In this study, we report on techniques and analyses that enable us to capture
Internet-wide activity at individual IP address-level granularity by relying on
server logs of a large commercial content delivery network (CDN) that serves
close to 3 trillion HTTP requests on a daily basis. Across the whole of 2015,
these logs recorded client activity involving 1.2 billion unique IPv4
addresses, the highest ever measured, in agreement with recent estimates.
Monthly client IPv4 address counts showed constant growth for years prior, but
since 2014, IPv4 count has stagnated while IPv6 counts have grown. Thus, it
seems we have entered an era marked by increased complexity, one in which the
sole enumeration of active IPv4 addresses is of little use to characterize
recent growth of the Internet as a whole.
With this observation in mind, we consider new points of view in the study of global IPv4 address activity. Our analysis shows significant churn in active IPv4 addresses: the set of active IPv4 addresses varies by as much as 25% over the course of a year. Second, by looking across the active addresses in a prefix, we are able to identify and attribute activity patterns to network restructurings, user behaviors, and, in particular, various address assignment practices. Third, by combining spatio-temporal measures of address utilization with measures of traffic volume, and sampling-based estimates of relative host counts, we present novel perspectives on worldwide IPv4 address activity, including empirical observation of under-utilization in some areas, and complete utilization, or exhaustion, in others. |