE flexibility of its network.

Let us show the potential of this approach with a simple
example. Consider the hybrid SDN toy-network shown in
Figure 1 that routes a flow from source node 1 to destination
node 3. Here, only two of the seven nodes are upgraded
with SDN capabilities (nodes 1 and 4). Using OSPF, the flow
is always routed along the shortest path. However, node 1
can dynamically decide to drop (instead of forwarding) the
packets, acting, e.g., as a firewall. It can also override the
OSPF shortest path by routing the packets through node 4.
The packets will then follow the alternative path 1 which

1A typical router replacement window is 3 to 5 years; more importantly
a network’s routers have out-of-phase cycles, i.e., need to be replaced in
different times, e.g., see Lifecycle Financing from Cisco Capital. Also, router
costs vary significantly from few tens of thousands to more than $100K [4].
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is the OSPF shortest path connecting node 4 with 3. Such
flow rerouting is important when a link of the shortest path
fails or becomes temporarily congested. Since node 4 is also
upgraded to SDN, it can similarly defer packets towards
alternative path 2. In other words, as the number of SDN-
enabled nodes increases, the set of alternative paths increases
as well. Hence, there exist more degrees of freedom (or,
flexibility) in performing dynamic TE.

To gain the maximum benefits, it is important to identify
which SDN upgrade schedule is suitable for a given network.
Namely, every ISP needs to carefully select which nodes to
upgrade, and when exactly to do so. Especially this latter
aspect of timing has many implications. First, like every new
technology, the initial high cost of SDN decreases with high
pace over time [7]. Hence the ISPs face a dilemma of early
upgrade that will allow them to reap the new technology
benefits immediately and a slow upgrade that will reduce their
capital expenditures. More practical, the ISPs need to decide
how many nodes to upgrade in each period, which for ISPs
usually amounts to 6-12 month intervals. Second, the routers
are highly heterogeneous since they serve a different amount of
traffic and have a different remaining lifetime, and this further
perplexes these decisions.

In summary, every ISP has to address the following two
questions: (i) How many nodes to upgrade in each period?
Should it upgrade all nodes as early as possible or wait for
the prices to fall?, and (ii) After deciding the number of nodes
to be upgraded, which specific nodes to select? The ISP’s goal
might be to maximize the volume of programmable traffic
or the TE flexibility by increasing the dynamically selectable
alternative paths, based on the ISP’s priorities and preferences.
Despite the very important recent prior works on hybrid SDN
networks, e.g., see [6], [8] and Section VII for a detailed
overview, we currently lack a systematic understanding re-
garding the above issues. Therefore, our goal in this work is to
investigate policies for SDN upgrade scheduling in large (and
expensive) operational ISP networks, and focus particularly on
the impact of time-dimension and the interplay between traffic
programmability and TE flexibility benefits.

Methodology and Contributions. We develop a method-
ology to address the above two questions posed by ISPs
regarding SDN migration. We introduce a model of SDN
upgrades general enough to capture different migration costs,
as well as ISP topologies and traffic demands. We then utilize
this model to derive the optimal scheduling for router upgrades
in the ISP network over a period that may span several
years. We consider two ISP objectives. First, we target the
maximization of the programmable traffic, i.e., the traffic that
traverses at least one SDN node (Obj1). This upgrading policy,
if designed properly, can have significant benefits [6], [8], [9],
since it allows an ISP to control how the traffic flows in its
own network. The second objective (Obj2) aims to maximize
the TE flexibility. This objective is achieved by increasing
the number of alternative paths through the SDN upgrades.
For each one of the two objectives we formulate a rigorous
optimization problem and devise the desirable SDN upgrading
policy (or, schedule): which nodes to upgrade and when.

In both cases, finding the upgrading policy requires the

solution of challenging combinatorial optimization problems.
Namely, we show that for Obj1 this problem is NP-Hard even
to approximate to any factor better than 1−1/e. For the special
case in which all the node upgrades take place at the same time
period, we show that a modified version of a classic greedy
algorithm, which enumerates all possible triplets of nodes as
candidate solutions, achieves the best possible approximation
ratio. We also show a simple way to extend this algorithm for
the general case where the node upgrades can take place at
different time periods. A second class of more sophisticated
algorithms with improved approximation ratios is presented by
expressing Obj1 as the maximization of a submodular set func-
tion [10], i.e., a function that satisfies the diminishing returns
property. Then, we study Obj2 (maximizing TE flexibility).
This is a more complex problem which can be expressed as
the maximization of a function with bounded supermodular
degree [11]. Using this result, we present another greedy-based
algorithm that approximately solves this problem. We evaluate
the performance of the proposed algorithms using two datasets
of real network topologies and traffic matrices [12], [13]. The
results clearly differentiate situations in which upgrades should
be spread over many instead of one step.

The contributions of this work are summarized as follows:

• SDN Upgrading Problem. We introduce the problem
of gradually (and partially) upgrading an ISP network
to SDN, using general models of costs and different
objectives. The upgrades can take place at different time
periods, introducing different costs at each period due
to technology maturity, the different life-cycle of the
network equipment and other practical limitations.

• Maximizing Programmable Traffic (Obj1). For the pro-
grammable traffic maximization objective, we show that
the SDN upgrading problem is NP-Hard to approximate
to any factor better than 1 − 1/e. Then, we present a
simple algorithm matching this factor for the special case
of one time period, and show how it can be extended
for the general case. We also present additional more
sophisticated approximation algorithms using the theory
of submodular functions.

• Maximizing TE Flexibility (Obj2). For the objective of
maximizing TE flexibility through the availability of
SDN-enabled routing paths, we show that the optimiza-
tion problem is more complex. We present an approxi-
mation algorithm by expressing it as the maximization of
a function with bounded supermodular degree.

• Dataset-driven Evaluation. We evaluate the proposed al-
gorithms using real-world network topologies and traffic
matrices. We find that our approach can increase by 54%
the amount of programmable traffic compared to two
state-of-the-art methods in practical scenarios. We also
find that by optimizing Obj1, benefits are also realized
for Obj2 (and vise versa) and we explore the interplay
between the two objectives.

The rest of the paper is organized as follows. Section II
describes the system model and formalizes the SDN upgrading
problem for Obj1. In Sections III and IV, we present theoreti-
cal results about the computational complexity of this problem
and approximation algorithms. Section V considers Obj2 and
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presents an approximation algorithm. Section VI presents the
dataset-driven evaluation of our proposed algorithms, while
Section VII reviews our contribution compared to related
works. We conclude our work in Section VIII.

II. MODEL AND PROBLEM FORMULATION

We adopt a general model representing a large ISP backbone
network with a set N of N nodes (e.g., routers). The network
traffic consists of a set F of F origin-destination flows. With
traditional IP routing protocols, like OSPF, each flow f follows
the shortest path to the destination. We denote with Nf ⊆ N
the set containing the nodes along this path. The ISP may
decide to upgrade some of the nodes to SDN, and makes these
decisions along a time interval of t = 1, . . . , T time periods,
t ∈ T . Typically, such decisions are made in an annual or
semi-annual fashion, and by accommodating the lifetime of
this type of equipment (3-5 years). Thus, a usual value can be
T = 5 or 10 time periods. An example of incremental SDN
upgrades is depicted in Figure 2.

Moreover, the global Internet traffic increases with time,
having an expected annual growth rate of 22 percent from
2015 to 2020 [14]. To capture these dynamics, we denote
with λtf (bps) the average rate of flow f at period t, where
λtf ≥ λt′f ,∀t > t′. Although traffic variations may appear
also within the same period, it is expected that in backbone
networks with high aggregation of flows the traffic will not to
be very volatile. Upgrading a node to SDN requires capital
expenditures, e.g., for buying a new SDN-enabled device,
installation costs, etc. These costs typically differ across nodes.
For example, upgrades to edge nodes are typically less expen-
sive than core network nodes, while it is definitely more cost-
efficient to upgrade a node at the end of its lifetime (rather
than a newly installed one). Besides, the costs are likely to
drop over time as the SDN technology matures. We denote
with btn (in USD) the cost for upgrading node n at period t,
where it may be btn 6= btn′ , n 6= n′, and btn ≤ bt′n, t ≥ t′.

We introduce the optimization variable xtn ∈ {0, 1} that
indicates whether node n ∈ N will be upgraded to SDN at
time period t or not. These variables constitute the upgrading
policy of the ISP:

x = (xtn ∈ {0, 1} : t ∈ T n ∈ N ). (1)

We consider the case that the ISP has an available monetary
budget B (in USD) that can invest in SDN upgrades. The
ISP may opt to either invest this capital at once, or spread
the budget over different time periods. In any case, the SDN
upgrading policy must satisfy the following constraint:∑

t∈T

∑
n∈N

xtnbtn ≤ B. (2)

Clearly, each node can be upgraded to SDN at most once:∑
t∈T

xtn ≤ 1,∀n ∈ N . (3)

Since the network is upgraded incrementally, some flows
may still traverse only legacy nodes, or they may traverse a
mixture of upgraded and legacy nodes. A flow that traverses
at least one SDN node, can be used to realize a programmatic
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Fig. 2. An example of incremental SDN upgrades for T = 2 years. Two
nodes are upgraded each year, increasing the amount of programmable traffic.

interface, e.g., for implementing a firewall or routing traffic to
alternative paths (as we depicted in Figure 1). The volume of
programmable traffic can be expressed as follows:

J1(x) =
∑
t∈T

∑
f∈F

λtf1{
∑

n∈Nf

∑
t′≤t xt′n≥1}. (4)

Here, 1{.} is the indicator function; it is equal to one if the
condition in the subscript is true, otherwise zero.

The first natural objective of the ISP is to find the upgrading
policy that maximizes the volume of programmable traffic
(PTM problem):

Obj1: max
x

J1(x)

s.t. constraints : (2), (3)

xtn ∈ {0, 1},∀t ∈ T , n ∈ N . (5)

This is a challenging combinatorial optimization problem. For
example, in a network of N = 100 nodes and T = 10 time
periods there will be 2NT = 21000 possible solutions, and
therefore brute force algorithms that exhaustively search the
solution space will require prohibitively large running time.

The second plausible ISP objective that we examine (Obj2),
is the maximization of the TE flexibility. The latter is directly
proportional to the number of alternative routing paths that are
dynamically selectable through the SDN upgraded nodes. We
present the formulation of this objective in Section V.

III. COMPLEXITY ANALYSIS OF THE PTM PROBLEM

In this section, we investigate thoroughly the complexity of
the PTM problem, and we propose a simple algorithm with a
provable approximation ratio. We begin with the special case
of T = 1 period and then extend our results for any T .

Theorem 1: For the special case of T = 1 time period, the
PTM problem is NP-Hard, but there exists a polynomial-time
(1− 1/e)-approximation algorithm.

In order to prove Theorem 1 we will consider a variant of
the coverage problem known as Budgeted Maximum Coverage
Problem (BMCP) [15]. The latter can be defined as follows.

BMCP: Given a set of elements E = {E1, E2, . . . , El}
with associated weights {wi}li=1 and a collection of sets
S = {S1, S2, . . . , Sm} defined over E with associated costs
{ci}mi=1, the goal is to find a collection of sets S ′ ⊆ S , such
that the total cost of sets in S ′ does not exceed budget C and
the total weight of elements covered by S ′ is maximized.

Then, we will prove the following Lemma.
Lemma 1: PTM for T = 1 and BMCP are equivalent

problems.
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Proof: Given an arbitrary instance of the BMCP, we
construct a specific instance of PTM problem for a single
period t as follows. We create a separate node for each set, i.e.,
N = {1, 2, . . . , |S|}. The upgrading costs of the nodes match
the costs of the sets, i.e., btn = cS(n) where the set S(n)
corresponds to node n. The upgrading budget B matches the
budget C in the BMCP instance. We also create a separate
flow for each element, i.e., F = {1, 2, , . . . , |E|}. The flow
rates match the weights of the elements, i.e., λtf = wE(f)

where the element E(f) corresponds to flow f .
If there exists a set of nodes which upgrading them to SDN

makes Q amount of traffic to traverse at least one SDN node
(programmable traffic), then there will also be a collection
of sets that cover elements with total weight Q. The covered
elements will correspond to the flows that traverse the SDN
nodes. The total cost of the node upgrades will be equal to
the total cost of the sets. Hence, the solution to the PTM
problem provides a solution to the BMCP with the same value.
Conversely, given a solution to the BMCP problem, one can
solve the PTM problem by upgrading the nodes corresponding
to the sets picked by the BMCP solution. The two solutions
will have the same value.

It is known that it is NP-Hard to approximate the BMCP
problem to any factor better than 1 − 1/e [15]. Therefore,
Lemma 1 indicates that the same statement holds for the PTM
problem. Hence, we have proved the first part of Theorem 1.
To prove the second part, we leverage an algorithm in literature
that is used for solving the BMCP. Specifically, the work in
[15] has shown that a modification of the well-known greedy
algorithm yields an (1− 1/e)-approximate solution to BMCP
(matching the best possible factor). When applied to the PTM
problem for T = 1, this algorithm enumerates all subsets
of nodes with cardinality 3, that have total cost at most B.
It completes each subset to a candidate solution in a greedy
fashion. Specifically, it iteratively upgrades the node with the
highest ratio of the traffic that becomes programmable over
upgrading cost. Another set of candidate solutions consists
of all subsets of nodes with cardinality less than 3, which
have total cost at most B. The algorithm will output the
candidate solution that achieves the highest programmable
traffic volume. The pseudocode of the algorithm is presented
in Algorithm 1, and described in the sequel.

Here, CS1, CS2 ⊆ N are the two candidate solutions
found by the algorithm. CS1 is initialized to the empty set
(line 1). U denotes the set of nodes that are not included
in the current candidate solution. ∆J1(N ′, n) indicates the
additional traffic that becomes programmable when node n
is upgraded, given that the nodes in subset N ′ are already
upgraded. The term x(CS1) indicates the vector x for which
xn = 1 iff n ∈ CS1. Similarly, for x(CS2). For each
possible triplet of upgraded nodes, the algorithm iteratively
upgrades the node with the highest ratio of traffic that becomes
programmable over upgrading cost (line 4). Nodes will be
skipped if their upgrade violates the budget constraint (line
5). At the end of the loop (line 8), CS1 will be the solution
with the best value. CS2 will be the best solution of cardinality
less than 3. The algorithm will compare CS1 and CS2 and
pick the solution with the best value (lines 9-10).

Algorithm 1: Modified-greedy algorithm for one period t

1 CS1 ← ∅;
2 for all subsets N ′ ⊆ N such that |N ′| = 3 and∑

n∈N ′ btn ≤ B do
3 U ← N \ N ′;
4 repeat

select n ∈ U that maximizes ∆J1(N ′, n)/btn;
5 if

∑
n∈N ′∪{n} btn ≤ B then
N ′ ← N ′ ∪ {n};

end
6 U ← U \ {n};

until U = 0;
7 if J1(x(N ′)) > J1(x(CS1)) then

CS1 ← N ′;
end

end
8 CS2 ← argmax { J1(N ′), such that N ′ ⊆ N , |N ′| < 3

and
∑
n∈N ′ btn ≤ B };

9 if J1(x(CS1)) > J1(x(CS2)) then
Upgrade nodes in CS1;

end
10 Else Upgrade nodes in CS2;

With the Modified-greedy algorithm, we have proved the
second part of Theorem 1. Nevertheless, this algorithm works
only for a single time period (T = 1). The rest of this section
extends the results for the general case with many time periods.

Theorem 2: For the general case, there exists an O((1 −
1/e)/ log(T ))-approximation algorithm to PTM problem.

We will prove this theorem by extending any approximation
algorithm that works for one period to many periods. Formally,
we prove the following lemma.

Lemma 2: We can extend any a-approximation algorithm
for the T = 1 case of the PTM problem, to obtain an
O(a/ log(T ))-approximation for the general T > 1 case.

Proof: We denote with ALG an a-approximation algo-
rithm of the PTM problem for the T = 1 case. We also
consider the general case of the PTM problem (with T > 1),
but neglect constraints (2), (3) and assume that the available
budget in each one of the time periods is B (hence the total
budget is T · B). In this relaxed version, the PTM problem
can be decomposed into T independent subproblems, one for
each time period. We can run ALG for each subproblem
t ∈ {1, 2, . . . , T} to obtain a solution ALGt with value
v(ALGt) ≥ a · v(OPTt), where OPTt is the respective
optimal solution. Then, we transform each solution ALGt to a
feasible solution Ht to the original PTM problem as follows.
In the Ht solution, we perform no SDN upgrades during the
first t−1 periods, or after the tth period. All the upgrades take
place at the tth period based on the ALGt solution. Hence, the
programmable traffic during the first t−1 periods will be zero.
Since the traffic rate increases with time, the programmable
traffic will be at least (T − t + 1) · v(ALGt) during the rest
T − t+ 1 periods. Out of these T solutions (H1 to HT ), we
return the one of maximum value, denoted with H∗. Then, for
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all t it should hold that:

v(H∗) ≥ (T − t+ 1) · v(ALGt) ≥ (T − t+ 1) · a · v(OPTt),

and therefore,

v(OPTt) ≤
1

a · (T − t+ 1)
· v(H∗). (6)

If OPT ∗ is the optimal solution to the PTM problem, then

v(OPT ∗) ≤
T∑
t=1

v(OPTt) ≤ v(H∗) ·
T∑
t=1

1

a · (T − t+ 1)

= v(H∗) ·O(
log(T )

a
), (7)

where the first inequality is because the solutions OPTt, ∀t are
computed neglecting the constraints (2) and (3). The second
inequality is because of (6). The last equation is based on the
definition of the T th harmonic number.

Theorems 1 and 2 analyze the complexity of the PTM
problem and provide a first approximate solution. Although
it is quite simple to implement, Modified-greedy provides an
approximation ratio that worsens as the number of periods T
increases. To fill this gap, we introduce in the next section a
class of (more sophisticated) algorithms with approximation
ratios that are independent of T , and therefore are suitable for
upgrade schedules that extend over long time windows.

IV. TIGHT APPROXIMATIONS FOR THE PTM PROBLEM

In this section, we present tight approximation algorithms
for the PTM problem by expressing the problem as the max-
imization of a submodular function. We begin by introducing
the definition of submodular functions.

Definition 1: Given a finite set of elements G (referred to
as ground set) a function H : 2G → R is submodular if for
any sets A ⊆ B ⊆ G and every element g ∈ G \ B, it holds:

H(A ∪ {g})−H(A) ≥ H(B ∪ {g})−H(B), (8)

i.e., the marginal value of the function when adding a new
element in a set decreases as this set expands.

Let us denote the upgrade of node n at time period t by
an element gtn and define the ground set G consisting of all
elements as:

G = (gtn : t ∈ T , n ∈ N ). (9)

Then, every possible SDN upgrading policy can be expressed
by a subset X ⊆ G, where the elements in X correspond to
the time periods and nodes that upgrades took place. Based
on the above, we can write Obj 1 as a function of the set X :

H(X ) =
∑
t∈T

∑
f∈F

λtf1{
{
⋃

t′≤t, n∈Nf
gt′n}∩X 6=∅

}. (10)

Then, we prove the following lemma:
Lemma 3: The function H(X ) is monotone, increasing and

submodular.
Proof: Monotonicity is obvious since any new upgrade of

a node cannot decrease the value of the objective function. In
order to show submodularity, we observe that since the sum
of submodular functions is also submodular it suffices to show
that the function Hf (X ) =

∑
t∈T

λtf1{
{
⋃

t′≤t, n∈Nf
gt′n}∩X 6=∅

}

for a given flow f is submodular. To this end, we consider two
SDN upgrading policies A ⊆ G and B ⊆ G, where A ⊆ B.
We also consider an element gtn ∈ G \ B to be added to both
sets. This corresponds to upgrading node n at period t, where
this upgrade was not taken place neither in set A nor B.

The marginal value for adding gtn to A will be zero if
there exists another element gt′n′ ∈ A such that t′ ≤ t and
n′ ∈ Nf . This is because the flow f is already programmable
according to policy A. Else if there exists an element gt′′n′ ∈
A such that t′′ > t and n′ ∈ Nf , then the marginal value
will be

∑t′′−1
i=t λif . This is because the flow f now becomes

programmable at time t instead of t′′. Otherwise, the marginal
value will be

∑T
i=t λif .

We now consider the marginal value for adding the element
gtn to the set B. We distinguish the following three cases:
(i) If there exists an element gt′n′ ∈ A such that t′ ≤ t and
n′ ∈ Nf then this element will also belong to B. Hence, the
marginal value will be zero for both A and B.
(ii) If there exists an element gt′′n′ ∈ A such that t′′ > t
and n′ ∈ Nf then this element will also belong to B. We
distinguish the following two subcases. (ii.a) If there exists an
element gt′′′n′ ∈ B \ A such that t′′′ < t′′ the marginal value
for B will be

∑t′′′−1
i=t λif <

∑t′′−1
i=t λif . (ii.b) Otherwise, the

marginal value for B will be equal to that for A (
∑t′′−1
i=t λif ).

(iii) In any other case, the marginal value for the set A will
be
∑T
i=t λif . But, note that by definition this is the largest

possible marginal value for the B set as well. Hence, in all
cases we showed that the marginal value will be lower or equal
for the set B than A.

The ground set can be partitioned into N disjoint sets,
G1,G2, . . . ,GN , where Gn = {gtn : ∀t ∈ T }. Since each
node can be upgraded in at most one time period, it should
be X ∈ I1 where:

I1 = {X ⊆ G : |X ∩ Gn| ≤ 1,∀n ∈ N}. (11)

Here, the pair (G, I1) forms a partition matroid con-
straint [10]. Also, due to the budget constraint, it should be
X ∈ I2 where:

I2 = {X ⊆ G :
∑
gtn∈X

btn ≤ B}. (12)

Here, the pair (G, I2) forms a knapsack constraint.
There exist various approximation algorithms for the max-

imization of a monotone submodular function subject to a
matroid and a knapsack constraint. The algorithm with the
best approximation ratio was proposed in [16]. This algorithm
uses pipage rounding, a procedure which aims to convert a
fractional solution of an optimization problem into an integral
one, through a sequence of simple updates. It achieves an
(1 − 1/e − ε)-approximation ratio for any constant ε > 0.
Nevertheless, the value of this algorithm is mostly theoretical,
since it relies on the enumeration of 1/ε4 elements which can
be a quite large number in practice.

A more practical choice is the technique presented in [17].
The idea is to reduce the knapsack constraint into a collection
of partition matroids using an enumeration method. Partic-
ularly, let us denote with {u1, u2, . . . , ul} all the different
values of the upgrade costs btn, ∀t, n of the elements in the
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ground set. For example, l = 1 if all elements have the same
cost, but l = NT if each element has a different cost. Then,
we can partition the ground set into the sets G′1,G′2, . . . ,G′l ,
where the ith set contains all elements with cost ui. We also
define qi = bB/uic. In other words, qi is the maximum
number of elements in G′i that can be included in a solution
without violating the knapsack constraint. Clearly, there will
be at most m =

∏l
i=1 qi different solutions that satisfy

the knapsack constraint, one solution for each combination.
For each combination j ∈ {1, 2, . . . ,m} we introduce the
following partition matroid:

Ij2 = {X ⊆ G : |X ∩ G′i| ≤ q
j
i ,∀i ∈ {1, 2, . . . , l}} (13)

where qji denotes the maximum number of elements in G′i
corresponding to the jth combination.

Clearly, instead of maximizing H(.) function with respect
to the I1 ∩ I2 constraint, it is equivalent to maximize H(.)
with respect to I1 ∩ Ij2 , ∀j ∈ {1, 2, . . . ,m}. The final
solution will be simply the best performing of the m solutions
found. In other words, with this enumeration method, we
replace a knapsack constraint (I2) with a collection of matroid
constraints (Ij2 , j ∈ {1, 2, . . . ,m}). Hence, the PTM problem
can be expressed as a collection of m subproblems where in
each subproblem a submodular function is maximized subject
to k = 2 partition matroid constraints.

A local search algorithm provides an (1/(k + ε))-
approximation for the maximization of a submodular function
subject to k partition matroid constraints [10]. This technique
takes as input a parameter ε > 0 and maintains a solution
set X which is always independent in each of the k matroids.
Iteratively, the algorithm tries to add at most 2/ε elements and
delete at most 2k/ε elements from X . If there is a local move
that generates a feasible solution and improves the objective
value, the algorithm repeats the local search procedure with
that new solution, until no improvement is possible. The
procedure is summarized in Algorithm 2.

We emphasize that the enumeration technique that we
presented will be very efficient in cases that many nodes
have the same upgrade costs (l is a small number) and the
budget is relatively small compared to the upgrading costs (qi
values are small numbers). Nevertheless, there may be cases
in which a large number of matroid constraints need to be
enumerated. In order to reduce complexity in these cases, a
different enumeration method can be applied. For example,
the enumeration method in [16] that approximately reduces
every knapsack to a polynomial-time computable collection of
matroid constraints can be used. The size of the collection can
be tuned depending on how well the knapsack is approximated
by the matroid constraints (cf. Lemma 3.3. in [17]).

The pipage rounding and the local search algorithms provide
approximation ratios that are independent of the number of
periods T . Specifically, the following theorem holds:

Theorem 3: There exist an (1 − 1/e − ε)-approximation
algorithm and an (1/(2 + ε))-approximation algorithm to the
PTM problem for any ε > 0.

V. OPTIMIZING THE TE FLEXIBILITY

In this section, we study the SDN upgrading problem
when the ISP’s goal is to maximize the TE flexibility. This

Algorithm 2: Local search algorithm with input ε > 0

1 Set gt∗n∗ ← argmax{H({gtn}) | gtn ∈ G} and
X ← {gt∗n∗};

2 while the following operation is possible do
3 k-exchange operation: if there is a feasible X ′ such

that: |X ′ \ X | ≤ 2
ε , |X \ X ′| ≤ 2k

ε , H(X ′) ≥ H(X )
then
X ← X ′;

end
end

4 Set xtn ← 1 if gtn ∈ G ∀t, n, otherwise zero;

is achieved through the availability of alternative paths that
can be dynamically activated in such hybrid SDN networks.
Namely, the ISP can use these paths to avoid congestion in
cases that certain links are temporarily overloaded or failed.
For example, as explained in Figure 1, when node 1 is
upgraded the flow can be dynamically routed towards the
alternative path 1; and if node 4 is also upgraded, then the
ISP can also activate alternative path 2, if needed.

To formulate this as an optimization problem, we introduce
a set Pf for each flow f . This set includes alternative paths
that flow f can follow to reach its destination. For example,
an ISP can analyze historical network data to predict which
paths will be underutilized, and hence they can be dynamically
activated to carry flow f when its shortest path becomes
congested. For each alternative path p ∈ Pf , we define a
group of nodes spf which all need to be upgraded to SDN
in order for path p to become available to route flow f . For
example, in Figure 1 we have salternative path 1,f = {1} and
salternative path 2,f = {1, 4}. A generic approach to compute
these groups was presented in [18], [19].

There will be a TE benefit wpft ≥ 0 if alternative path
p ∈ Pf is available for routing flow f at time period t. A
similar modeling approach of TE benefit has been considered
in [18], [19]. This benefit will be higher for flows that carry
large volumes of traffic and paths with sufficient spare capacity
to carry these volumes. For a given upgrading policy x, the
total TE benefit (or flexibility) can be expressed as follows:

J2(x) =
∑
t∈T

∑
f∈F

∑
p∈Pf

wpft1{
∏

n∈spf

[∑
t′≤t xnt′

]
>0}

. (14)

Here, the benefit wpft is earned when all nodes in the group
spf have been upgraded to SDN by time t. In the special case
that wpft = 1 ∀p, f, t, the total TE benefit matches the total
number of alternative paths that are enabled by SDN nodes.

The objective of the ISP is to find the SDN upgrading policy
that maximizes the TE flexibility (TEFM problem):

Obj2 : max
x

J2(x)

s.t. constraints : (2), (3), (5)

Obj2 is more complex than Obj1, since it depends on the
exact set of SDN nodes that each flow traverses, rather than on
whether the flow traverses at least one of them. In this section,
we present an initial approach to optimize this objective. Our



7

idea is to express the TEFM problem as the maximization of
a set function with bounded supermodular degree [11]. We
begin with the following definitions.

Definition 2: The supermodular degree of an element g ∈ G
by a function H(.) is defined as the cardinality of the set
D+
H(g) := {g′ ∈ G : ∃X ⊆ G for which H(X ∪ {g′} ∪
{g})−H(X ∪{g′}) > H(X ∪{g})−H(X )}. In other words,
the set D+

H(g) contains all elements g′ the existence of which
in a set might increase the marginal value of element g.

Definition 3: The supermodular degree of a function H(.),
denoted by D+

H , is simply the maximum supermodular degree
of any element g ∈ G. Formally, D+

H = maxg∈G |D+
H(g)|.

It is not hard to express J2 as a function with bounded
supermodular degree (D+

J2
). In fact, all the nodes that are

included in the same group depend on each other, in the sense
that upgrading only one of them yields no TE benefit, but when
they are all upgraded a benefit is earned (wpft for group spf ).
For example, in Figure 1, the marginal value for upgrading
node 4 is zero if node 1 is not already upgraded, since the
only available path for the flow would be still the shortest
path. But, if node 1 is already upgraded, then the marginal
value for upgrading node 4 becomes positive (since routing
over alternative path 2 now becomes possible). Hence, the
supermodular degree of function J2 is 1 in this example. For
a single time period, the supermodular degree of J2 is simply
the maximum number of nodes that share a same group with
any other node. In general, it holds 0 ≤ D+

J2
≤ NT .

A variant of the greedy algorithm has been proposed
for maximizing any function H with bounded supermodular
degree D+

H . We call this the Super-greedy algorithm (see
Algorithm 3). This algorithm starts with an empty solution
set X (line 1) and iteratively augments subsets of elements to
it (lines 2-4). At each iteration, it picks an element g∗ and a
subset of those elements that increase the marginal value of
g∗, i.e., a subset of the set D+

H(g∗). The above choice is made
greedily, so that the highest marginal benefit is earned. The
procedure ends when there are no more elements to augment.

The work in [11] has shown that Super-greedy achieves an
approximation ratio for the problem of maximizing a function
with bounded supermodular degree. Nevertheless, a necessary
condition for this result to hold is that the constraints of
the problem form a k-extendible system, which is a class of
constraints that captures the case of k matroid constraints, but
not the case of knapsack constraints. For the special case that
all the upgrading costs are equal, the constraints (2), (3) can be
expressed as k = 2 matroid constraints. Therefore, we obtain:

Proposition 1: Super-greedy achieves an (1/(2(D+
J2

+1)+
1))-approximation ratio to the TEFM problem for the special
case of uniform upgrading costs.

VI. DATASET-DRIVEN EVALUATION

In this section, we evaluate the performance of the proposed
algorithms using real-world network topologies and traffic
matrices. Overall, we find that our approach can increase by
54% the amount of programmable traffic compared to state-
of-the-art methods, especially in practical scenarios where
the network is upgraded in a time window of four or five
years. In general, the ISP acquires more benefits by spreading
the upgrades over many instead of one year. Nevertheless,

Algorithm 3: Super-greedy algorithm

1 X ← ∅;
2 while there exists an element g such that X ∪ {g} is a

feasible solution do
3 Let g∗ ∈ G \ X and D̂+

H(g∗) ⊆ D+
H(g∗) be a pair of

an element and a set such that:
(i) X ′ := X ∪ {g∗} ∪ D̂+

H is a feasible solution, and
(ii) it maximizes H(X ′)−H(X );

4 X ← X ′;
end

5 Set xtn ← 1 iff gtn ∈ X , otherwise 0;

this strategy can be detrimental when the SDN costs are
relatively stable over time (up to 20% drop per year). We also
find that by optimizing the objective of programmable traffic
maximization, benefits are also realized for the objective of
TE flexibility maximization (and vise versa). However, there
will be a performance loss (up to a factor of 2), since each
algorithm favors one objective over the other.

We have implemented the following four algorithms:
1) DEG [20]: This scheme upgrades the nodes with the

highest degrees (number of incoming and outgoing
adjacent links) in the topology graph. All the upgrades
take place at the first time period.

2) VOL [8], [20]: This scheme upgrades the nodes with
the highest traffic volume that traverses them. All the
upgrades take place at the first time period.

3) Modified-greedy: The proposed scheme in Algorithm 1
extended for many time periods.

4) Local search: The proposed scheme in Algorithm 2 for
ε = 2 that can spread upgrades over many time periods.

The main part of the evaluation is carried out using the
Abilene dataset [12] which is obtained from an educational
backbone network in North America. This network consists
of 12 nodes and 30 directed links. The dataset records the
traffic matrix, i.e., the data transmitted between every pair of
nodes, every 5 minutes for an overall period of six months.
We use the traffic matrix at 8:00pm in the first day to set the
rates of the respective 144 flows. The aggregate rate is found
to be 5.46 Gbps. These rates correspond to the λtf values
for period t = 1. We increase the rates in subsequent periods
(years) by 22% (λtf = λt−1f · 122%) [14]. The dataset also
records the OSPF weights of all the links, which allows us to
find the shortest path between every pair of nodes (Nf sets).

We emphasize that we focus on this specific subset of the
dataset because it represents a peak time period when SDN is
more important. Moreover, this dataset is publicly available
online, whereas data from most ISPs is proprietary. The
evaluation code we wrote is publicly available online [21]. We
believe that the reproducibility of the results will encourage
future experimentation with SDN algorithms.

The first question we examine is how the proposed algo-
rithms compare with the state-of-the-art methods. Since the
latter neglect the timing issue, and in order to ensure a fair
comparison, we begin our investigation with T = 1 time
period, i.e., all upgrades take place within one year. As a
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Fig. 3. The programmable traffic achieved by DEG, VOL, Modified greedy and Local search algorithms as a function of (a) the budget B
and (b) the number of time periods T . (c) The distribution of upgrades across years (Y1, Y2, Y3, Y4, Y5) for different cost reduction rates.
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Fig. 4. (a) Impact of optimizing different objectives for T = 1. (b) Programmable traffic for the Deltacom network [13].

canonical scenario, we set the cost of upgrading a node to SDN
to $100K [4] (btn values for t = 1), and we vary the budget
B from $100K to $1M (Figure 3(a)). We observe that as the
budget increases, the volume of programmable traffic increases
for all algorithms. This is because more nodes are upgraded to
SDN which creates more opportunities for the flows to traverse
SDN nodes. There exists a saturation point (B = $900K),
after which no significant changes are noticed. The proposed
algorithms (Modified greedy and Local search) achieve up to
54% more programmable traffic than their counterparts.

We then explore the impact of the number of time periods
T in Figure 3(b). Here, we keep B = $200K constant, but we
vary T within 1 to 5 years. To capture technology maturity,
we decrease the SDN upgrading costs by 40% per year, i.e.,
btn = bt−1n−bt−1n ·40%. For T = 1, the results match those
in Figure 3(a). For T > 1, additional benefits can be acquired
by postponing some of the upgrades after the first year when
the costs will be lower. Local search algorithm intelligently
spreads the upgrades across different years to achieve the best
performance among the four algorithms. The benefits over
the state-of-the-art methods are up to 47%, and 5.5% over
Modified greedy for T = 5.

In Figure 3(c), we take a closer look into the distribution of
upgrades over years when the Local search algorithm is used.
We evaluate various scenarios which differ into the annual
decrease rate of the upgrading costs. We find that for relatively
low rates of cost decrease (up to 20%), all the upgrades should
take place within the first year. But, after this point, it is more
beneficial to postpone some of the upgrades in future. The

distribution of upgrades over years becomes more diverse as
the rate of cost decrease increases.

We also explore the interplay between traffic programma-
bility and TE flexibility benefits. As we showed in previous
figures, Local search is in practice a very efficient algorithm
for maximizing programmable traffic. But, a large volume of
programmable traffic cannot guarantee by itself a large number
of alternative routing paths (and vise versa). Therefore, it is
questionable how well an algorithm that optimizes one of the
two objectives will perform with respect to the other objective.
Figure 4(a) aims to shed light on this issue by comparing the
performance of the Local search algorithm (which optimizes
programmable traffic) and Super-greedy (which optimizes TE
flexibility). Here, to model the TE benefits, we focus on the 10
flows with the highest rate, for which TE is most important.
Then, we consider as alternative paths the second and third
shortest path for each flow that do not overlap with the shortest
path (Pf sets). We find that by optimizing one of the objectives,
benefits are realized also for the other objective. However,
there will be a performance loss (up to a factor of 2), since
each algorithm favors one objective over the other.

Although in our evaluation we used a real network topology
and traffic matrices, it would be also interesting to study
the results in larger networks. Towards this goal, we use
the topology of the Deltacom backbone network in North
America, which consists of 113 nodes and 161 links, and it is
publicly available online in [13]. Since there is no available
information about the traffic, we generate this artificially.
Particularly, we create F = 1, 000 flows, by picking uniformly
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at random origin-destination pairs. We compute the shortest
paths based on the hop count length, and we set the flow rate
to be disproportional to it (following the gravity model [22]).
In Figure 4(b), we repeat the experiment presented in Figure
3(a), but for this larger network. We find that the proposed
algorithms perform up to 12% better than their counterparts.
The saturation point is found to be B = $3M , about three
times larger than in the small network. We attribute this
difference to the larger number of nodes (10x) in the Deltacom
network and the topological characteristics as the Deltacom
has a higher link density which enables SDN nodes to cover
more flows. The running times of the algorithms are typically
on the scale of minutes for the small network and hours for the
large network. These are acceptable running times in practice,
since the problem has to be solved offline by the ISP.

VII. RELATED WORK

Incremental deployment of new protocols and architectures
is an operational paradigm shift [2], and SDN is no excep-
tion to that. Namely, several techno-economic factors make
ISPs reluctant to proceed with immediate full-scale SDN
deployment. This renders hybrid SDN networks an imperative
intermediate step [3]. Such systems are nowadays possible due
to hybrid routers [23], yet their deployment is not without
challenges. For example, the co-existence of multiple control
planes poses risks for fault-free routing, and specific measures
should be taken to avoid this, e.g., see [24].

One of the key traffic engineering goals in these hybrid
networks is to use the SDN routers so as to minimize the
load of congested links, e.g., see seminal work [6], and
[20], [25]. For a given set of upgraded nodes, this is an LP
problem. However, upgrading decisions are more challenging
as they yield intractable problem formulations. Reference [20]
proposed meaningful heuristic algorithms and evaluated them
using actual network data. Our objective is different, i.e., we
maximize the amount of programmable traffic similarly to [8],
[9], and we additionally increase the TE flexibility. This latter
property enables dynamic responses to link failures and to
temporal link congestion, as alternative paths can be activated
on demand. Therefore, the resulting architecture is robust to
uncertainties about future network state.

Besides, one of our main focal points is the impact of
upgrade timing. This is a very crucial and practical issue
in hybrid SDNs given that (i) new technology costs reduce
rapidly [26], (ii) the out-of-phase life-cycles of the legacy
devices render cost-prohibitive massive replacements, and (iii)
the practical, technical and security limitations render impos-
sible one-time upgrades. Prior works as those above or others,
e.g., [27], do not focus on these aspects. On the contrary, few
prior interesting works [18], [19] studied gradual upgrades,
yet, they do not provide tight bounds, nor they analyze the
impact of equipment cost reduction.

Prior work also tries to achieve SDN-like flexible path
enforcement with legacy networks. Fibbing [28] injects fake
nodes and links into the underlying link state routing protocol
to achieve some level of load balancing and TE, but its
forwarding rule matching is limited to destination-based and
its expressivity is thus confined to expressivity of IP routing.

VIII. CONCLUSION

In this paper, we studied the migration to SDN of high-
end cost ISP networks. To this end, we introduced a model of
SDN upgrades general enough to capture different migration
costs, as well as two plausible ISP objectives. An ISP can
apply our methodology to optimally decide which nodes to
upgrade over a period that may span several years. Using
two real-world network topologies and traffic matrices, we
differentiated situations in which upgrades should be spread
over many instead of one step, and explored the interplay
between the different objectives.
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