
The Impact of Storage Capacity on End-to-End
Delay in Time Varying Networks

George Iosifidis and Iordanis Koutsopoulos

Computer & Communications Engineering Dept.
University of Thessaly, Volos, Greece

Centre for Research & Technology Hellas, Greece

Georgios Smaragdakis

Deutsche Telekom Laboratories
Technical University of Berlin, Germany

Abstract—Recent technological advances have rendered storage
a cheap and at large scale available resource. Yet, there exist only
few examples in networking that consider storage for enhancing
data transfer capabilities. In this paper we study networks with
time varying link capacity and analyze the impact of node storage
on their capability to convey data from source to destination.
We show that storage capacity is quite beneficial in terms of
the amount of data that can be pushed from the source to the
destination within a given time horizon. Equivalently, storage
can be used to reduce incurred delay for the delivery of a
certain amount of data. For linear networks, we show that this
performance improvement depends on the relative patterns of
link capacity variations. We extend our study to general networks
and we use a novel method that iteratively updates the minimum
cut of the time expanded graph, in a constructive manner, in
the sense that during the process, the storage capacity allocation
in the network is shown. Next, we incorporate routing in our
methodology and derive a joint storage capacity management
and routing policy to maximize the amount of data transferred
to the destination. This policy stems from the solution of the
maximum flow problem defined for the dynamic network over a
certain time period, by using the ε-relaxation solution method.
The later is amenable to distributed implementation, which is a
very desirable property for the large scale modern networks which
operate without central control.

I. INTRODUCTION

The last few years we are witnessing an unprecedent growth
of demand for ubiquitous and high speed networking around
the world. High-tech communication devices and novel traffic
demanding applications generate a large amount of data that
must be routed efficiently at minimum cost and within the
minimum possible time. At the same time, recent technological
advances have made storage a readily affordable resource.
Nowadays storage is cheap compared to bandwidth, [1], and
with least space and power requirements. Hence, it can be used
both in small portable devices and in large amounts located at
central communication nodes of backbone networks. In light of
these observations, it is challenging to study the performance
benefits of storage in terms of the amount of data that can
be conveyed to the destination, to identify possible methods
for exploiting storage and to characterize the performance
improvements and conditions under which these benefits are
enlarged.

Before attempting to address the above issues, let us first
present a simple example to motivate the benefit of storage
capacity. Consider the 3 nodes linear network of Figure 1 and

A B C

SB

CAB CBC

Fig. 1. A tandem (linear) network of 3 nodes. Node A is the source, node C
the sink and SB is the available storage capacity at node B.

assume a time slotted operation. The link capacities (pack-
ets/sec) change every 2 time slots according to a periodic
pattern, {CAB(n) = D, CBC(n) = 1}, {CAB(n + 2) = 1,
CBC(n + 2) = D}, with n = 1, . . . , T − 2, D > 1 and
remain constant in between. Transmission delay over each link
is considered to be equal to the slot duration, T0 time units. In
this setting, we ask the question: How much time is required
to convey an amount of D packets of data from node A to
node C in case (i) no node has storage, (ii) node B has storage
of SB > D packets? The answer is straightforward, yet very
illuminating. In the first case, node A can push in each time
slot n only as much data as node B is able to forward in the
immediately next time slot (n+1), i.e. CBC(n+1)T0. Hence,
given the capacity pattern above, the required time for data
transfer is (D + 1) slots, i.e. (D + 1)T0 time units. However,
when SB > D, node A pushes up to CAB(n)T0 data and
the excess amount that cannot be immediately routed to the
destination C, i.e. (CAB(n) − CBC(n + 1))T0 is stored in
node B. In the subsequent slot (n + 2), when CBC is high,
stored data along with the new arrived data from A is finally
delivered to the sink. Therefore, in this case the required time
for the delivery of D units of data is only 2 time slots.

Clearly, the use of storage significantly reduces the incurred
end-to-end delay for the data transfer and in this sense improves
the performance of the network. Equivalently, storage increases
the maximum amount of data that the network can deliver
within a certain time interval. Notice that, in order to achieve
the same performance without storage use, we would have
to increase the capacity of either one of the two links up to
D − 1 units. In other words, in this example node storage is
actually used as a special type of link capacity and augments
the average end-to-end network capacity. However, it can be
inferred from the previous observations that the benefit from
storage utilization depends on relative link capacity values.

2

Namely, the link capacities should vary with time and moreover
their variation patterns should be diverse, i.e. they should reach
upper and lower bounds in a non synchronized fashion. Link
capacity variations and link failures are common in contem-
porary information networks such as peer-to-peer overlays and
ad hoc networks. Additionally, even in backbone networks the
available link capacity for an operator varies due to variations in
the traffic of flows of other operators that traverse the same link.
Such traffic variations are beyond the control of the operator.
Finally, more often than not, time varying pricing schemes are
employed to regulate traffic and result to the deployment of
networks with correspondingly time varying link capacities, [2].

In this work we consider dynamic networks and analyze
the impact of node storage on their capability to convey data
from source to destination. We use the technique of time-
expanded graphs [3], which map the time evolution of dynamic
networks, within a specific time period, to ordinary graphs. In
these graphs, storage is modeled by defining special type of
links connecting different time instances of the same node. The
main issue is to find the min-cut of the expanded graph. This
represents the upper bound for the amount of data transferred in
the dynamic network for the given time period. Under certain
conditions, this bound can be increased by utilizing storage
links. We are interested in identifying these conditions and
devise the optimal storage management policy, that is, decide at
which node, at which time instant and how much information
to store, and how much to forward further to the next node.
Moreover, we go one step beyond and study methods to achieve
this upper bound. We formulate the max flow problem on the
time-expanded graph and derive the optimal routing and storage
policies. The max flow problem can be solved in polynomial
time using the ε-relaxation method which is also amenable
to distributed implementation. This last feature enables the
derivation of distributed joint storage and routing protocols for
networks with time varying link capacities.

In summary, our contributions are as follows: (i) we define
the storage assisted network performance enhancement problem
described above and designate the conditions under which stor-
age utilization is beneficial for linear networks, (ii) we extend
our analysis in general networks and provide a methodology for
finding the storage enhanced min-cut and the optimal storage
policy, (iii) we propose the conjunction of storage with routing
and define the joint storage management and routing problem
for a single commodity, and (iv) we provide a distributed
method for its solution. The rest of the paper is organized as
follows. In Section II we discuss related works, in section III
we analyze the performance of linear networks with storage
capable nodes and in section IV we introduce the optimal
storage management policy for general networks. In section V
we introduce the joint storage - routing policy as a solution to a
max flow problem and in section VI we discuss the importance
of the available information about the future network state.
Finally, in VII we present numerical results that verify our
analysis and in section VIII we conclude our study.

II. RELATED WORK

Storage has been considered in wireless networks in the
context of Delay Tolerant Networks (DTN) [4], in order to
alleviate intermittent connectivity problems between the source
and the destination. In these networks often there exist no
permanent end-to-end paths and therefore traditional routing al-
gorithms fail. Hence, various Store and Forward (SnF) policies
are employed to circumvent the issue above. Data is stored in
intermediate nodes and is transmitted whenever required links
are available. Apparently, available information about current
and future state of the network determines the performance of
these SnF strategies, [5]. However, in this class of problems
the objective is to guarantee delivery of packets and storage is
used as a strategy whenever routing is not possible.

In a similar context, the transfer of delay tolerant bulk data
was introduced in [6], and [2]. The authors consider tandem
(linear) wireline networks where intermediate nodes have stor-
age capability. The objective is to achieve the transmission
of large amounts of data with minimum monetary cost under
certain pricing schemes. The method is extended in [7], where
the authors study general network graphs with time varying
but known in advance link capacities. Node storage varies with
time in terms of both capacity and cost. It is explained that
through the combination of time-expanded graphs and flow
optimization techniques, a centralized solution provides the
optimal (minimum-cost) transfer of data.

In more abstract modeling terms, the problem of minimum
delay routing in networks with node storage is considered in
[8], and [9]. In detail the work [8], studies a single commodity
dynamic network with varying capacities and presents a central-
ized algorithm for deriving an earliest arrival flow over a time
period T . This flow maximizes the amount of data that reaches
the sink for every τ , τ ∈ (0, T) and hence it is a minimum
delay flow. It is assumed that there exists full knowledge about
the network state evolution for the specific time period and this
information is used to construct the time-expanded graph. The
requirement for future knowledge is relaxed in [9], where the
link state represent the incurred delay for a data packet transfer.
The network is modeled through a stochastic formulation with
known state space and empirically calculated state transition
probabilities. The objective is to find the shortest path for the
delivery of a packet to the destination. In this setting routing
is an adaptive policy and storage is considered simply as an
additional routing option. The authors prove that this problem
is intractable in general.

Finally, other works have also studied flow algorithms in
dynamic networks with storage capable nodes, [10] (and refer-
ences therein). Among them [11], presents an interesting neg-
ative result according to which node storage does not improve
minimum cost flows over time. However, this result refers
to networks with constant link capacities through time. The
above works do not explicitly study whether storage actually
contributes and under what conditions in the performance of the
networks. On the contrary, in this paper we both identify the
conditions that render storage use beneficial and at the same

3

time propose methods for achieving this improvement. Until
now, storage has been considered mainly in networks where
delay was not the main performance criterion, i.e. delay tolerant
wireless or wireline networks. Instead, here we analyze how
storage can reduce the incurred delay. Storage is considered
an additional resource that should be managed efficiently in
conjunction with link capacity. Moreover, we devise centralized
and distributed algorithms that ensure the maximum possible
performance improvement within a certain time period. The
methods are of particular interest in contemporary networks
which exhibit link capacity variations.

III. IMPACT OF STORAGE CAPACITY IN LINEAR NETWORKS

We start from linear networks where routing options for
every node are confined to its downstream (next hop) neighbor.
In this case, the storage benefit can be directly calculated
even for arbitrary link capacity variation patterns. For example,
consider again the 3 node network of Figure 1, where links
may change every 2 time slots, with slot duration T0. We set
the following questions: (i) what is the incurred delay to deliver
an amount of D units of data? and (ii) how much data can we
deliver from node A to node C in a certain time period of T
time slots, if node B has storage capacity available?

When node B has zero storage the network end-to-end
capacity at every time slot n due to the flow conservation
constraint is:

CAC(n) = min{CAB(n), CBC(n+ 1)} (1)

Hence, the required time for the transfer of D units of data from
node A to node C is Del = ZT0, where Z is the minimum
integer for which it holds:

Z∑
n=1

CAC(n)T0 ≥ D (2)

Likewise, the amount of data transferred in T time slots is:

D =

T−2∑
n=1

CAC(n)T0 (3)

On the other hand, when node B can store data, the network
end-to-end storage enhanced capacity is:

CSB

AC(n) = min{XB(n+ 1), CBC(n+ 1)} (4)

where XB(n+ 1) is the available data at node B at time slot
(n+1). This amounts to the instant capacity of the link (A,B)
and the accumulated stored data in node B, YB . That is:

XB(n+ 1) = CAB(n) + YB(n+ 1)/T0 (5)

where YB(n + 1) = max{YB(n) + [CAB(n) − CBC(n +
1)]T0, 0} is always nonnegative and upper bounded by node
B maximum storage SB > 0, and it is YB(0) = 0.

Clearly, CSB

AC(n) ≥ CAC(n) for every time slot n. This
means that the use of storage at intermediate node B does
never deteriorate the network performance and in many cases
it significantly improves both the delay and the maximum
amount of transferred data. The exact improvement depends

TABLE I
EXAMPLE FOR 3-NODE NETWORK, T0 = 1, L = 24, SB = 30

Slot CAB CBC CAC D YB CS
AC DS

n (p/sec) (p/sec) (p/sec) (p) (p) (p/s) (p)

1 10 6 2 0 0 2 0
2 12 2 0 2 8 0 2
3 14 0 10 2 20 10 2
4 2 10 2 12 24 12 12
5 2 12 2 14 14 8 24
6 4 10 4 16 6 4 32
7 6 14 - 20 0 6 36

on the variation pattern of link capacities and specifically on
the relative values of CAB and CBC across all time slots. The
more diverse the capacity value sequences are, the larger is
the benefit from the storage usage. We define the Dissimilarity
Index to quantify the variability in link capacity patterns for a
certain time period T , as follows:

L =

T∑
n=1

min

{
J(n),max

n−1∑
i=1

(U(i)− J(i)), 0

}
(6)

where

U(i) = max{[CAB(i)− CBC(i+ 1)]T0, 0}

and
J(i) = max{[CBC(i+ 1)− CAB(i)]T0, 0}

In other words, L simply measures the aggregate amount of
data that was stored in previous time slots and released in some
subsequent slot within the time period T , assuming that there
is no storage space constraint.

This parameter actually reveals the conditions under which
storage is beneficial. Namely, when it holds L = 0, storage does
not improve the network performance. This is realized when the
capacities of the 2 links are equal at every time slot, CAB(n) =
CBC(n+1) or if the link (A,B) has always lower capacity, i.e.
CAB(n) < CBC(n+1), ∀n. In this case no data is ever stored
in node B. Moreover, even if there exist accumulated stored
data it might be impossible to push it further if link (B,C) is
the network bottleneck in each time slot, i.e. CBC(n + 1) <
CAB(n), ∀n. In Table I we present a numerical example for
this network and demonstrate the benefit of storage utilization
at node B. Capacities are measured in packets/sec (p/s) while
data and storage in packets (p). Analogous results hold for every
linear network with more than 3 nodes where we can define
Del, D and L in a similar fashion.

From the analysis above, we infer that it is possible to exploit
the diverse evolution of the links capacities and use intermediate
nodes’ storage to augment the end-to-end network capacity
within a certain time horizon. Notice that in linear networks
storage policy is very simple. Each node accepts all the incom-
ing traffic and stores the excess data that it cannot forward in
the current time slot so as to exploit possible capacity increase
in the subsequent slots. The more the available storage is at
intermediate nodes, the more we benefit from its use for certain
values of L. However, unlike linear networks, determining the

4

Fig. 2. Dissimilarity Index, L, for two different capacities variation patterns.
The bottom plot represents the case where the links are as much diverse as
possible, reaching upper and lower bounds in an antisymmetric fashion. The
parameter d represents the link traversal time.

storage management policy in general graphs is a complicated
task and requires the knowledge of the capacity evolution for all
network links. In the next section we consider general networks
with known capacity variation patterns and provide a method
for deriving the optimal storage management policy.

IV. STORAGE MANAGEMENT POLICY FOR NETWORKS
WITH KNOWN CAPACITY VARIATION PATTERNS

For many networks it is possible to know in advance or
predict with precision the future values of link capacities.
For example, small scale networks with predictable capacity
evolution such as networks of satellites, [8], fall within this
class. Another scenario is networks with constant link capacities
but periodic time varying traffic patterns where we attempt
to exploit residual capacity, [2]. Additionally, very often the
network administrator determines himself the links capacity
schedule for a certain time period. We provide here a method
for devising the optimal storage management policy, i.e. the
policy that leads to maximum possible benefit from storage.
Recall that the performance of a network is bounded by the
capacity C(Qmin) of the minimum cut Qmin of its graph, [3].
This represents the maximum flow that can be delivered from
the source to the sink. Hence, for a time period of T units,
the maximum amount of delivered data is D = C(Qmin)T .
Obviously, by increasing the capacity of the minimum cut, we
increase the maximum amount of data that can be transferred
to the destination.

Consider a directed network graph G = (V,E), with
N = |V | nodes and H = |E| links. The network is dynamic,
i.e. every link capacity Cij(t), (i, j) ∈ E, changes with time
according to a predefined pattern. We assume a time slotted op-
eration, t = 1, 2, . . . , T , with slot duration T0. Link capacities
remain constant within each time slot and initially no node has
storage capability. We assume that the traversal time is identical
for all links and equal to the slot duration. Using the technique
of time-expanded graphs, [3], we construct the corresponding
static network GT for T slots. The transformation is simple.
For every node i ∈ V of the original network G we add
T nodes in the GT , i(t), t = 1, . . . , T . Moreover, for every
arc (i, j) ∈ E of G, we add a set of corresponding arcs

Algorithm 1 (Storage Policy - SP)
(Step 0) Find the current min-cut Q = [W,N \ W] and
calculate its capacity C(Q).
(Step 1) If there exists a node i of the original network G
for which it holds that i(t) ∈W and i(t+1) ∈ (N \W), then
add a link (storage link) connecting these two nodes and go
to Step 2. Else, go to Step 4.
(Step 2) Increase the new storage link capacity St

i as much as
required so as to render Q a non minimum cut. This increase
is bounded by the maximum available node storage. If Q
becomes a non minimum cut go to Step 3. Else (Q is still
the min-cut) go to Step 4.
(Step 3) Find the new min-cut Q′ = [W ′, N \ W ′]. Set
Q = Q′ and go to Step 1.
(Step 4) Set Qf = Q. The current min-cut Qf gives the
maximum storage enhanced average capacity for the initial
network G over time period T .
(Step 5) Locate all storage links that do not belong to the
final min-cut Qf and decrease their capacity as long as Qf

remains unchanged. The algorithm terminates.

(i(t), j(t+1)), t = 1, . . . , T − 1. Finally, we substitute all the
time instances of the source and the destination nodes with 2
super-nodes for ease of presentation.

The graph GT incorporates the notion of time and is used
in order to analyze the properties of G for the time period T .
Namely, the amount of data that can be transferred by G, within
horizon T , is upper bounded by the minimum cut of GT . Here,
we propose the increase of this min-cut capacity by the addition
of specific links, the storage links. The rationale of the method
is visualized in Figure 3. In detail, assume that Q = [W,N \W]
is the initial min-cut of GT with capacity C(Q), where W is
the set of nodes in which the source node belongs and (N \W)
the set containing the sink node. The critical observation is the
following. If there exists a node i ∈ G such that i(t) ∈W and
i(t+1) ∈ (N \W) then we can increase the network capacity
by connecting i(t) and i(t+1) with a link of capacity S(t)

i . This
connection amounts to adding storage of S(t)

i units to node i
and using it during time slot t. With the addition of this virtual
link the capacity of the network is increased up to (C(Q)+S

(t)
i)

units. Adding enough storage to node i at time t renders Q a
non-minimum cut. If the new min-cut Q′ contains a node for
which the above condition also holds, then we add again storage
so as to make Q′ a non min-cut.

Specifically, Algorithm 1 , describes our proposed algorithm
for Storage Policy, (SP) which is applied to graph GT . Step 5
is required in order to ensure that there is no excessive storage
usage. The termination of the algorithm and its optimality are
easily verifiable. The maximum number of added storage links
is bounded by the number of nodes. Additionally, the amount
of storage is confined by the capacity of links. Adding more
storage will eventually result in a minimum cut consisting
only of communication links. The SP algorithm guarantees the
maximum possible benefit from node storage utilization. The

5

A B

D

C

FE

(a) Initial Graph.

AS

B1

C1

D1

E1

B3

C3

D3

E3

B4

C4

D4

E4

B5

C5

D5

E5

B6

C6

D6

E6

B7

C7

D7

E7

B2

C2

D2

E2

FS

(1) (2) (3) (4)

(1) (2)(3)(4)

(1) (2)

(3)

(b) The Storage Enhanced Time-Expanded Graph.

Fig. 3. A graph with time varying links and initial capacity C(Q) = 34.
Node A is the source and node F the sink. Link capacities for T = 7 slots:
AB(18, 16, 18, 20, 16, 18), BC(4, 10, 10, 4, 6, 4), BD(6, 16, 16, 4, 4, 6),
CD(6, 10, 12, 2, 12, 8), CE(6, 8, 2, 10, 12, 8), DE(4, 6, 2, 12, 12, 8),
EF (10, 12, 14, 10, 20, 22). In step (1) we add the storage link S3

C = 8, in
step (2) we add link S4

C = 4 and in step (3) the link S4
D = 6. The final

capacity is C(Qf) = 42.

modified network graph has augmented average capacity over
period T , equal to the enhanced min-cut, and reduced lower
delay bounds for the transfer of certain amounts of data. Notice
that this enhancement becomes an intrinsic characteristic of the
network. However, SP does not provide a method for achieving
this bound. In order to exploit the potential of storage it is
required to consider it in conjunction with routing. In the next
section we will provide a method for deriving the joint storage
and routing policy for a single commodity data transfer.

V. JOINT STORAGE AND ROUTING POLICY FOR NETWORKS
WITH KNOWN CAPACITY VARIATION PATTERNS

Consider again the dynamic network G = (V,E) and
assume a slightly different setting where every node has a
certain storage capacity which may vary with time. The storage
management policy that achieves highest possible amount of
transferred data for this network is given by the SP algorithm.
In this section we find the exact routing and storage decisions
that achieve this bound. We formulate the joint storage-routing
(JSR) policy as an optimization problem and specifically as a
maximum flow problem on the time-expanded graph GT =
(VT , ET). Namely, the JSR problem is defined as follows:

Definition 1. (Optimal Joint Storage and Routing - JSR Prob-
lem) Given a dynamic network G = (V,E) with a single source
and a single destination, and with nodes that have time varying
storage capacity, find how much data should be stored in each
node and how much data should be routed over each link, in
every time slot, in order to maximize the amount of transferred
data within a certain time period of T slots.

Similar approaches have also been proposed in [8], and
recently in [7]. However, in this work we use an algorithm
which is amenable to distributed implementation and hence it
is more suitable for the contemporary networking environment.
First we add to GT an artificial link (d, s) connecting the sink d
with the source s. Every node i is connected with its backward
instance at the previous time slot (m, i) : m = i(t−1) and
its forward instance at the next time slot (i, n) : n = i(t+1).
The capacity of these links represents the available storage at
node i which is bounded by given limits. Additionally, for
each node i ∈ VT we define the set of downstream (child)
communication nodes Fi = {j : (i, j) ∈ ET }\{n}, and the set
of parent communication nodes Bi = {j : (j, i) ∈ ET }\{m}.
Therefore, there exist two distinct classes of links in the
expanded graph: (i) the communication links that connect two
different nodes i and j at a specific time slot t with capacity
C = {Cij , (i, j) : i ∈ VT , j ∈ Fi}, and (ii) the storage links
that connect different time instances of the same node with
capacity (i.e. storage) S = {Sin (i, n) : i ∈ VT , n = i(t+1)}.
Notice that the communication links include the notion of
time and actually they represent the maximum amount of data
that can be conveyed in the respective slot. Hence, both the
communication and storage link capacity is measured in data
packets.

A. Joint Storage and Routing Problem Formulation

Let us define the vector x = {xij , (i, j) : i ∈ VT , j ∈ Fi}
where xij denotes the amount of data that is sent over link (i, j)
during the respective slot. Similarly, we define the vector of
storage variables y = {yin, (i, j) : i ∈ VT , n = i(t+1)} which
denote the amount of data that can be stored at each node i in
every time slot. The optimal storage-routing policy (x∗,y∗) for
the time period T is derived from the solution of the max flow
problem defined over the corresponding time-expanded graph,
(Problem JSR):

min(−xds) (7)

subject to ∑
j∈Fi

xij + yin =
∑
j∈Bi

xji + ymi, i ∈ VT (8)

0 ≤ xij ≤ Cij , i ∈ VT , j ∈ Fi (9)

0 ≤ yin ≤ Sin, i ∈ VT , n = i(t+1) (10)

Where it is yin, xij ≥ 0. Equation (8) models the data transfer
constraint for every node, in analogy with the flow conservation
constraint, and (−xds) is the amount of data that is transferred
from source to the sink in graph GT . The solution of the JSR
problem determines the routing, x∗ij , and the storage decisions,

6

y∗in that ensure the transfer of the maximum possible amount
of data x∗ds in the network G, during the entire period T . From
a different perspective, this formulation can be used to find the
incurred delay for the transfer of a certain amount of data D.
Actually this is the minimum time T ∗ for which the solution
of the respective JSR problem satisfies x∗ds ≥ D. We can find
T ∗ by using a binary or another search method, similarly to
section III.

In order to solve the JSR problem we can use a standard
Primal-Dual method, [12]. First, we define the Lagrangian by
relaxing the constraint (8) and introduce the vector of dual
variables p = {pi : i ∈ VT }:

L(x,y,p) = −xds +
∑
i∈VT

∑
j∈Fi

(pj − pi)xij +
∑
i∈VT

(pn− pi)yin

(11)
The dual problem is

max
p∈R

q(p) (12)

where
q(p) = min

[xij≤Cij ,yin≤Sin]
L(x,y,p) (13)

The objective function of the primal problem is linear and
therefore the dual function is non-differentiable. To overcome
this difficulty we employ the ε-relaxation method that ensures
convergence to the optimal solution if ε < 1

NT , in polyno-
mial time O(N3T 3). We omit the detailed description of the
algorithm and refer the reader to [12, Chap.5.3]. The algorithm
is directly applicable to this problem since the variables xij
and yin can be treated jointly by substituting with fij and fin
respectively. Nevertheless, the main advantage of this method
is that it is amenable to distributed implementation.

B. Distributed Algorithm for the JSR Problem

The ε-relaxation method can be executed in a distributed
synchronous or even asynchronous fashion which is a very
desirable property. We will focus on the later version here and
cast the algorithm presented in [12], to fit our problem. In a
distributed setting the variables are circulated among nodes and
therefore they need to be time-stamped. Notice that these time
stamps refer to the algorithm execution time and they should
not be confused with data transmission time, which we denote
below by tG. The basic idea as in standard primal-dual methods
is to exploit the separability property of the dual problem and
group the variables per node. Specifically, every node i ∈ VT
maintains the following variables:
• pi(t): dual variable of node i at time t
• pj(i, t): dual variable of node j, j ∈ Fi∪Bi∪{n}∪{m},

communicated to node i at time t.
• xij(i, t): estimate of node i for the data routed to node j,
j ∈ Fi at time t.

• xji(i, t): estimate of node i for the data that it must admit
from node j ∈ Bi at time t.

• yin(i, t), ymi(i, t) : estimates of node i for the data that
must be stored at the time slots which correspond to the

Algorithm 2 (Joint Storage Routing - JSR)
Execution: The algorithm is executed continuously in a time
sequence t = (t0, t1, . . .). Each specific time every node i
executes one of the actions (Action 1 through 4) and checks
the Termination Condition.
Termination Condition: The algorithm terminates when the
data and storage surplus for all nodes becomes zero, i.e.
gi(t) = 0 ∀i ∈ VT .
(Action 1 - Vars Update): Calculate data and storage surplus
gi(t) and:
1. If [gi(t) > 0]Then update local variables [pi(t),

pj(i, t), xij(i, t), xji(i, t), yij(i, t), yji(i, t)] by executing
Steps 2 - 5 of the ε-relaxation algorithm, [12, Chap.5.3].
(Action 2 - Notification):
1. Send Nfcij = [pi(t), xij(i, t)], at every node j ∈ Fi

2. Send Nfcij = [pi(t), xji(i, t)], at every node j ∈ Bi

(Action 3 -Coordination):
1. ∀ Nfcji received at t′ < t, j ∈ Fi, update local

variables:
1.1 If [pj(i, t) ≤ pj(t′)]Then set pj(i, t) = pj(t

′)
1.2 If [pi(t) ≤ pj(t′)+α & xij(i, t) > xij(j, t

′)]Then
set xij(i, t) = xij(j, t

′)
2. ∀ Nfcji received at t′ < t, j ∈ Bi, update local

variables:
2.1 If [pj(i, t) ≤ pj(t′)]Then set pj(i, t) = pj(t

′)
2.2 If [pi(t) ≤ pj(t′)−α & xji(i, t) < xji(j, t

′)]Then
set xji(i, t) = xji(j, t

′)
where α = −1 if (i, j) = (d, s) and α = 0, otherwise.
(Action 4 - Storage Update): Node i considers the informa-
tion from its instances m = i(tG−1) and n = i(tG+1) for
t′ < t and updates its storage decisions as follows:
1. If [pn(i, t) ≤ pn(t′)]Then set pn(i, t) = pn(t

′).
2. If [pi(t) ≤ pn(t

′) & yin(i, t) > yin(n, t
′)]Then set

yin(i, t) = yin(n, t
′).

3. If [pm(i, t) ≤ pm(t′)]Then set pm(i, t) = pm(t′).
4. If [pi(t) ≤ pm(t′) & ymi(i, t) < ymi(m, t

′)]Then set
ymi(i, t) = ymi(m, t

′).

storage links (i, n), n = i(tG+1), and (m, i), m = i(tG−1)

respectively, at time t.
• gi(t): estimate of node i for the data and storage surplus

at time t, i.e. gi(t) =
∑

j∈Bi
xji(i, t)−

∑
j∈Fi

xij(i, t) +
ymi(i, t) + yin(i, t)

The nodes circulate messages with their variables in order to
achieve coordination and collectively solve the JSR problem.
Notice that adjacent nodes (neighbors) calculate the same
variables and therefore it is required to reach consensus. For
example, the final value of the data that node i pushes to node
j should be equal to the data that node j decides to admits, i.e.
x∗ij = x∗ji. In detail, the distributed asynchronous algorithm for
the solution of the JSR problem is presented below (Algorithm
2).

This algorithm solves the JSR problem even when there does
not exist a central network controller with global knowledge.

7

i

k

Nfcji(t)

nm

j

i
(t+1)i

(t-1)

{ymi(m,t), pm(t)} {yin(n,t), pn(t)}

Nfcki(t)

Fig. 4. Distributed execution of the ε-relaxation algorithm. Each node i receives
coordination messages from its neighbors, Nfcji = {xji(j, t), pj(t)} and
Nfcki = {xki(k, t), pk(t)}; and updates its storage decisions by considering
its forward n = i(tG+1) and backward m = i(tG−1) instances.

Instead it is only required every node to be aware of its own
link capacity variation patterns. This scenario is very important
since it models a large set of networking examples. However,
future knowledge about the network state is still a prerequisite.
In the following section we explain why it is important to know
the patterns of the link capacities and we discuss some cases
where it is possible to derive suboptimal solutions even when
there is lack of information.

VI. INSTANCES OF LIMITED KNOWLEDGE ABOUT LINK
STATE

When there is no information about the future state of the
network, a subset of the constraint set of the JSR problem is
not known nor can it be determined through message passing.
In this case, the joint storage management and routing policy
becomes an online problem where nodes must decide using
only the currently available information. In general, these
problems are solved through dynamic programming techniques
and optimal solutions are difficult to characterize and derive,
[13]. Letting storage aside, distributed dynamic routing has
been studied both for wireless [14], and wire-line networks,
[15]. The underlying idea is the same in both algorithms.
Namely, each node independently takes routing decisions so
as to balance network load by forwarding its data packets to its
neighbors with the less backlog, i.e. the smaller queues. If all
of its neighbors are congested, the node refrains from sending
its packets and the detected congestion is gradually signaled
back to the source which temporary pauses data transmission.
This scheme constitutes a proactive end-to-end flow control
mechanism which may degrade the data delivery capability
of the network. Therefore, these algorithms are not delay-
aware and there is much ongoing research aiming at their
improvement [16], [17].

In this context, we can consider storage utilization as a
method for modifying the above congestion detection mecha-
nism in order to reduce data transfer delay. To make this clear,
consider a congested node which is aware that its outgoing link
capacity will significantly increase in the near future. In this
case, this node would be able to decide not to signal back to
its parent nodes the congestion so as to keep receiving data from
them. The excess data would be stored in the storage area of the

node and returned to the queues when the backlog is reduced as
described in Figure 5. This way, the node would prevent time
consuming temporary pausing of flow and hence eventually
enable faster data delivery to the sink. In other words, node
storage could be used to transform the end-to-end flow control
to a hop-by-hop operation. The challenge in this setting is to
detect the conditions that render storage utilization beneficial
for the network performance. Without information about the
future state of the network links the described congestion-
biasing technique may deteriorate the network performance.
Clearly, when a node decides to store some data it must know
that this cannot be routed at that time from alternative shorter
non-congested paths.

The fundamental difficulties encountered in the online ver-
sion of the JSR problem motivate the exploration of specific
network operation scenarios where suboptimal solutions are
possible. For example, consider a network where the admin-
istrator (or the nodes) can predict the future values of link
capacities and node available storage with bounded error. In
this case, we can solve a variation of the JSR problem, name
it EJSR, which stems from the original problem if we substitute
the actual with the estimated parameters at the constraint set.
Namely, instead of Cij , and Sij , we can use the worst-case
predictions Ĉij = (Cij − ecij) and Ŝij = (Sij − esij). The
quantities ecij and esij represent the maximum prediction error
in the link capacities and node storage respectively. Obviously,
the optimal solution of the EJSR problem is feasible for the
respective JSR while its optimality depends on the accuracy of
predictions.

Another interesting scenario is when the nodes are aware of
their links and storage capacities only for the near future. In this
case we can find the short-term storage policy using a similar
algorithm with the one presented in section IV. Namely, we can
use distributed algorithms such as those in [18], for finding the
current min-cut Q(t) and also the min-cut of the next few slots,
Q(t+1), . . . , Q(t+M). This is accomplished through message
passing among nodes with information about their current and
future state. Now assume that a certain node i belongs both to
the set W (t) of the Q(t) and to the set N \W (t+1) of the Q(t+1)

cut. In this case, node i can infer that it must use its storage
capacity and admit the excess data that is routed to it. This
policy enables the network performance improvement through
the use of storage, although this is not the maximum possible,
as was the case with the SP algorithm.

VII. NUMERICAL RESULTS

In order to verify the validity of our approach we simulated
the operation of 3 networks with storage-capable nodes. Two
of them are linear networks with 3 and 5 nodes respectively,
while the third one is the graph of Figure 3(a). The objective
was to demonstrate the impact of intermediate storage to the
performance of the network for various capacity evolution sce-
narios. These scenarios are modeled through the link capacities
dissimilarity index L. Recall that higher values of L imply more
diverse capacity patterns. The performance metric is either the
amount of data that can be transmitted within a given time

8

Fig. 5. Storage and queue management for enabling hop-by-hop flow control.
When queue backlog increases, excess data is moved to storage area to avoid
congestion signaling. Then, when backlog is reduced, data is restored in
respective queues.

period or equivalently, the incurred delay for the transfer of
a certain amount of data from source to sink. The later is
visualized through Delay - Storage curves where we depict the
delay versus the aggregate storage of nodes for the transfer of
various amounts of data. Clearly, the benefit of using storage
varies for different networks and different values of L from
zero to substantial improvement on performance.

We begin with the 3-nodes linear network of Figure 1 where
node B has storage capability of SB units. We consider a
time slotted operation for T = 40 slots and assume that
link capacities CAB and CBC vary with time. The network
operation is described by equations (1) - (5). In Figure 6 we
depict the delay for the transfer of D = 450 units of data from
node A to node C for different values of L. We see that as
storage SB increases, the incurred delay reduces down to a
minimum value. Further usage of storage does not improve the
performance of the network. Similarly, in Figure 7 we depict
the delay for the transfer of D = 450 units of data in a linear
network of 5 nodes. We see again that the benefit from storage
use to the network performance is almost proportional to the
dissimilarity index L. Namely, notice that the distance of the
maximum to the minimum delay value for every plot increases
with L.

In Figure 8 we fix the value of L and plot the delay for
different amounts of transferred data for the 3-nodes network.
Notice that the lower bounds of incurred delay are different
for different amounts of data. Finally, in Figure 9 we depict
the maximum amount of transferred data D, for a time period
of T = 20 time slots from source to sink in the network of
Figure 3(a). We see that this amount increases as a function
of aggregate available storage at intermediate nodes B,C,D,
and E up to a maximum value. Further increase in storage
capacity does not improve the performance of the network. This
upper limit depends both on the network graph and on the
dissimilarity index L of the links for the time period T .

VIII. CONCLUSION

In this work we showed that storage under certain conditions
can improve the network performance of dynamic networks.
This improvement is realized either as increase of the amount
of data that can be transported from the source to the destination
within a finite time horizon or, equivalently, as reduction of the

0 10 20 30 40 50 60 70 80
16

18

20

22

24

26

28

30

32

34

36

Storage S at Intermediate Node B (packets)

D
e

la
y
 f

o
r

th
e

 T
ra

n
s
fe

r
o

f
4

5
0

 U
n

it
s
 o

f
D

a
ta

 (
s
lo

ts
)

Delay − Storage Curve for a 3−Node Network and Various Dissimilarity Index Values

Fig. 6. Delay - Storage curves for a 3-node linear network with intermediate
storage, for the transfer of D = 450 units of data and various values of L.
From the lower to the upper curve, it is L = 867, L = 884, L = 909, and
L = 934.

0 20 40 60 80 100 120 140 160
20

22

24

26

28

30

32

34

36

38

Storage S at Intermediate Nodes (packets)

D
e
la

y
 f
o
r

th
e
 T

ra
n
s
fe

r
o
f
4
5
0
 U

n
it
s
 o

f
D

a
ta

 (
s
lo

ts
)

Delay − Storage Curves for a 5−Node Network and Various Dissimilarity Index Values

Fig. 7. Delay - Storage curves for a 5-node linear network with intermediate
storage, for the transfer of D = 450 units of data and various values of L.
From the lower to the upper curve it is L = 1120, L = 1204, L = 1306, and
L = 1421. Storage is equally distributed to nodes.

incurred delay for delivery of certain amounts of data. The
optimal storage management policy is the one that guarantees
maximum benefit from storage use and can be derived for every
network using the presented SP algorithm. In order to realize
this benefit, storage must be considered in conjunction with
routing. The joint storage management - routing policy can be
derived through the solution of a max flow problem defined
over a time-expanded graph. More importantly, this problem
can be solved in a distributed fashion.

The proposed methodology has many interesting applica-
tions. For example, it can be used to analyze and improve
inter-data center communication where the cost of bulk data
transfer is extremely high and time varying, [2]. Intra-data
center networking is another area that we believe it can benefit
from this analysis. Designing the architecture of a data center

9

0 10 20 30 40 50 60 70 80
5

10

15

20

25

30

Storage S at Intermediate Node B (packets)

D
e
la

y
 f
o
r

th
e
 T

ra
n
s
fe

r
o
f
V

a
ri
o
u
s
 A

m
o
u
n
ts

 o
f
D

a
ta

 (
s
lo

ts
)

Delay − Storage Curves for a 3−Node Network and Various Amounts of Data

Fig. 8. Delay - Storage curves for different amounts of transferred data in a
3-node linear network with fixed intermediate storage SB , and dissimilarity
index L = 909. From the lower to the upper curve it is D = 200, D = 300,
D = 400, and D = 500.

0 200 400 600 800 1000
800

1000

1200

1400

1600

1800

2000

2200

2400

2600

Aggregate Storage at Intermediate Nodes (packets)

M
a
x
im

u
m

 A
m

o
u
n
t
o
f
T

ra
n
s
fe

rr
e
d
 D

a
ta

 i
n
 T

=
2
0
 S

lo
ts

 (
p
a
c
k
e
ts

) Maximum Data Transfer Vs Aggregate Network Storage

Fig. 9. Maximum amount of data transferred in T = 20 time slots for the
network of Figure 3(a), as a function of the total available storage at the
intermediate nodes.

is a very challenging task and must take into account both
the performance and the cost of the equipment, [19]. Hence, it
is very important to use efficiently both the available storage
and links capacity resources. Moreover, node storage can be
used to enhance the operation of peer-to-peer systems where
the performance bottleneck is the uplink capacity, [20]. Finally,
in many cases, the network operator can employ the proposed
method to appropriately use nodes storage and reduce the
required link capacity without degrading network performance.

This is a first attempt to understand the impact of storage
capacity in networks with full knowledge over the link capacity
state and its evolution. The next big step we will pursue will
be towards understanding the online version of the problem. In
this case, link capacities obey a known discrete or continuous
probability distribution, but the controller knows only the cur-
rent value of link capacities just before taking a decision. Again,

it is imperative to consider algorithms which are amenable to
distributed implementation.

IX. ACKNOWLEDGMENT

The first two authors acknowledge support of the European
Commission through the STREP project PURSUIT (FP7-ICT-
2010-257217).

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski,
G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “Above the
Clouds: A Berkeley View of Cloud Computing,” UC Berkeley Technical
Report EECS-2009-28, 2009.

[2] N. Laoutaris, G. Smaragdakis, P. Rodriguez, and R. Sundaram, “Delay
Tolerant Bulk Data Transfers on the Internet,” in ACM SIGMETRICS,
2009.

[3] L. R. Ford and D. R. Fulkerson, Flows in Networks. Princeton University
Press, 1962.

[4] S. Jain, K. Fall, and R. Patra, “Routing in a Delay Tolerant Network,” in
ACM SIGCOMM, 2004.

[5] E. P. C. Jones, L. Li, J. K. Schmidtke, and P. Ward, “Practical Routing
in Delay-Tolerant Networks,” IEEE Trans. Mobile Computing, vol. 6, pp.
943–959, 2007.

[6] N. Laoutaris and P. Rodriguez, “Good Things Come to Those Who (can)
Wait or How to Handle Delay Tolerant Traffic and Make Peace on the
Internet,” in ACM HotNets, 2008.

[7] P. Chhabra, V. Erramilli, N. Laoutaris, R. Sundaram, and P. Rodriguez,
“Algorithms for Constrained Bulk-transfer of Delay-Tolerant Data,” in
IEEE ICC, 2010.

[8] R. G. Ogier, “Minimum-Delay Routing in Continuous-Time Dynamic
Networks with Piecewise-Constant Capacities,” Networks, vol. 18, no. 4,
pp. 303–318, 1988.

[9] A. Orda, R. Rom, and M. Sidi, “Minimum Delay Routing in Stochastic
Networks,” IEEE/ACM Trans. Netw., vol. 1, no. 2, pp. 187–198, 1993.

[10] B. Kotnyek, “An Annotated Overview of Dynamic Network Flows,”
INRIA, Technical Report No 4936, 2003.

[11] L. Fleischer and M. Skutella, “Minimum Cost Flows Over Time without
Intermediate Storage,” in ACM-SIAM SODA, 2003.

[12] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods. Athena Scientific, 1997.

[13] J. Kleinberg and E. Tardos, Algorithm Design. Addison-Wesley, 2005.
[14] L. Tassiulas and A. Ephremides, “Stability Properties of Constrained

Queueing Systems and Scheduling Policies for Maximum Throughput in
Multihop Radio Networks,” IEEE Trans. on Automatic Control, vol. 37,
no. 12, pp. 1936–1948, 1992.

[15] B. Awerbuch and T. Leighton, “Improved Approximation Algorithms for
the Multi-Commodity Flow Problem and Local Competitive Routing in
Dynamic Networks,” in ACM STOC, 1994.

[16] L. Ying, S. Shakkottai, and A. Reddy, “On Combining Shortest Path
and Back Pressure Routing Over Multihop Wireless Networks,” in IEEE
INFOCOM, 2010.

[17] L. Bui, R. Srikant, and A. Stolyar, “Novel Architectures and Algorithms
for Delay Reduction in Back Pressure Scheduling and Routing,” in IEEE
INFOCOM, 2009.

[18] T. L. Pham, I. Lavallee, M. Bui, and S. H. Do, “A Distributed Algorithm
for the Maximum Flow Problem,” in IEEE ISPDC, 2005.

[19] C. Guo, H. Wu, K. Tan, L. Shiy, Y. Zhang, and S. Lu, “Dcell: A
Scalable and Fault-Tolerant Network Structure for Data Centers,” in ACM
SIGCOMM, 2008.

[20] N. Laoutaris, P. Rodriguez, and L. Massoulie, “ECHOS: Edge Capacity
Hosting Overlays of Nano Data Centers,” ACM Comp. Comm. Rev.,
vol. 38, no. 1, pp. 51–54, 2008.

