Tracing Cross Border Web Tracking

Costas Iordanou Ingmar Poese

Georgios Smaragdakis Nikolaos Laoutaris

European Research Council

The rise of targeted ads

Why Targeted ads?

- Users get relevant ads
- Increase user engagement
- More efficient ad campaigns
- Higher ROI for the advertisers
- Better use of resources
- Etc.

Used Cars for Sale - Yahoo Autos https://autos.yahoo.com/used-cars/ ▼ Yahoo! ▼ Find Used Cars for Sale. View photos, features, and get price quote. Browse millions of Used car listings from local dealers near you. ♥ User typed in "used cars for sale"

How it works?

- Tracking and profiling users
- Real time auctions of ads (RTB)
- Cookie synchronization

The reaction of users and regulators Regulators Users **Browser extensions Browsers Children's Online Privacy Protection Ad**Block ABP Adblock Plus brave Rule ("COPPA") | **Federal Trade** Commission UD CLIQZ **GHOSTERY**° General Protection Regulation **PRIVACY BADGER** BROWSER 3

Users and regulators reaction

General Data Protection Regulation - Details

One of the biggest changes with respect to privacy and regulation on the web in the last few years (Enforcement date: 25th May, 2018)

In general the new legislation:

- 1. tries to regulate how users' data are collected, processed and stored and
- 2. if they include any sensitive information about the user

General Data Protection Regulation - Details

One of the biggest changes with respect to privacy and regulation on the web in the last few years (Enforcement date: 25th May, 2018)

In general the new legislation:

- 1. tries to regulate how users' data are collected, processed and stored and
- 2. if they include any sensitive information about the user Implementation – Per member state Data Protection Authority (DPA) DPA: Responsible for complaints – investigations & enforcement Investigation starting point – Ad & Tracking flows entry point servers location

RQ: How can we identify the physical locations of such servers?

Challenges

1. How to effectively **detect ad and tracking related domains in the wild**?

7

2. How to ensure correct geolocation of infrastructure servers?

Challenges

1. How to effectively detect ad and tracking related domains in the wild?

2. How to ensure correct geolocation of infrastructure servers?

3. How to ensure that all possible ad and tracking servers are observed?

4. How to maintain a balance between accuracy and scalability?

Why real users instead of just Web crawling?

User interaction

ull Name *			Street Address		
Town			City		
Country			Post/Zip Code		
Telephone *			Email *		
Item 1 *	Please Select 👻	Qty	Item 2	Please Select 👻	Qty
ltem 3	Please Select 👻	Qty	Item 4	Please Select 🔻	Qty
ltem 5	Please Select 👻	Qty	ltem 6	Please Select 💌	Qty
ltem 7	Please Select 🝷	Qty	Item 8	Please Select 💌	Qty
ltem 9	Please Select 👻	Qty	Item 10	Please Select 💌	Qty
Further Instruction:	S				

Submit Form

Why real users instead of just Web crawling?

User interaction

Mapping 3rd party domains to IPs

Extension	http://ww	tracker.com	nt listeners chrome. webRequest. onCompleted	
Domain	IP	analytics.com		
tracker com	213.121.66.99			
tracker.com				
analytics.com				
analytics.com			tracker.com	

Identify Ad and Tracking related domains

Identify Ad and Tracking related domains

. . .

Challenges

1. How to effectively detect ad and tracking related domains in the wild?

2. How to ensure correct geolocation of infrastructure servers?

3. How to ensure that all possible ad and tracking servers are observed?

4. How to maintain a balance between accuracy and scalability?

Accurate geo-location of server IPs

RIPE IPmap validation process - infrastructure servers IPs

			>	RIPE IPmap A Collaborative Approach to Mapping	g Internet Infrastructure					
prefix	region	service		2001:638:809:ff1f::8295:dc05						
46.51.128.0/18	eu-west-1	AMAZON		About API reference Manual						
46.51.216.0/21	ap- southeast-1	AMAZON		2001-638:809-ff1f8295-dc05	Rerlin DE-16 Germany	~				
13.73.232.0/21	japaneast	AZURE		2001.030.005.011.0255.000	Berlin, DE-10 Germany				99.6% match v	with
20.19.14.128 /25	koreacentral	AZURE	\leftarrow	IP LOCATION		^	32	17	the reported co	untry
				2001:638:809:ff1f::8295:dc05	Berlin, DE-16		138			
Regions ma eu-west-1: ap-southeast-1:	I <u>DS</u> Ireland, Ireland Singapore, Singa	apore	J	1			Berlin			

Challenges

1. How to effectively detect ad and tracking related domains in the wild?

2. How to ensure correct geolocation of infrastructure servers?

3. How to ensure that all possible ad and tracking servers are observed?

4. How to maintain a balance between accuracy and scalability?

Avoiding pitfalls...

- Identify <u>all domains behind each IP</u> (Reverse DNS query) Query: https://freeapi.robtex.com/pdns/reverse/93.184.216.34

Response:

rrname:example.org, rrname:www.example.org, rrname:www.example.com, rrname:www.example.net, rrname:imrek.org, rrname:example.net, rrdata:93.184.216.34, rrtype:A, rrdata:93.184.216.34, rrtype:A, rrdata:93.184.216.34, rrtype:A, rrdata:93.184.216.34, rrtype:A, rrdata:93.184.216.34, rrtype:A, rrdata:93.184.216.34, rrtype:A,

count:18
count:18

Avoiding pitfalls...

- Identify <u>all domains behind each IP</u> (Reverse DNS query) Query: https://freeapi.robtex.com/pdns/reverse/93.184.216.34

Query: https://freeapi.robtex.com/pdns/reverse/93.184.

Response:

r

rname:example.org,	rrdata:93.184.216.34,	<pre>rrtype:A,</pre>	time_first:1440526884,	time_last:1535919774,	count:18
rname:www.example.org,	rrdata:93.184.216.34,	<pre>rrtype:A,</pre>	time_first:1440723354,	time_last:1527899734,	count:18
rname:www.example.com,	rrdata:93.184.216.34,	<pre>rrtype:A,</pre>	time_first:1441108386,	time_last:1535371292,	count:18
rname:www.example.net,	rrdata:93.184.216.34,	<pre>rrtype:A,</pre>	time_first:1436692690,	time_last:1527900018,	count:18
rname:imrek.org,	rrdata:93.184.216.34,	<pre>rrtype:A,</pre>	time_first:1440827324,	time_last:1508103356,	count:18
rname:example.net,	rrdata:93.184.216.34,	<pre>rrtype:A,</pre>	time_first:1440526998,	time_last:1533895598,	count:18

- Identify all IPs for each domain (Forward DNS query)

Query: https://freeapi.robtex.com/pdns/forward/example.com

Response:

<pre>rrname:example.com,</pre>	rrdata:2606:280::::::1946,	rrtype:AAAA,	time_first:1441278890,	time_last:1535952170,	count:18
<pre>rrname:example.com,</pre>	rrdata:93.184.216.34,	rrtype:A,	time_first:1441278890,	time_last:1535952170,	count:18
<pre>rrname:example.com,</pre>	rrdata:208.77.188.166,	rrtype:A,	time_first:1246678898,	time_last:1246678898,	count:1

Avoiding pitfalls...

Joining everything together

Results - EU 28 member states confinement level

Results - EU 28 member states confinement level

What about sensitive websites?

Sensitive categories as defined by GDPR

Race & Ethnicity

Health

Political beliefs

Religion

Genetic & biometric data

Results - Sensitive websites based on EU 28 users

Challenges

1. How to effectively detect ad and tracking related domains in the wild?

2. How to ensure correct geolocation of infrastructure servers?

3. How to ensure that all possible ad and tracking servers are observed?

4. How to maintain a balance between accuracy and scalability?

Scaling up – From real users to ISP flows Datasets

List of Ad + Tracking IPs

+

ISPs Datasets									
Name	Country	Demographics							
DE-Broadband	Germany	15+ Million broadband households							
DE-Mobile	Germany	40+ Million mobile users							
PL	Poland	11+ Million mobile and broadband users							
HU	Hungary	6+ Million mobile and broadband users							

Scaling up – From real users to ISP flows

List of Ad + Tracking IPs

╋

ISPs Datasets									
Name	Country	Demographics							
DE-Broadband	Germany	15+ Million broadband households							
DE-Mobile	Germany	40+ Million mobile users							
PL	Poland	11+ Million mobile and broadband users							
HU	Hungary	6+ Million mobile and broadband users							

Four 24h daily snapshots

1. Wednesday Nov. 8, 2017 2. Wednesday Apr. 4, 2018 3. Wednesday May 16, 2018

4. Wednesday June 20, 2018

Scaling up – Continent level ISPs results

	 DE-Broadband 			• DE-Mobile			• PL			• HU						
	Nov 8	Nov 8			Nov 8			Nov 8			Nov 8					
#Sampled Tracking Flows (in Millions)	1,057.0				70.4				13.8				43.3			
EU28	88.5%				91.1%				77.5%				89.5%			
North America	10%				6.9%				19.8%				10.2%			
Rest Europe	<1%				<1%				1.9%				<1%			
Asia	<1%				<1%				<1%				<1%			
Rest World	<1%				<1%				<1%				<1%			

Scaling up – Continent level ISPs results

	 DE-Broadband 			 DE-Mobile 			• PL			• HU						
	Nov 8				Nov 8				Nov 8				Nov 8			
#Sampled Tracking Flows (in Millions)	1,057.0				70.4				13.8				43.3			
EU28	88.5%				91.1%				77.5%				89.5%			
North America	10%				6.9%				19.8%				10.2%			
Rest Europe	<1%				<1%				1.9%				<1%			
Asia	<1%				<1%				<1%				<1%			
Rest World	<1%				<1%				<1%				<1%			

Scaling up – Continent level ISPs results

	 DE-Broadband 			 DE-Mobile 			• PL			• HU						
	Nov 8	April 4			Nov 8	April 4			Nov 8	April 4			Nov 8	April 4		
#Sampled Tracking Flows (in Millions)	1,057.0	1,200.8			70.4	77.4			13.8	13.8			43.3	50.2		
EU28	88.5%	87.7%			91.1%	90.8%			77.5%	75.6%			89.5%	93.1%		
North America	10%	9.3%			6.9%	6.6%			19.8%	21.5%			10.2%	6.3%		
Rest Europe	<1%	1.7%			<1%	2%			1.9%	1.9%			<1%	<1%		
Asia	<1%	<1%			<1%	<1%			<1%	<1%			<1%	<1%		
Rest World	<1%	<1%			<1%	<1%			<1%	<1%			<1%	<1%		

Scaling up –	Continent	level	ISPs	results
--------------	-----------	-------	------	---------

	 DE-Broadband 				 DE-Mobile 				• PL				• HU			
	Nov 8	April 4	May 16		Nov 8	April 4	May 16		Nov 8	April 4	May 16		Nov 8	April 4	May 16	
#Sampled Tracking Flows (in Millions)	1,057.0	1,200.8	1,105.3		70.4	77.4	70.8		13.8	13.8	12.4		43.3	50.2	39.3	
EU28	88.5%	87.7%	86.5%		91.1%	90.8%	89.9%		77.5%	75.6%	74.7%		89.5%	93.1%	92.4%	
North America	10%	9.3%	9.2%		6.9%	6.6%	6.4%		19.8%	21.5%	22%		10.2%	6.3%	7%	
Rest Europe	<1%	1.7%	2.9%		<1%	2%	3.1%		1.9%	1.9%	1.7%		<1%	<1%	<1%	
Asia	<1%	<1%	<1%		<1%	<1%	<1%		<1%	<1%	<1%		<1%	<1%	<1%	
Rest World	<1%	<1%	<1%		<1%	<1%	<1%		<1%	<1%	1.1%		<1%	<1%	<1%	

	 DE-Broadband 				• DE-Mobile				• PL				• HU			
	Nov 8	April 4	May 16	June 20	Nov 8	April 4	May 16	June 20	Nov 8	April 4	May 16	June 20	Nov 8	April 4	May 16	June 20
#Sampled Tracking Flows (in Millions)	1,057.0	1,200.8	1,105.3	963.4	70.4	77.4	70.8	74.5	13.8	13.8	12.4	11.9	43.3	50.2	39.3	33.6
EU28	88.5%	87.7%	86.5%	88.3%	91.1%	90.8%	89.9%	92.5%	77.5%	75.6%	74.7%	75%	89.5%	93.1%	92.4%	91.6%
North America	10%	9.3%	9.2%	8.4%	6.9%	6.6%	6.4%	5.1%	19.8%	21.5%	22%	21.3%	10.2%	6.3%	7%	7.7%
Rest Europe	<1%	1.7%	2.9%	1.8%	<1%	2%	3.1%	1.3%	1.9%	1.9%	1.7%	3.4%	<1%	<1%	<1%	<1%
Asia	<1%	<1%	<1%	<1%	<1%	<1%	<1%	<1%	<1%	<1%	<1%	<1%	<1%	<1%	<1%	<1%
Rest World	<1%	<1%	<1%	<1%	<1%	<1%	<1%	<1%	<1%	<1%	1.1%	<1%	<1%	<1%	<1%	<1%

Country level confinements

ISPs dataset at April 4th

Can we further improve localization?

Two approaches:

1. Using DNS optimization

Group server IPs (locations) based on:

- a) Fully Qualified Domain Names (FQDN) *i.e., sub_d.tracker.com*
- b) Top Level Domain plus one (TLD+1) i.e., tracker.com

2. Using PoP Mirroring

Deploy/migrate PoP servers based on cloud services datacenters availability

In the paper

- Details on the methodology
- More results

Tracing Cross Border Web Tracking

Costas Iordanou TU Berlin / UC3M costas@ima.tu-berlin.de

Ingmar Poese BENOCS ipoese@benocs.com

ABSTRACT

A tracking flow is a flow between an end user and a Web tracking service. We develop an extensive measurement methodology for quantifying at scale the amount of tracking flows that cross data protection borders, be it national or international, such as the EU28 border within which the General Data Protection Regulation (GDPR) applies. Our methodology uses a browser extension to fully render advertising and tracking code, various lists and heuristics to extract well known trackers, passive DNS replication to get all the IP ranges of trackers, and state-of-the art geolocation. We employ Georgios Smaragdakis TU Berlin georgios@ima.tu-berlin.de

Nikolaos Laoutaris Data Transparency Lab / Eurecat nikos@datatransparencylab.org

1 INTRODUCTION

Online advertising, including bahavioral targeting over the Real Time Bidding protocol (RTB) [62], fuels [26] most of the free services of the web. In its principle, the concept of targeted (or personalized) advertising is benign: products and services offered to consumers that they truly care about. It is in its implementation and actual use when controversies arise. For example, tracking should respect fundamental data protection rights of people, such as their desire to opt-out, and should keep clear from sensitive personal 39 data categories, such as health, political beliefs, religion or sexual

Main takeaways

- 1. ≈90% of tracking flows from EU 28 terminates within EU 28
- 2. Incorrect geolocation approach can totally flip the results
- 3. Country level confinement is correlated with the IT infrastructure
- 4. DNS redirection & PoP Mirroring can improve confinement levels
- 5. ≈3% of the tracking flows are in sensitive categories

Tracing Cross Border Web Tracking

Costas Iordanou email: costas@ima.tu-berlin.de

European Research Council