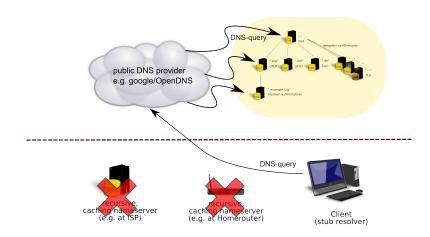
Exploring EDNS-Client-Subnet Adopters in Your Free Time

IMC 2013, Barcelona


Florian Streibelt <florian@inet.tu-berlin.de>

TU-Berlin, Germany - FG INET www.inet.tu-berlin.de

October 24th 2013

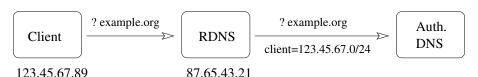
Florian Streibelt, Jan Böttger, Nikolaos Chatzis,
Georgios Smaragdakis, Anja Feldmann
With special thanks to Walter Willinger.

Non-ISP (aka 'public') DNS usage increases

Usage at 8.6% in December 2011

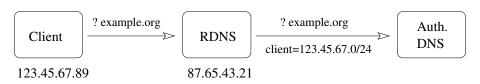
According to Otto et al. in "Content delivery and the natural evolution of DNS: remote DNS trends, performance issues and alternative solutions" (IMC 2012)

Challenge for CDNs/CPs


- Non-ISP resolvers are gaining momentum
- Clients are far away from resolvers
- CDNs often make heavy use of DNS for client location
- Using the DNS request origin for client-location now leads to (more) wrong results
- Mis-location of clients gives end-users bad performance

Introducing: Client IP information in EDNS (ECS)

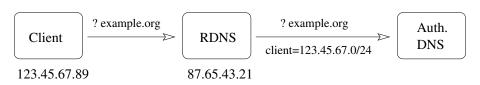
- Recursive nameserver adds client subnet information (network prefix) to the query directed at the authoritative nameserver
- EDNS0 extension is introduced to transport this data
- Proposal by Google, OpenDNS and others (A faster Internet consortium)
- Performance gain can be observed, again see Otto et al. (IMC 2012)
- We find roughly 13% of the top 1M Alexa list seem to support this extension already


(Ab)using ECS for Measurements

Intended use of ECS:

(Ab)using ECS for Measurements

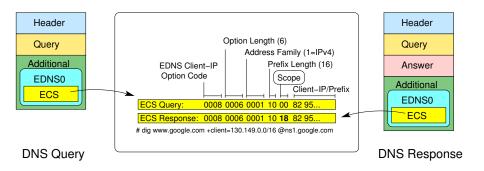
Intended use of ECS:


Doing our measurements:

130.149.x.y

(Ab)using ECS for Measurements

Intended use of ECS:


Doing our measurements:

130.149.x.y

 \Rightarrow We can impose every client 'location'.

Protocol: Client IP information in EDNS (ECS)

- The scope returned allows for caching (applied as netmask)
- The client IP information cannot be checked

ECS as a Measurement Tool

- Using arbitrary client subnet information, we can impose every client 'location'
- This gives us the opportunity to
 - find the location of CDN caches within ISPs,
 - observe the growth of CDN footprints,
 - infer client-to-server mappings (to some extend),
 - analyze dynamic changes by repeated measurements.
- As demonstration we present a subset of our experiments, using Google as example.

Measurements

- Single vantage point¹ is sufficient to use arbitrary Client IP/prefix
- As Client Subnets we use all network prefixes from RIPE RIS (sanity check using Routeviews)
- We compare with Client Subnets derived from: popular resolvers, subnets of an ISP, educational networks
- Measurements are done for: Google/YouTube, MySqueezebox, Edgecast and others
- Data to look at: A-records (servers) and scope (caching) returned

¹we checked from four different locations

Comparing sources for Client Subnets

	Prefix set	Server	Sub	AS	Countries
	RIPE	6,340	329	166	47
	RV	6,308	328	166	47
Google	PRES	6,088	313	159	46
(03/26/13)	ISP	207	28	1	1 1
	ISP24	535	44	2	2
	UNI	123	13	1	1

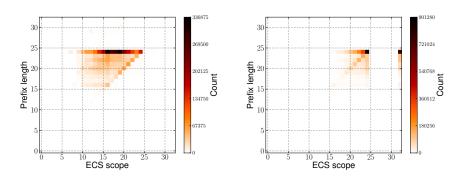
- RIPE RIS and Routeviews give nearly identical results
- The 280k most popular resolvers, as seen by a CDN, yield similar results – but dataset is not freely available
- Mapping to GGCs is working, as can been seen at the UNI and ISP datasets

Looking at the A-Records of Google

- Resolving www.google.com via ns1.google.com
- Using all network prefixes from RIPE RIS as client subnets
- Different synchronized vantage points (plausibility check)

Date	IPs	Sub	ASes	Countries
(RIPE)		nets		
2013-03-26	6340	329	166	47
2013-03-30	6495	332	167	47
2013-04-13	6821	331	167	46
2013-04-21	7162	346	169	46
2013-05-16	9762	485	287	55
2013-05-26	9465	471	281	52
2013-06-18	14418	703	454	91
2013-07-13	21321	1040	714	91
2013-08-08	21862	1083	761	123

see also the next presentation:


Calder et al.: Mapping the Expansion of Google's Serving Infrastructure

Looking at the A-Records of Google

Selected results from combined experiments:

- We see GGC (Google Global Cache edge servers) in various ISP networks
- These ISPs are not allowed to advertise the GGC, but we are
- Huge increase in the footprint can be observed, also for YouTube
- Comparing results from different vantage points we observe redirection of clients and prefixes, probably due to load balancing the GGCs
- We see that most of the time clients indeed are served from caches in their respective AS
- We see large overlap in the returned A records in the results from the different vantage points, both for Google and YouTube

Comparing Google and Edgecast Scopes

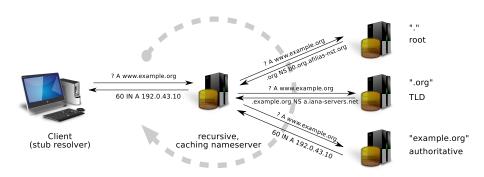
Edgecast (left) aggregates while Google (right) returns more specific scopes.

Conclusion

- Enabling ECS gives better performance for clients
- This comes with a tradeoff for DNS providers and CDNs: it also reveals internal information
- It enables researchers (and competitors) to investigate e.g. global footprint, growth-rate, user-to-server mapping, etc.
- No filtering e.g. based on number of client prefixes was yet observed
- We show that this extension offers interesting opportunities for measurements

Contact:

Florian Streibelt <florian@inet.tu-berlin.de>

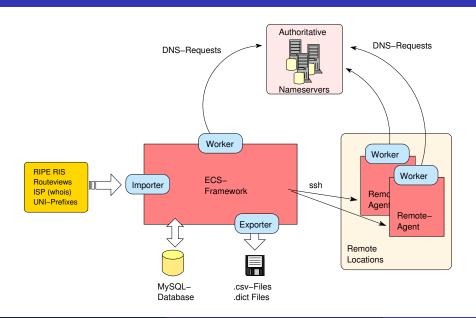

The paper, software and raw data will be published in November 2013.

http://projects.inet.tu-berlin.de/projects/ecs-adopters/wiki

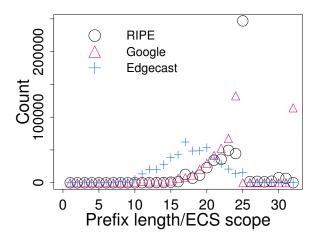
Image sources:

own work and http://openclipart.org/

A Textbook DNS-Lookup

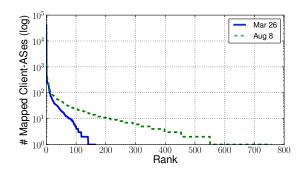


- Client asks a recursive nameserver (e.g., at the ISP)
- This nameserver follows the delegation, contacts the authoritative server
- Assumption: Client located near the recursive nameserver


How to enable ECS?

- Primary nameservers must be ECS enabled (Supported by PowerDNS: yes, Bind: no)
- If there are other systems in front: these as well
- Primary nameservers need to be whitelisted (manually) by e.g., OpenDNS, Google
- Note: We find that roughly 13% of the top 1 million domains (Alexa) may be already ECS enabled.

Framework used



RIPE RIS prefix length vs. ECS-scopes

Prefix length and scope distribution do not match and differ between adopters, also note the /32s!

Client and AS mappings

In August we see more ASes served from more than one 'server-AS'.