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Abstract

Numerous studies have explored SSH attacks, often focusing on spe-
cific botnet activities or providing short-term analyses of particular
honeynets. In this paper, we present an analysis of data collected
from a large-scale honeynet over a three-year period, shedding light
on gradual shifts in attacker behavior. Our findings suggest a trend
toward more exploratory attacks, with indications that attackers
are increasingly moving beyond the blind execution of scripts.

We observe changes in techniques as new bots appear with
unique methods and established botnets modify their approaches
over time. Furthermore, attackers have adopted a more scouting
approach in recent months, showing increased adaptability in their
tactics. Additionally, there is a clear preference for utilizing recently
registered ASes as storage locations for malicious files. Our findings
also suggest that attackers are increasingly aware of honeypot
presence. Some attackers actively search for these traps, while
others exploit honeypots for their own purposes, underscoring the
need for a new generation of more advanced honeypots.

Lastly, we conduct a detailed investigation into one of the most
prevalent attacks, challenging existing assumptions about the at-
tacker’s identity.
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1 Introduction

The spread of malware and the rise in attacks over SSH have become
significant concerns in recent years. SSH, a widely used protocol
for secure communication and remote system management, has
also become a frequent target for malicious actors [12, 41]. Recent
trends indicate not only a growth in the volume of attacks but
also an evolution in their methods. This is particularly evident
in the context of global events, such as the Russia-Ukraine war,
which has triggered a marked increase in hostile activity across the
Internet [44].

Attackers employ a range of techniques, from worms and viruses
to sophisticated botnets. While prior research has provided valuable
insights into attacker behavior, these studies often focus on specific
botnets [81] or rely on data collected during short timeframes from
honeypots [17]. Such approaches, though informative, are limited
in their ability to capture the evolving nature of malicious activity.

The goal of this study is to move beyond static snapshots of
attacker behavior and investigate how it changes over extended
periods. This is critical because defending against attacks is an
ongoing struggle between those seeking to exploit systems and
those working to protect them. As attackers refine their tactics
and strategies, defenders must stay informed and adapt to mitigate
evolving threats.

Monitoring attacker behavior over longer periods enables us to
uncover broader patterns, detect recurring threats, identify waves
of activity, and correlate these trends with external events. This
knowledge is essential for designing effective and adaptive defense
mechanisms. In this study, we leverage data collected through a
collaboration with a large-scale honeynet operator to conduct a
longitudinal analysis of SSH-based attacks. This approach provides
valuable insights into how attacker behavior evolves over time,
highlighting the necessity of continuous observation and adaptation
in the development of defensive strategies.

Our contributions can be summarized as follows:
e We investigate 163 million intrusive sessions that execute com-
mands over 3 years and classify these commands based on their



purpose. We identify a clear shift in attacker behavior starting in
2023.

e We analyze commands attempting to execute a file and observe
that attackers’ preferences for loading files onto compromised
targets have evolved over time.

e We examine more than 16 thousand malicious files (hashes) and
apply a clustering algorithm based on executed commands to
classify various bots, including Mirai, Gafgyt, XXorDDoS, and
others, to tracking their activity over time.

o We analyze the IPs used as malware storage locations and find
that more than 70% are hosted in recently registered Autonomous
Systems (ASes) no older than five years. Additionally, we observe
that some attackers tend to reuse the same storage IPs over ex-
tended periods.

e We discover that attackers are actively scanning for honeypots
and, in one case, abuse them as proxies for attacks.

o Finally, we investigate an aggressive attack campaign visible
throughout the entire observation period and provide insights
into its behavior and characteristics.

2 Background and Related Work

SSH attacks: The Secure Shell Protocol (SSH) is a popular and ex-
tensively deployed protocol, making it a frequent target for attacks.
Despite its improvements over the years, brute-force [48, 78, 96]
and dictionary attacks [35, 97] remain some of the most common
threats against SSH.

Although disabling password authentication can effectively mit-
igate these attacks, brute-force methods are still widely observed.
This persistence can be attributed to several factors, ranging from
inexperienced users to the proliferation of IoT devices. IoT devices,
which commonly employ SSH for remote access, are especially
vulnerable to brute-force attacks, as many are deployed with weak
default passwords [55, 68]. Botnets like Mirai have exploited this
vulnerability, using brute-force techniques to compromise large
numbers of IoT devices and launch attacks [12, 20, 41, 84, 101].

Another type of SSH attack targets weaknesses within the SSH
protocol itself. Recent work by Baumer et al. [18] demonstrates
that certain SSH server configurations can expose vulnerabilities,
enabling a “prepending” attack. Their study reveals that, under
specific conditions, attackers can exploit these vulnerabilities to
successfully conduct Man-in-the-Middle (MitM) attacks, compro-
mising the integrity and security of SSH communications.
Brute-force attacks: The problem of brute-force attacks against
SSH services has been extensively studied in the literature, with
multiple works analyzing attacker behavior through honeypot de-
ployments. Two notable contributions in this domain are the works
of Abdou et al. [9] and Singh et al. [78].

Abdou et al. [9] presented an in-depth analysis of automated SSH
brute-force attacks. Their study revealed common patterns such as
credential reuse, dictionary-based attack strategies, and the reliance
on compromised hosts as intermediaries for further exploitation.
A key strength of their work lies in its systematic examination of
attacker infrastructure and the propagation of credentials across
different targets. However, their dataset was constrained to a rel-
atively short observation window, limiting the ability to capture
long-term variations in attacker behavior.

Singh et al. [78] approached the problem from a complementary
perspective, focusing on the detection and mitigation of SSH brute-
force attacks in operational environments. Their research proposed
practical defense mechanisms and highlighted the integration of
honeypot data into intrusion detection systems. While their contri-
bution provides actionable insights for improving security posture,
the emphasis remained on immediate countermeasures rather than
developing a longitudinal understanding of attacker dynamics.

In contrast, our work extends the state of the art by conducting
a three-year longitudinal analysis of SSH honeypot data. This long-
term perspective enables the identification of temporal trends that
were not observable in prior short-term studies, such as shifts in
attack intensity, changes in the distribution of adversaries, and the
evolution of credential usage strategies. By bridging short-term
empirical observations with long-term behavioral trends, our study
provides a more comprehensive understanding of attacker behavior.
This allows not only for validation and contextualization of prior
findings but also for uncovering novel insights that were previously
overlooked due to temporal limitations in existing research.
Honeypots: Honeypots are purpose-built to attract attackers by
presenting themselves as vulnerable systems, making them power-
ful tools for studying attack methods [24, 66]. They are typically
categorized by their interaction level, resulting in three main types:
low, medium, and high-interaction honeypots [61]. Low-interaction
honeypots [16, 73] simulate a limited range of system behaviors,
while medium and high-interaction honeypots [29, 34, 50, 85] mimic
a broader range of interactions, capturing more detailed attacker
actions.

Honeypots can be deployed on virtual machines or physical
hardware [38, 90, 95] and are available in various forms, including
web honeypots [46, 100], mobile honeypots [98], and those focused
on worm detection [31]. IoT honeypots have become particularly
valuable in recent years, identifying malware families targeting IoT
devices [55, 68] and providing insights for countering botnets [47,
52, 71]. In 2022, Hiesgen et al. [43] introduced “Spoki”, a hybrid
between a traditional network telescope and a honeypot, to examine
malicious activity, identifying attack variants such as Mozi and
Mirai.

Wu et al. [103] deployed low-interaction honeypots on a /16
IPv4 prefix to study attacker behavior over three years, but their
analysis was limited to connection-level attributes due to the lack
of executed command capture. Similarly, Ghiétte et al. [39] investi-
gated attacks on 4,500 low-interaction honeypots over a one-month
period. Other researchers have applied clustering [77] and natural
language processing techniques [23] to group attackers’ IPs and
analyze behaviors.

Regarding SSH honeypots, Kippo [50] and Cowrie [29] are among
the most widely used today [66], and are the basis of most re-
cent studies of SSH malicious activity [19, 51]. A recent study by
Munteanu et al. [63] leveraged data from a large honeyfarm, i.e., a
set of honeypots distributed around the globe with centralized data
collection, to explore malware hash variations over fifteen months.
Our work goes beyond hash variability and geographic profiling
to provide an in-depth analysis of attacker behavior and charac-
terization over time. Additionally, Izhikevich et al. [45] recently
demonstrated that attackers are increasingly sophisticated in tar-
geting cloud services. Our research complements this by examining



attacker techniques against residential targets, as observed through
a large Honeynet.

Nawrocki et al. [65] offer a different perspective on honeypots,

also conducting an in-depth analysis of their limitations. Their
findings highlight that one of the primary constraints lies in the
placement and vantage points of honeypots. In our study, we extend
this discussion by identifying additional limitations, such as the
inability of a honeypot to capture files downloaded by attackers
due to the methods used to transfer them. This gap in monitoring
suggests that modern attacks have become sophisticated enough to
evade certain honeypot configurations, highlighting the need for
ongoing advancements in honeypot technology to keep up with
evolving threat tactics.
Malicious Actor Characterization: As noted by Barron et al. [17],
attribution and attacker profiling are among the most difficult as-
pects of defending against organized or state-sponsored threats.
Studies also suggest that attackers’ strategies, persistence, and the
likelihood of specific attack types are influenced by target configu-
rations, vulnerabilities, and perceived value [76, 89]. These studies
emphasize the importance of differentiating between human-driven
attacks and automated bot activity.

Honeypots play a crucial role in this characterization, as illus-
trated by Sadique et al. [75], who analyzed botnet behavior to
understand attackers’ actions post-compromise. While their focus
was on predicting attacker behavior, our analysis investigates the
possible motivations behind botnet tactics and strategy changes.
Stone-Gross et al. [81] conduct an extensive and in-depth analysis
of the Torpig botnet, providing valuable insights into its behavior
and attack characteristics.

In addition, other studies have pursued predictive methods, such
as statistical models to forecast attacks [105] or machine learning
applied to honeypot data to detect severe SSH attacks [74]. Research
has also shown that malware developers increasingly use sophisti-
cated techniques like polymorphism to evade detection [54, 70, 79].

In this work, we correlate data collected from a large honeynet
with multiple external sources to better understand and characterize
the modus operandi of the most prominent SSH attacks observed
in recent years.

3 Datasets

In this section, we present the profile of the honeynet we collaborate
with as well as other data sources we use.

3.1 Honeynet Profile

For our study we collaborate with Global Cyber Alliance (GCA) [40]
— a large non-profit honeynet operator that provide access to re-
searchers. The rationale for deploying the honeynet is to operate
honeypots geographically distributed in different countries as well
as in different networks, with a focus on residential networks. The
honeynet consists of 221 identically configured honeypots in 55
countries and 65 ASes. Each honeypot is realized using a customized
version of the Cowrie Honeypot suite [29], a medium interaction
SSH and Telnet honeypot designed to log brute force attacks as
well as shell interactions executed by intruders. The selection of the
Cowrie honeypot software is driven by its ease of use and because
it covers multiple attack vectors over SSH and Telnet.

3.2 Collection of Honeynet Data

Each successful TCP connection handshake by a client on either
the SSH port 22 or the Telnet port 23 creates a new session recorded
by each honeypot. Once the sessions is closed, the recorded session
is forwarded to a collector and is added to the honeynet database.
A session is ended either by a TCP connection tear down from the
client or a timeout by the honeypot, which is configured to be three
minutes.

For each session, the honeypot records basic session information,
which includes the start time, the end time (including timeout), the
IP and port of the honeypot as well as the client. In addition, if SSH
is used, it records the client SSH version. Moreover, the honeypot
records the interactions of the client with the honeypot, namely,
used credentials for login and executed commands. For each login
attempt, it records the credentials used as strings and whether the
used credentials are accepted. The honeypots are configured to
allow password-based SSH authentication using the username root
and by supplying any password except “root”. Public key based SSH
authentication is not supported. For Telnet, the same authentication
rules as for SSH are in place.

After a successful login, the client has access to a Unix-like shell
that emulates common Unix commands. As such, the honeypot
records each command executed by the client in a list of “known”
or “unknown” commands. Known commands are emulated by the
honeypot; unknown ones are simply recorded. If a command in-
cludes a URI (this includes anything retrieved from a remote target,
including retrievals via (S)FTP, HTTP(S), etc.), the URI is recorded
as well. If a command results in a creation or modification of a file,
a hash of the file content is recorded. The data is processed and
analyzed in situ, using the provided interface.

3.3 Honeynet Dataset Statistics

Our study spans over 33 months, i.e., December 2021 to August
2024, all 221 honeypots were active with one exception between
8 and 9 of October 2023. During this time the honeynet was on
maintenance for 48 hours and did not record any sessions. Besides
this incident our error reporting did not notice any outages. Overall,
the honeynet recorded more than 635M sessions. In this study we
focus only on the recorded SSH attacks, which accounts for more
than 546M sessions comming from more than 850K unique client
IPs.

We classify the attacks into the following categories:
Scanning: No credentials are used. The session records the TCP
handshake.

Scouting: After the TCP handshake, the client tries to log in, but
the login is unsuccessful.

Intrusion: After the TCP handshake, the connected client manages
to successfully login, but executes no commands.

Command Execution: After the TCP handshake, the connected
client manages to successfully login and also executes at least one
command.

Of all sessions, 45M are related to scanning, while scouting ses-
sions account for the largest share, totaling 258M. Intrusion sessions
rank third with 80M, and command execution sessions are second,
totaling 163M.



3.4 Abuse Datasets

The honeypots gather detailed information about attacks, including
malicious files. However, only the hashes of these files are collected,
and the files themselves are not stored.

To better understand the intent behind the attacks, it is necessary
to correlate the file hashes with known attack types. A valuable
source of information for such correlations are abuse databases,
which compile and categorize malicious file hashes.

In our analysis, we utilize publicly available abuse databases to
cross-reference and validate our findings. Among these, we rely on
several prominent services that aggregate and maintain extensive
records of malicious activities in the wild:
abuse.ch [10] is an open access platform that tracks and detects
threats with a strong emphasis on malware software and botnets.
Internet Service Providers (ISPs), network and cloud operators,
security and hardware vendors, government agencies, and law en-
forcement agencies rely and integrate Abuse’s feed in commercial
or open source products to detect and fight attacks in their organi-
zations. The platform also enables the sharing of threat intelligence
data with the research and operational security community. We uti-
lize the threat intelligence feed related to IP reputation and malware
software samples.

Team Cymru [83] is a threat-intelligence company that provides
security solutions, threat analytics, and risk assessment for enter-
prises and hosts on the Internet. By collecting and analyzing various
network data it constructs block lists and reputation scores.
VirusTotal [94] is a threat-intelligence company that specializes
on the collection and reverse engineering of malware binaries. It is
one of the most popular references for malware detection and char-
acterization. It utilizes reports by many other security companies
and volunteers to tag suspicious files (searchable via their sha256
hash or binary). We got access to VirusTotal for all the hashes in
our study.

ArmstrongTechs Project [15] ArmstrongTechs is a Internet se-
curity firm specializing in various services to enhance organiza-
tional security. Additionally, ArmstrongTechs maintains a GitHub
repository titled “Indicators-of-compromise-IOCs”, which includes
information on various threats and indicators of compromise.

In the following, we refer to all of these services together as abuse
datasets.

3.5 Autonomous System Data

To better understand which infrastructure the attackers are us-
ing we categorize the investigated IPs according to the AS that
announces it. For this purpose we use a service for looking up his-
toric announcement information for IPv4 [82]. This service returns
for each IP and timestamp a historic perspective which include
the announcement time period, AS number, as well as AS orga-
nization details. To further categorize the returned ASes we use
bgp.tools [36] as well as PeeringDB [7].

Both bgp.tools and PeeringDB employ a variety of tags and labels
to describe and classify ASes comprehensively. Collectively, these
platforms categorize ASes into 19 distinct tags. For our analysis, we
focus specifically on differentiating between the following types:
CDNis - Content Delivery Networks.

Hosting - Hosting providers (including web-hosting, VPN).
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Figure 1: Sessions that contain commands split in two cate-
gories. In blue, we have the sessions that change the state of
the honeypot and in orange otherwise.

ISPs/NSPs - Internet Service providers.
Others - Other types of networks (including governmental, aca-
demic, corporation, personal networks, or unlabeled).

We didn’t consider labels such as “IPv6-only” or “Tranco 10k”,
as these are infrequent in our dataset and do not significantly con-
tribute to understanding overarching patterns in attacker behavior.

4 Ethics

For this study, honeypot logs are processed and analyzed at the
collector server infrastructure of the honeynet.

Sensitive data regarding the honeypots hosting information (as
well as our collaborator server infrastructure) is not mentioned
in our study to reduce the risk of uncovering the identity and IP
address of the honeynet infrastructure.

For the same reason, we do not discuss any sensitive information
related to honeypot configuration to protect the operation of the
honeypot.

In our paper, we also anonymize the IP addresses of infected
devices and malware infrastructure. We do not “name and blame”
cloud providers, content delivery networks, and network providers
that may host malware as they may not be aware of this activity by
their tenants. However, we collaborate with our honeynet provider
to disclose this information to infrastructure providers.

5 Commands

To initiate our analysis, we examine the types of commands ob-
served in the sessions collected by the honeypots. Our focus is on
sessions in which attackers successfully logged in and executed at
least one command, totaling approximately 163 million sessions.
We categorize these sessions into two distinct types based on the
nature of the commands executed. The first category includes ses-
sions where commands do not alter the state of the honeypot. These
commands are generally non-intrusive, primarily aimed at gath-
ering information about the system, such as identifying existing
files, inspecting running processes, or assessing the machine’s ca-
pabilities. We observe that nearly 94 million sessions fall within
this type. The second category consists of sessions in which at least
one command modifies the honeypot’s state. Such commands may
edit or delete files or execute actions that actively alter the system’s
original state. The remaining of 69 million sessions belong to this
category.



Figure 1 presents the distribution of both types of sessions over
time. Each boxplot in the figure represents the daily distribution
of sessions of each type for the corresponding month. During the
initial phase of our data collection, spanning from 2021 to early
2023, both session types occur at similar rates, with a notable spike
observed in early 2022. This spike correlates with well-documented
attacks linked to the onset of the Russia-Ukraine conflict [59] and -
as we show in Figure 3(a) - is dominated by one botnet.

In early 2023, however, a shift becomes apparent, marked by
an increase in sessions involving commands that do not alter the
honeypot’s state. This trend suggests a growing preference among
attackers to explore the system rather than immediately execute ma-
licious commands after gaining access. One possible explanation for
this shift could be an evolution in attack strategies: attackers might
prioritize reconnaissance to better understand a target system be-
fore executing commands, potentially as a tactic to evade detection
by antivirus software, honeypots, or other security mechanisms.
Classification: To better understand the commands observed in
the honeypot, we conducted an in-depth analysis and manually
developed a set of regular expression (regex) rules [107] to classify
attacker activity. This process resulted in 59 distinct categories of
commands, designed to capture recurring patterns of malicious
behavior. The regexes were iteratively constructed by first identi-
fying common command structures and execution patterns (e.g.,
repeated use of wget, curl, or package installation commands), and
then generalizing these observations into rules capable of grouping
similar activity. Each regex therefore corresponds to a behavioral
signature, rather than a single literal command, allowing us to
classify even slightly varied instances of the same activity.

Out of the 59 categories, 58 were generated through explicit
regex matching, while the 59t serves as a fallback for commands
that could not be classified, denoted as the unknown category. Fur-
thermore, 44 categories correspond to commands associated with
a specific bot or attack wave, capturing the characteristic toolsets
and behaviors of automated malware. The remaining 14 categories
reflect more generic intrusion behaviors, such as methods of intro-
ducing malicious files (wget, ftp, curl, or echo), which are commonly
reused across different bots.

Applying this classification framework to the dataset of 162 mil-

lion sessions, over 161 million sessions (>99%) were successfully
categorized into one of the 58 regex-based groups. The remain-
ing 1 million sessions, which did not match any of the predefined
patterns, were placed in the unknown category. This approach en-
sures that bots are not treated as individual sessions, but rather
as recurring behavioral patterns spanning multiple sessions. Addi-
tional implementation details and the complete set of regex rules
are provided in Appendix B.
State modification: First, we take a closer look at the sessions
that do not alter the state of the honeypot. Figure 2 presents a
detailed breakdown of the bot categories observed in these sessions.
We observe that the majority of the sessions (over 95%) can be
attributed to the top three bots, with the leading one, echo_0K,
alone accounting for more than 80%. Another notable observation
is the presence of both continuous/consistent activity patterns (e.g.,
echo_OK, uname_svnrm) and wave-like or campaign-based behavior
(e.g., bb_scout_cat, uname_a).
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Figure 2: Sessions that do not change the state of the honeypot
showing the Top 3 bots/month.

We next examine sessions that modify the honeypot’s state,
focusing on whether they involve specific file executions or down-
loads. Our analysis reveals that over 54 million sessions involve
commands that add, modify, or delete files without executing them.
The remaining 15 million sessions contain commands attempting
to execute a file on the system.

Figure 3 presents a temporal overview of the sessions that modify
the state of the honeypot. On the left, Figure 3(a) provides a detailed
analysis of the bot categories that add, modify, or delete files without
executing them over time. As with the sessions that do not alter
the honeypot’s state, the majority of this activity (over 90%) is
dominated by a single bot-mdrfckr—which will be discussed in
detail in Section 9.

We observe a high number of sessions each month (>500k) in

which attackers attempt to add, write, or delete files without execut-
ing them. This tactic may indicate that intruders are more focused
on the following: (1) establish persistent access, e.g. by adding a
public key, and as such “storing” the compromised device for later
use; (2) placing a malicious script on the device for execution at
a later time (e.g. coordinating with other devices for a DDoS at-
tack); (3) inserting a script intended for silent execution upon a
specific trigger, such as modifying a . init file or the crontab; (4)
generating a random file and verifying its presence in a subsequent
session to test system consistency, as inconsistency may signal to
attackers that the device could be a honeypot. To date, no research
has been published analyzing SSH attacks using stateful honeypots.
However, there are existing proposals for the design of stateful
honeypots, as discussed in [26].
Web attacks: At the start of 2024 we observe a wave of a different
bot (curl_maxred). Closer analysis of the bot’s sessions reveals that
the honeypots repeatedly execute curl commands aimed at specific
domains or IP addresses. This activity originates from four client IPs
associated with a Russian hosting provider. These clients connect
via SSH to 180 of the 221 honeypots in our honeynet, generating
nearly 200k sessions in total. In each session, the attacker executes
approximately 100 curl commands to various destinations. As a
result, this group of four IP addresses is responsible for generating
20 million curl requests between January and April 2024. For more
details see Appendix C.

The targeted domains reveal shared characteristics: most are
Russian or Ukrainian sites associated with sectors such as econ-
omy, trade, cryptocurrency, e-commerce, Telegram bots, drugs, and
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(b) Sessions that attempt to execute files.

Figure 3: Sessions that change the initial state of the honeypot.

gaming. Essentially, the attacker appears to be using the honeypot
as a “proxy” with the intent to launch attacks against these sites.
From our perspective, the nature of these attacks likely involves
either DDoS attempts or credential exploitation through the use of
stolen cookies.

Both medium- and high-interaction SSH honeypots are inten-

tionally designed to properly execute commands like wget or curl
in order to retrieve and store malicious files for later analysis. Al-
though honeypots are inherently non-malicious and serve solely
to collect threat intelligence, here, their ability to execute such
commands enable attackers to misuse them as intermediaries for
malicious activity.
File exec: We continue our analysis by examining the sessions that
attempt to execute files (see Figure 3(b)). First, we observe a higher
diversity of bots, with the top three accounting for only about 50%
of all sessions. Notably, the leading bots—bb_5_diff_char_v2 and
bbox_unlabelled— leverage the /bin/busybox [102] tool to exe-
cute potentially malicious scripts. This is not surprising; due to its
lightweight implementation, busybox has been widely reported by
multiple IoT honeypot studies as a preferred method for deploying
and executing malware on IoT devices [28, 49, 99]. We also observe
that the bbox_unlabelled campaign abruptly ends in mid-2022,
which may indicate either a takedown or an intentional cessation
of activity—especially since no other bot category appears to take
its place thereafter.

Another important trend is visible in the number of sessions over
time (secondary Y-axis), which shows a clear decline. Starting from
late 2022, we observe a marked downward trend, with no new bots
executing files. Approximately 60% of activity during this period can
be attributed to the bb_5_diff_char_v2 bot. This decline suggests
that attackers may be shifting toward more stealthy attacks.
Honeypot files: We continue our investigation by delving into the
sessions we consider most intrusive—those containing commands
that attempt to execute a file. Figure 4 displays the distribution of
sessions that run a command which tries to execute files over time.
Sessions where we successfully identify the file’s hash, are labeled
as “file exists”, while sessions labeled “file missing” indicate no

ISlur against Jewish people redacted.
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associated hashes. In the later case, the filename being executed was
not found in any previous honeypot sessions, nor was it downloaded
through commands (on the shell offered by the honeypot) in the
current or prior sessions. This implies that attackers may try to
copy the file via scp, ftp or rsync on the honeypot from a remote
location. As these methods are not emulated by the deployed Cowrie
implementation, the honeypots cannot catch the file.

We find more than 3 million sessions where the “file exists” and
around 12 million sessions with “file missing”. Figure 4(a) presents
the temporal distribution of the session where the executed file
exists, while Figure 4(b) represents the temporal distribution of
sessions where the executed file is missing.

While there is a noticeable downward trend in sessions attempt-
ing to execute files, we observe an even more significant drop in ses-
sions where the file actually exists. In 2022, the honeypots recorded
over 100k “file exists” sessions per month. However, starting in
2023, this number dropped sharply to approximately 5k sessions
per month.

This shift could potentially be explained by two factors: first,
bots may be misconfigured, resulting in incomplete or improperly
executed attacks; second, malicious actors may have adapted their
tactics. Specifically, the attackers either (a) recognized that honey-
pots are unable to capture files transmitted directly via protocols
such as scp, ftp, or rsync, or (b) opted to simplify their operations
by bypassing the need for a malware loader entirely, see Appen-
dix D.

Another interesting observation concerns the bot category bbox_
unlabelled (shown in red). This bot appears to have had multiple
variants—some using protocols like wget and tftp, which allowed
the honeypots to capture the dropped files, and others using pro-
tocols that prevented the honeypots from retrieving the files. It is
plausible that this bot reached its end-of-life phase due to its exten-
sive use of diverse protocols, which may have facilitated a deeper
understanding by defenders and, ultimately, the development of
effective countermeasures—especially in contrast to a similar bot,
bb_5_diff_char_v2, which remains active.

This longitudinal analysis of command types over time reveals
a clear change in the modus operandi (MO) of SSH brute-force
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Figure 4: Sessions that attempt to execute files.

attackers. We observe a clear preference for bots exhibiting scout-
ing behavior. By categorizing the executed commands, we can
effectively visualize that the number of bots displaying aggressive
behavior decreases over time, in contrast to those that refrain from
executing files. Additionally, we identify a scenario in which the
honeypots are vulnerable to misuse, serving as potential proxies
for launching further attacks. These trends underscore the critical
need for continual adaptation in anti-malware defenses, especially
in honeypot technologies.

6 Malware Files

To gain more insight into the attacker behavior, in this section, we
focus specifically on sessions in which files are loaded onto the
honeypot. In more than 3 million sessions, the intruder explicitly
executes commands on the honeypot to download a file. The hon-
eypots do not retain the original files after download; instead, they
generate a SHA-256 hash based on each file’s content. Over the
duration of our study, we identified a total of 16,257 unique hashes.
By cross-referencing these file hashes with abuse databases, we are
able to classify them as follows:
Malicious: An exec file or a script that reads/writes protected OS
files. Typically, a Virus or a Trojan.
Mirai: One of the first significant botnets targeting exposed net-
working devices running Linux. Nowadays, it targets a wide range
of networked embedded devices such as IP cameras, home routers
(many vendors involved), and other IoT devices. Since the source
code was made public many variants of the Mirai family appeared,
infecting many networked devices around the world [12, 41].
Dofloo: (Aka AESDDoS) is a popular malware used to create large
scale botnets that often launch DDoS attacks and run cryptocur-
rency miners on the infected machines [33].
Gafgyt: A malware family which infects Linux systems to launch
distributed denial-of-service attacks (DDoS) [33].
CoinMiner: An unwanted malicious software which uses the vic-
tim’s computational power (CPU and RAM mostly) to mine coins
(for example Monero or Zcash) [25].
XorDDos: A Linux Trojan malware with rootkit capabilities that
is used to launch large-scale DDoS attacks [33].

Unfortunately, with the data from the abuse databases we are
able to identify less than 700 hashes (x5%), leaving more than 95%

of all collected hashes unlabeled. One of the reasons is that abuse
databases are unlikely to include all variants of the same malware,
particularly since even a single bit flip can alter the hash and render
the variant unrecognizable. Another reason is the lack of reports,
since not every user reports malicious activity.

Clustering. To gain deeper insights into the attacks and to mitigate
these limitations, we employ a clustering algorithm to identify ses-
sions with similar attack behaviors. We classify each session based
on the commands executed. Our clustering algorithm analyzes the
sets of executed commands across sessions and assigns each session
to a cluster based on a calculated similarity score. The process for
determining the similarity score between the commands of two
sessions involves the following steps.

(1) The commands in each session are split into a set of tokens. For
example, the session commands “mkdir /tmp;cd /tmp” are tokenized
into [“mkdir”, “/tmp”, “cd”, “/tmp”]).

(2) We calculate the similarity score between two sessions using
the Damerau-Levenshtein Distance (DLD) [32, 53, 64]. For this
calculation, each token is treated as a single character. For instance,
for two sessions, one that executes the command “mkdir /tmp” and
the other executes “cd /tmp”, the DLD would be 1, as only one token
needs to be modified. This token-based approach offers increased
robustness against frequent changes to IP addresses, filenames,
or other forms of obfuscation, enhancing the effectiveness of the
clustering.

For our classification, we employ the K-Means algorithm using
the scoring function described earlier. To determine the optimal
number of clusters, we utilize the elbow method, which involves
plotting the "within-cluster sum of squares" (WCSS) against the
number of clusters. The “elbow point”, where the rate of decrease
significantly slows, indicates the ideal number of clusters. Addition-
ally, we consider the Silhouette Score, which evaluates how well
each point fits within its cluster compared to other clusters. Based
on these metrics, we select 90 clusters.

Figure 5 presents the distance matrix derived from the normal-
ized DLD. The clusters are sorted based on the average number of
tokens per cluster. As a result, “Cluster 1” contains sessions with
the shortest average number of tokens, while “Cluster 90” contains
sessions with the longest average number of tokens. Each of these



clusters tries to represent a different type of bot based on the com-
mands that it executed. We use this classification as a fingerprinting
technique to identify different malicious bots based on the sequence
of commands that they execute.

Clustering. To gain deeper insights into attacker behaviors and
overcome the limitations of simple regex-based classification, we
apply an unsupervised clustering approach to group sessions that
exhibit similar command execution patterns. Each session is repre-
sented by the sequence of commands it executes, which we trans-
form into a tokenized representation prior to clustering.

(1) Tokenization. Commands within each session are first split
into tokens corresponding to meaningful substrings (e.g., com-
mands, arguments, file paths). For example, the session string

“mkdir /tmp;cd /tmp” is tokenized into [“mkdir”, “/tmp”, “cd”, “/tmp”].

This token-level representation allows us to capture both command
usage and argument structure, while remaining resilient to superfi-
cial variations such as spacing, reordering, or minor obfuscations.
(2) Similarity measure. To quantify the similarity between two ses-
sions, we employ the Damerau-Levenshtein Distance (DLD) [32,
53, 64] on their token sequences. Each token is treated as a single
unit, analogous to a character in a string. For example, the sessions
“mkdir /tmp” and “cd /tmp” differ by only one token, yielding a DLD
of 1. This token-based formulation is robust against frequent at-
tacker obfuscation strategies (e.g., varying IP addresses, file names,
or temporary directory paths), since such changes typically affect
only isolated tokens without altering the overall behavioral pattern.
(3) Clustering algorithm. The token-based DLD provides a distance
value that expresses how similar two sessions are. To apply K-
Means, we make use of these pairwise distances by constructing a
distance matrix across all sessions. This matrix captures how close
or far apart the sessions are in terms of their command sequences.
Based on this representation, K-Means partitions the sessions into
groups such that sessions with lower distance values (i.e., more
similar command sequences) are assigned to the same cluster, while
dissimilar sessions are placed in different clusters.
(4) Cluster selection. To determine the optimal number of clusters, we
combine two established approaches: (i) the elbow method, which
identifies the point at which additional clusters yield diminishing
improvements in the within-cluster sum of squares (WCSS), and
(ii) the Silhouette Score, which measures how well each session
fits within its assigned cluster relative to neighboring clusters. The
convergence of these two metrics indicated that k = 90 provides a
good balance between capturing behavioral diversity and avoiding
over-fragmentation.
Figure 5 presents the distance matrix derived from the normalized
DLD. The clusters are ordered by the average number of tokens
per session: “Cluster 1” contains sessions with the shortest average
length, while “Cluster 90” contains those with the longest. Each
cluster thus represents a distinct type of bot, characterized by the
commands it executes. We leverage this classification as a finger-
printing technique to identify and differentiate malicious bots based
on their command execution sequences.

Analyzing the cluster formation allowed us to associate the
largest clusters with specific bot types.
Cluster 2: Associated with Gafgyt bots.
Cluster 3: Associated with Mirai.
Cluster 4: A mix of Mirai and CoinMiner.
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Figure 5: Normalized DLD Matrix.

Cluster 6: Associated with XXorDDoS.

We observe that Cluster 1 exhibits the highest variability in
terms of normalized DLD. This cluster also has the lowest average
number of tokens. Typically, sessions in this cluster start with a
cd command to change to a specific folder (sometimes preceded
by a mkdir command to create the folder), followed by a wget or
curl command to download a file, a chmod command to modify its
permissions, and then the execution of the file, optionally followed
by an rm command to clean up. The significant variation within
this cluster arises from the diversity in folder names, IPs/domains,
and downloaded filenames. The next step involves taking all the
hashes within each cluster and cross-referencing them with abuse
databases. When we correlate the hashes from sessions in Clus-
ter 1 with abuse databases, we identify multiple types of malware,
including Mirai, Dofloo, CoinMiner, and Gafgyt. This diversity is ex-
pected, as the observed commands represent the minimum required
to spread a malicious file.

The remaining clusters contain hashes that are either unknown
to abuse databases or generically labeled as malicious, offering
limited additional insights. Notably, the five labeled clusters account
for over 90% of all sessions involving files. The temporal distribution
of these sessions across clusters is shown in Figure 6.

Certain cluster/bots, such as “C-1 (Mirai, Dofloo, CoinMiner,
Gafgyt)” and “C-6 (XXorDDoS)”, are observed consistently through-
out the entire period, while others, like “C-2 (Gafgyt)” and “C-3
(Mirai)”, appear in intermittent waves. This wave-like behavior
aligns with previous research [12, 63]. The recent rise in Mirai
instances corresponds with findings by Griffioen et al. [41], who
reported increased Mirai scanning activity seen in 2024. This trend
points to a resurgence of the original Mirai variant, as verified by
abuse databases showing that multiple hashes from this period
match the classic Mirai botnet. The Mirai samples identified in
spring 2024 include Corona, Kyton, and Ares [11, 93].
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Figure 6: Top 5 clusters (bots) over time.
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storage IP by AS type. Flows correspond to client IP, malware
storage IP pairs.

Another interesting observation is the sudden stop in activity
from the XXorDDoS bot in 2024. This suggests one of two possibili-
ties: (a) the bot was stopped or taken down, either by the attacker
himself or through other means, or (b) the bot’s behavior changed.

From our data, the first possibility appears more likely. We ob-
serve no clear evidence supporting the latter, as there is no spike
in other clusters, nor do we find XXorDDoS hashes reappearing in
other clusters. However, it remains possible that the bot’s behavior
changed along with its variant, and the new variant’s hash has not
yet been reported to abuse databases. Either way, this represents a
clear indication of a change in the activity of this malicious actor.

As a takeaway, clustering sessions based on executed commands
and correlating the results with file hash information from abuse
databases proves to be an effective method for gaining a compre-
hensive overview of bot activity. This approach shows potential for
identifying bots and understanding their behavior over time.

7 Malware Storage Locations

In this section, we examine the IP addresses involved in download
commands that serve as malware storage locations. We start by
investigating whether the honeypot client IP—the IP address re-
sponsible for brute-forcing and gaining access—is the same as the
malware storage location IP. Surprisingly, we find that in 80% of
sessions involving downloads, the malware storage location IP dif-
fers from the connected client IP. Furthermore, although we see the
download commands originating from over 32k unique IPs connect-
ing to the honeypot during our study, only around 3k IPs served as
malware storage locations. Given this one-order-of-magnitude dif-
ference, we examined whether these malware storage IPs had been

previously reported. Abuse databases (recall Section 3.4) reveal that
56% of the malware loader IPs have been reported.

Enriching the dataset with additional attributes, such as the

origin AS and AS type associated with each IP (refer to Section 3.5),
allows us to leverage this supplementary information effectively.
We group the client IPs and the malware location IPs by AS type
and generated a Sankey diagram of IP pairs, as shown in Figure 7.
On the left side, we display the client IPs of the sessions, and on the
right, the malware location IPs. Flows where the client IP matches
the loader IP are shown in blue, while flows where they differ
are shown in gray. Most client IPs are in ISP/NSP AS types, which
aligns with expectations, as attackers often use end-hosts for attacks.
Conversely, the majority of malware storage IPs are hosted in cloud
environments, particularly in CDNs or Hosting ASes, with only
a small fraction within ISP/NSP networks. For more details, see
Appendix E.
Storage ASes. We conducted a deeper analysis of the ASes used
to host malicious files and identified a total of 388 ASes. Among
these, 358 are either labeled as hosting ASes or provide hosting
services (e.g., renting VMs or website hosting), while 30 are ISPs.
Additionally, 36 of these ASes are currently “down”, meaning they
do not announce any prefixes.To ensure accuracy, AS information
was collected using historical WHOIS data [82], meaning that the
classification reflects the state of each AS at the time the session
was recorded.

Next, we examined the age of the ASes at the time of the malware
download on the honeypot (see Figure 8(a)). We found that in
more than 35% of cases, the AS was registered in the last year,
and in more than 70% of cases, the AS was registered in the last 5
years. It is also important to note that during the data collection
period, approximately 1,500 new ASes were registered globally.
Out of the 358 hosting ASes we identified, around 35% (~125 ASes)
were registered in the last year. Meaning that roughly 10% of all
newly registered ASes during this period were involved in malicious
file distribution, representing a non-negligible share of the overall
AS growth. This led us to hypothesize that attackers are more
successful in abusing recently registered, or smaller ASes, or may
even deploy their own AS.

We also analyzed the size of the ASes based on the number
of /24 prefixes they announce, focusing only on IPv4 since our
investigation centers on attacks targeting IPv4 (see Figure 8(b)). We
found that approximately 20% of ASes announce only a single /24
prefix, and around 50% of ASes announce fewer than 50 /24 prefixes.
For this analysis, we deaggregated the announced prefixes to enable
a fair comparison of AS sizes. These findings further support our
hypothesis that attackers may prefer using recently registered and
smaller ASes for malicious storage purposes.

To gain a deeper understanding of the malware storage ecosys-
tem, we analyzed the duration for which an IP remains active in
the honeynet. Specifically, we examined the reappearance of IPs
across different time intervals: one week, four weeks, one year, and
the entire dataset collection time window (see Figure 9).

For the one-week recall interval, we observe that in 50% of cases,
the IP storing the malicious file is active for only one day. Another
20% remain visible for up to four days, while approximately 30% are
active for the entire week. When analyzing longer recall intervals,
we find a significant number of IPs being reused over time. On
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Figure 8: AS analysis of malware storage locations.

average, 25% of IPs reappear after at least six months. However,
this number can reach nearly 50%, as observed during the spring of
2023.

The repeated use of the same IP for hosting malicious files over
extended periods suggests that the machines storing these files were
not taken down. Additionally, the reappearance of these IPs after
long intervals (exceeding six months) suggests that the attacker may
employ a pool of machines, rotating their usage to evade temporary
blocklists. Another important takeaway from this figure is that the
long duration of our investigation enables us to better observe the
extent of IP reusability over time.

8 Attacker Login Attempts

In this section we focus on specific login attempts as well as top
login credentials used by malicious actors.

We start our investigation with the most commonly used pass-
words for accessing the honeypots. Recall that the honeypots are
configured to allow password-based SSH authentication using the
username “root” and by supplying any password except “root”. Fig-
ure 10 reveals the most frequent passwords used over the entire
observation period. While passwords “admin” or “1234” are not at
all surprising (most like the combination “root:admin” is now on
the top of all brute-force dictionary lists), the prominence of other
passwords was unexpected.

The plot also highlights an interesting correlation between the
passwords “dreambox” and “vertex25ektks123”, which appear to
be synchronized in usage—a pattern that is not coincidental. Both
passwords are known default credentials for popular TV boxes.
The password “dreambox” is commonly set as the default for all
Dreambox Enigma(1) models—specifically models 500, 500+, 5600,
5620, 600, 7000, and 7020 [4, 5]. Similarly, “vertex25ektks123” is the
default password for the Dasan H660DW TV Box [60].

Sessions using these passwords could potentially be part of the
same botnet structure, as they (1) appear to target similar device
types (e.g., TV boxes) and (2) exhibit a consistent modus operandi:
the bot first attempts to download a file from a remote server using
the wget command and then executes it. Abuse database checks
reveal a small number of hashes associated with these sessions, all
labeled as “Mirai”. This finding indicates that this botnet leverages
default credentials to exploit specific IoT devices, likely incorporat-
ing them into the broader Mirai botnet.
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Figure 9: Malware storage activity days over time.

The most intriguing case is the top password in our dataset,
“3245g55662d34”. We observe no commands executed after login
with this password, suggesting that some attackers may focus on
gaining access without further interaction—potentially marking
targets for future attacks or testing for vulnerabilities.

Our data shows a substantial number of sessions using this
password—over 24 million—starting from December 8, 2022, at 18:00
(UTC). Despite the scale of these login attempts, no commands are
executed post-login, as the bot simply logs in and performs no
additional actions. Analyzing the client IPs reveals that this attack
originates from over 125k unique IPs. This volume is notable and
is only comparable in scale to one other significant attack in our
dataset, which we refer to as “mdrfckr” and discuss in Section 9.

This password appears in multiple blog posts and forums, yet
specific information about the actor or the intended purpose re-
mains unclear. One study [106] suggests that it might be a default
credential for the Polycom CX600 IP telephone.
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Figure 11: Login attempts using default Cowrie usernames,
“richard” and “phil”, observed over time.

The sudden appearance of this password might indicate a more
targeted attack against specific devices or infrastructure. If the
Polycom CX600 IP telephone is indeed the target, the attacker
might exploit this default credential to gain unauthorized access and
potentially use the device to spy or gather information. Moreover,
if this is the case, the timing of the attack could be linked to the
acquisition of Poly (formerly Polycom) by HP [42]. The Polycom
CX600 IP telephone is considered a legacy device, originating from
the era when Polycom used Microsoft Lync and has not received
updates since 2017 [58].

Cowrie Default Credentials. While investigating intrusion logins,
we identified that the Cowrie honeypots allowed logins for a user
other than “root”, specifically the username “phil”. This behavior is
not accidental: the usernames “richard” and “phil” are well-known
defaults in Cowrie honeypot deployments [67]. In 2020, a Cowrie

update replaced the earlier default username “richard” with “phil”.

Analysis of these usernames revealed consistent login attempts
throughout the observation period. Since our honeynet runs a later
version of Cowrie, we observed successful connections using the
“phil” username. Figure 11 shows the number of sessions connecting
with these default credentials (“phil”) as well as attempts to connect
with “richard” over time.

Although the sessions connecting with the “phil” credential are
relatively low in volume (~30Kk), they originate from over 10k unique
IPs and span more than 1k ASes, suggesting a broad and distributed
probing activity. Our analysis indicates that most of these IPs are
located in ISP/NSP or Hosting ASes.

Most interestingly, in the vast majority of cases (over 90% of
all sessions), attackers terminate the connection immediately after
logging in with the “phil” credential and do not issue any further
commands. Moreover, the same client IP does not typically recon-
nect afterwards. This strongly suggests that the purpose of these
logins is not to compromise the host, but rather to detect the pres-
ence of Cowrie honeypots by exploiting the fact that “phil” is a
default credential. In other words, the attackers appear to use these
connections as a reconnaissance or fingerprinting technique to
identify honeypot deployments, rather than to engage in sustained
malicious activity.

This example indicates that attackers in the field are knowledge-
able and adaptive. It is well-documented [54, 70, 79] that attackers
employ strategies to evade anti-malware defenses, such as obfus-
cation, hiding file extensions, encoding in base64, or promptly re-
moving files. As previously discussed in Section 2, honeypots play
a crucial role in enhancing Internet security. We see that attackers
are increasingly aware of the deployments of honeypots and the
risks associated with their methods being recorded. Malicious ac-
tors appear to perform reconnaissance activities, like scanning for
honeypot-specific usernames, rather than indiscriminately launch-
ing attacks, signaling an evolution in attacker tactics toward more
cautious approaches.

9 “mdrfckr’—Case Study

The largest attack in our dataset, both by session count and unique
client IPs, is from a bot we refer to as “mdrfckr”. The name is derived
from the SSH public key label that the attacker installs to maintain
persistence. Over the observation period, we recorded more than
46 million sessions from over 270k unique client IPs associated
with this attack (see Figure 12). The “mdrfckr” bot is believed to
be linked to the Outlaw Hacking Group [87, 104], which has been
active since 2018.

Analysis of commands collected by the honeypots shows that this
attack installs a public key, ensures the victim cannot easily remove
it (by locking out the victim through “root” password changes), and
conducts reconnaissance on the machine. External sources, such
as reports from actual victims [1], indicate that after establishing
persistence, the attacker uses rsync to load malicious files and
modifies the crontab file to execute them. This method allows the
attacker to evade honeypot logs by minimizing detectable activity.

This attack, often associated with cryptocurrency mining, has
been analyzed multiple times. Researchers have examined both
the executed commands [21, 22] and the specific malicious files
downloaded by the attacker [57, 87]. Abuse databases label the
public key hash used in this attack as either “CoinMiner” or “Mali-
cious”, consistent with its association with cryptocurrency mining
activities.

Cross-checking the IPs associated with the credential
“3245gs5662d34” (see Section 8) attack against those used by the
“mdrfckr” bot during the same period reveals a 99.4% overlap. Addi-
tionally, the number of sessions recorded monthly for both attacks
is nearly identical, as shown in Figure 13. This finding suggests two
possible scenarios. First, it could imply that the “3245gs5662d34”
credential attack and the “mdrfckr” bot are managed by the same
actor, indicating that the “mdrfckr” actor has expanded its opera-
tions in a new direction. Alternatively, both attacks may be run by
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Figure 12: A temporal view of all sessions involving “mdrfckr”
actor recorded by the honeynet.
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Figure 13: Behavior change in the “mdrfckr” bots and corre-
lation to “3245g55662d34” credential attack.

separate actors who share the same infrastructure, pointing toward
a shared “malicious infrastructure as a service” model.

Another notable observation is a behavior change in part of
the “mdrfckr” sessions, coinciding precisely with the onset of the
“3245g55662d34” attack. This new variant, which we refer to as
“mdrfckr-variant”, displays several key changes from the original
“mdrfckr” attack: (1) it no longer changes the root password, (2)
removes the files /tmp/auth. sh and /tmp/secure. sh, (3) kills any
processes associated with auth.sh and secure. sh, and (4) clears
the /etc/hosts.deny file. As shown in Figure 13, this variant—
orange colored squares—is at least an order of magnitude smaller
in scale than the original (“mdrfckr-initial”, blue colored circles).

Further investigation into these modifications reveals that /tmp
/auth.sh and /tmp/secure. sh are associated with another “Coin-
Miner” botnet known as WorkMiner [2], which first appeared in
2021 as a successor to the Mozi botnet [88]. These scripts are de-
signed to defend infected machines against other brute-force attacks
by adding offending IPs to the /etc/hosts.deny file. This behav-
ior suggests that the “mdrfckr” actor seeks to disable WorkMiner’s
blocking functionality, likely to ensure uninterrupted access to the
machine. However, only these two specific scripts are removed,
leaving WorkMiner’s mining operations unaffected.

To further understand the “mdrfckr” attacker, we cross-referenced
their IPs with labeled malicious IP lists, including the C2-Daily
Feed [3] and the Killnet Proxy IP list [62]. When correlating the
“mdrfckr” IP list with the Killnet list, we discovered 988 overlapping
IPs. Killnet [6] is a known pro-Russian group, and IPs in their list are
often associated with DDoS attacks, indicating that the “mdrfckr”
actor may be involved in more than just cryptocurrency mining.

Examining the typical behavior of the “mdrfckr” bot over the
entire observation period (see Figure 12), we observe that it gener-
ally generates around 100k sessions per day from approximately
7k unique IPs. However, there are brief periods where this activity
drops to around 100 sessions per day from only ~10 unique IPs. The
low activity at the end of 2021 likely resulted from the recent de-
ployment of the honeynet, which needed time to become a known
target.

We confirm that the honeypots were fully operational during
these periods. Furthermore, the rapid return to “normal” activity—
recovering within hours—suggests a deliberate reduction rather
than a takedown, which would likely exhibit a more gradual re-
covery in activity levels. Our hypothesis is that these drops could
correlate with other coordinated attack activities or strategic pauses,
suggesting that the “mdrfckr” actor may intermittently reallocate re-
sources, possibly toward other attacks. This hypothesis is supported
by following findings. Only during these low-activity periods do we
observe sessions where the “mdrfckr” bot executes base64-encoded
scripts after installing the SSH key. We decoded and analyzed these
scripts, finding that they are variations of three distinct functional-
ities:

Cryptominer setup: Similar to the cryptominer found in the repos-
itory of a previously compromised victim.

Shellbot installation: This backdoor uses IRC to provide botnet
control and is often associated with DDoS attacks.

Cleanup script: A script that thoroughly terminates a set of spe-
cific processes, likely to hinder detection.

Note, that since the honeypot cannot capture files transferred
via rsync—a technique known to be used by this actor—it is likely
that we are missing some malicious files that could further clarify
this out-of-the-ordinary behavior.

To analyze this further, we examined the IPs responsible for
uploading base64-encoded scripts and identified 1,624 unique IPs.
These IPs primarily belong to Hosting AS and ISP/NSP providers.
Most of these IPs appeared only once, and there was no overlap
among IPs across different periods of reduced activity, indicating
a dispersed and dynamic infrastructure, even during out-of-the-
ordinary attacks.

Focusing on base64 scripts, the “cleaning” script appears to specif-
ically target and remove processes and scripts related to a set of 8
IPs. These IPs exhibit a variety of open ports:

e Four IPs have port 22 open (SSH).

e One IP has ports 1337 and 9999 open and is running ZNC [8], an
IRC bouncer often used in botnet command-and-control (C&C)
infrastructure.

® One IP has ports 80 and 3306 (MariaDB) open.

e One IP has port 8080 open.

e One IP has port 43, 80, and 443 open.

Given the consistent inclusion of these IPs in the script, their
strategic network positioning, and the nature of their open ports,
it is plausible that these IPs function as part of the botnet’s C&C
infrastructure. The continued presence of these IPs in the script,
highlights their critical role in maintaining control and coordination
across the botnet.

In collaboration with the Shadowserver Foundation, we analyzed
their Special Report on compromised SSH servers [86]. This report



identifies hosts running SSH services that are known to be compro-
mised due to the presence of malicious public SSH keys facilitating
unauthorized remote access. Our analysis revealed that the “mdr-
fekr” key has compromised over 13k servers globally, making it the
most prevalent malicious SSH key identified in their dataset.

10 Discussion

Limitations. In this study, we utilized Cowrie honeypots, which
inherently restrict our observations to the SSH service. Additionally,
Cowrie is a medium-interaction honeypot: it can emulate certain
system behaviors, but it cannot execute actual operating system
processes. As observed, this limitation can sometimes alert attackers
to the presence of a honeypot. Another important constraint of
the honeypots that are used - they only permit logins using the
username “root”. Consequently, our dataset does not capture attacks
that specifically target non-root accounts, potentially overlooking
behaviors associated with other common usernames. An exception
to this rule is the inclusion of Cowrie’s built-in default accounts (e.g.,
“richard” and “phil”), which are used primarily for fingerprinting the
honeypot rather than for sustained interactions. Finally, although
the honeyfarm offers broad geographic distribution, there are still
notable gaps in sensor coverage in certain regions, which may bias
the representativeness of our dataset.

Call for Better Honeypots. The current state of the art in hon-
eypot technology appears to be insufficient to address evolving
attacker strategies. For example, Cowrie honeypots are increas-
ingly being targeted by attackers who exploit default credentials to
identify them. Moreover, certain attackers bypass the honeypot’s
defenses entirely by abusing it as a proxy for their attacks. Others
employ techniques such as rsync to evade detection, transferring
files without being captured during the attack process.

Several improvements could help address these limitations. First,
providing persistent storage would enable honeypots to capture and
analyze long-term attacker activities rather than only ephemeral
interactions. Second, moving beyond pure emulation toward con-
trolled, real operating system environments would significantly
increase realism and reduce the likelihood that attackers detect
the deception. This could be achieved through lightweight virtu-
alization or containerization, while still enforcing strict isolation
and monitoring to prevent collateral damage. Finally, enhancing
coverage of less common protocols and broadening the range of
supported user accounts could yield richer insights into attacker
behavior that current honeypots fail to expose.

Understanding malicious actors. Our analysis of the “mdrfckr”
botnet exemplifies how attackers obfuscate their true objectives
by engaging in multiple malicious activities simultaneously. This
adaptability and evolution in tactics, likely in response to changing
goals or environmental conditions, underscores the complexity of
profiling malicious actors. By diversifying their actions, attackers
can obscure their overall intentions, making it difficult to fully
understand the scope and motivations of their operations through
a single dataset.

Longitudinal analysis. This study underscores the growing im-
portance of longitudinal analysis in understanding SSH attacks.
While short-term snapshots can highlight immediate trends or
specific incidents, they often fail to capture the gradual evolution
of attacker strategies and behaviors. Long-term analysis reveals

patterns such as the reuse of infrastructure, shifts in tactics, and
the emergence of more exploratory methods, which are critical
for comprehensively understanding the threat landscape. Without
extended observation, key insights—such as the reappearance of
malicious resources after dormancy or the adaptation of bots to
evade detection—can be easily overlooked. As attackers become
increasingly adaptive, longitudinal methodologies are essential for
developing effective, forward-looking defense mechanisms that
address these evolving threats.

Events correlation. During our investigation of the mdrfckr, we
sought to identify any significant global events that coincided with
the observed drops in bot activity. Our analysis reveals a strong
correlation between these periods of reduced activity and several
documented attacks during the same timeframes.
2022.03.16—2022.03.24 and 2022.04.02—2022.04.12 A series of
(pro-Russian) attacks targeting Ukrainian infrastructure. An actor
called “IRIDIUM” suspected in attacks, performed a massive DDoS
attack against targets [59].

2022.08.01—2022.08.02: Hits on Infrastructure of a European coun-
try supporting Ukraine [91, 92].

2022.10.10—2022.10.16: “Sandworm” (a pro-Russian hacker group)
attack against power grid of Ukraine [13, 69, 72], as well as Killnet
DDosS attacks against US Airports [37].

2023.03.02—2023.03.10: Attack against “KyivStar”-largest Ukraine
mobile operator [14].

2023.09.01—2023.09.08: DDoS attacks against Ukraine public ad-
ministration and media [30].

2024.01.19—2024.01.21: APT29 (aka Midnight Blizzard)—data theft
attack [27].

2024.04.04—2024.04.10: Another “Sandworm” attack against in-
frastructure of Ukraine [56, 80].

While the correlation between these events and bot activity
does not imply causation, we find the pattern both interesting and
concerning. In any case, these findings suggest that continuous
monitoring of the bot’s activity is essential.

11 Conclusion

In this study, we conducted a comprehensive longitudinal analysis
of SSH-based attacks over a three-year period, shedding light on
the evolving strategies and behaviors of attackers. By examining
intrusive sessions, executed commands, malicious files, and the
infrastructure supporting these attacks, we identified significant
shifts in attacker tactics, including increased exploratory behavior
and changes in how files are loaded onto compromised targets. Our
findings also revealed a trend toward the use of recently registered
ASes as malicious storage IPs, as well as evidence of attackers
actively scanning for honeypots and, in some cases, exploiting
them for their own purposes.

These insights highlight the importance of adapting defense
mechanisms to address the evolving tactics of attackers. Our study
emphasizes the need for continuous observation and deeper analy-
ses of malicious activity to uncover trends and changes in behavior.
While our findings demonstrate the potential of integrating data
from diverse sources to gain broader insights, further collabora-
tion and research are necessary to enhance our understanding of
attacker strategies and improve the effectiveness of defensive mea-
sures in an ever-changing threat landscape.
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APPENDIX
A Ethics

We discuss the ethical consideration for our work in Section 4.

B Commands Analysis

In Figure 14, we present the average DLD between different com-
mand categories. Additionally, Table 1 shows all the category labels
and the regex commands used to select the commands. Note the
clear separation between the ten command categories located in
the top-left corner and the rest. These commands do not alter the
honeypots’ state (downloading or writing files), but collect system
information. Generally, clamav and juicessh, could also be consid-
ered part of this cluster.

C Curl DDOS attack

A sample of the commands used in this campaign is shown in Fig-
ure 15. The curl commands are harmless to the honeypot, as they
do not introduce malicious software. These commands attempt all
HTTP methods with varying cookies and target over 100 domains
or IP addresses, with some accessed more than 300k times through-
out the campaign. Examination of the cookies shows each one is

curl https://<X.X.X.X>/ -s -X GET --max-redirs 5 --compressed
--cookie '<hidden-cookie>' --raw --referer '<hidden-URL>'
curl https://<X.X.X.X>/ -s -X POST --max-redirs 5 --compressed
--cookie '<hidden-cookie>' --raw --referer '<hidden-URL>'

Figure 15: Snippet of a curl with “cookie attack”. Referrer,
cookies, domain and IP redacted.
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Figure 17: AS Types of Malware storage location seen over
time.

unique, suggesting that this campaign is aimed at either conduct-
ing a Denial of Service (DoS) attacks or possibly testing/exploiting
stolen cookies.

D Unique commands

In analyzing command uniqueness, see Figure 16, we find that ses-
sions labeled as "file missing” exhibit a higher number of unique
commands, indicating greater variability compared to sessions
where the file is present. This suggests an increased use of ob-
fuscation techniques in these sessions. The spikes in command
uniqueness for sessions with files correspond to two distinct bot
waves: a prolonged campaign at the start of 2022 and a shorter,
intense burst of attacks in December 2022. A thorough analysis
showed that both of the waves are most likely related to Mirai, as
we are able to find the hashes recorded in those waves labeled as
“Mirai” in the abuse datasets.



Label Regular Expresion

mdrfkr r"mdrfckr”

echo_ok r"\\\\x6F\\\ \x6B"

echo_ok_txt r"echo ok"

echo_ssh_check r"SSH check"

echo_os_check r"\becho\b\s+[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12}"
uname_a r"’uname)\s+-a’"

uname_svnrm r"uname\s+-s\s+-v\s+-n\s+-r\s+-m”

uname_svnr r"uname\s+-s\s+-v\s+-n\s+-r"

uname_a_nproc (?='nproc)(?=*\buname\s+-a\b)*

uname_snri_nproc (?=rnproc)(?=*\buname\s+-s\s+-n\s+-r\s+-i\b)

bbox_5_char_v2 (?=*\/bin\/busybox\s+([a-zA-Z0-9{5}\"))(?=*tftp;\s-+wget) *
bbox_scout_cat r"/bin/busybox\s+cat\s+/proc/self/exe\s*\|\|\s*cat\s+/proc/self/exe"
bbox_loaderwget r'loader\.wget"

bbox_echo_elf "\ \\x45\\\ \x4c\\ \ \x46™"

bbox_unlabelled /bin/busybox\s|busybox\s

juicessh r"juicessh”

passwd123_daemon E?:.*Passwordl23)(?=."daemon)4*

pattern_7 r'cd\s+/tmp\s*;\s*rm\s+-rf\s+/tmp/\*\s*\|\|\s+cd\s+/var/run\s*\|\[\s+cd\s+/mnt\s*\|\|\s+cd\s+/root\s*;\s*rm\s+-rf\s+/root/\ *\s*\|\|\s+cd\s+/"
rapperbot r"ssh-rsa\s+AAAAB3NzaClyc2EAAAADAQABA"
root_17_char_pwd r'root:[A-Za-z0-9]{15,}\ |chpasswd"

pattern_5 (?2="rm \s+-rf\s+\*;\s*cd\s+/tmp\s*;\s*rm \ s+-rf\s+\ *)(?=*x0x0x0\ \ | \nxoxox0)*
curl_maxred r"-max-redir"

lenni_0451 r"lenni0451"

binx86 (2=XCPU\(s\):)(?="bin\ .x86_64)*

export_vei r"export VEI"

clamav r"\bclamav\b"

g™ _echo N7\ 6T\ \\ k791 |\ \x66\ |\ \x67\ |\ \x74"

dget_4 (?=rwget\s+-4)(?="dget\s+-4)*

openssl_passwd r"openssl passwd -1 \S{8}"

cloud_print r"cloud\s+print"

shell_fp 1"(?="\$\bSHELL \b)(?="bs=22)"

root_12_char_capscout r"(?=.*root:[A-Za-z0-91{12}) (?=.*awk\s+’ {print\s+\$4,\$5,\$6,\$7,\$8,\$9;}’)"
perl_dred_miner r"(?="perl)(?=dred)"

stx_miner r"(?="stx)(?=LC_ALL)"

fr*** _attack r'"fuckjewishpeople”

ohshit_attack r"ohshit"

onions_attack r"onions1337"

sora_attack r'"sora"

heisen_attack r"Heisenberg"

zeus_attack r'"Zeus"

update_attack r'update\.sh"

ak47_scout r"(?2=X\\\\x41\\\ \x4b\\ \ \x34\ \\ \x37)(?=*writable)"

uname_svnr r"(?="uname)\s+-s\s+-v\s+-n\s+-r')(?="model\ s+name)"
gen_curl_wget

gen_echo
gen_echo_ftp_wget
gen_echo_wget
gen_ftp

gen_wget
gen_curl_echo_wget

Feurl)(?="echo)(?="wget)"

gen_echo_ftp (?="echo)(?="ftp)"

gen_curl_ftp r'(?=rcurl)(?=*ftp)"
gen_curl_ftp_wget r"(?=rcurl)(?="ftp)(?="wget)"
gen_ftp_wget r'(?= ftp)(?="wget)"
gen_curl_echo_ftp_wget r"(?="curl)(?="echo)(?=*ftp)(?="wget)"
gen_curl r'(?=*curl)"

gen_curl_echo r"(?=*curl)(?="echo)"

Table 1: Regular expressions used to categorise the commands. For reproducibility, slurs used in regular expressions are not
redacted here, see Section 5. Reader discretion is advised.

E Malware storage location Upon manual verification of these “Other” ASes, we found that

Figure 17 presents the distribution of AS types for these malware all provide some form of hosting service, whether web-hosting or

storage locations over our investigation period. generic VM-hosting. This reinforces the observation that attackers
As shown, the majority of malware downloads originate from predominantly rely on Hosting ASes for malware storage.

Hosting ASes, with sporadic appearances of IPS/NSP and CDN
ASes, which aligns with expectations. A somewhat surprising find-
ing is the number of “Other” ASes, particularly the significant spike
at the end of 2023. We categorized as “Other” any AS that was gov-
ernmental, academic, personal networks, corporation or unlabeled.



