

Web Content Cartography

Georgios Smaragdakis

Joint work with Bernhard Ager, Wolfgang Mühlbauer, and Steve Uhlig

Cartography

Cartography (from Greek Χάρτης, *chartes* or *charax* = sheet of papyrus (paper) and *graphein* = to write)

is the study and practice of *making maps*.

I would also add:

- -Annotated maps
- Based on Inference

Cartography and the Internet

In the recent years the focus was on: Inference of topology via active or passive measurements

 \rightarrow In the router-level Source: Rocketfuel, UW

- \rightarrow New core of interconnected content and consumer networks^[1] → It is easy to deploy a massive and distributed deployment of servers

^[1] "Internet Interdomain Traffic", Labovicz, Lekel-Johnson, McPherson, Oberheide, Jahanian, SIGCOMM 2010

Content is King

Source: "On Dominant Characteristics of Residential Broadband Internet Traffic Maier, Feldmann, Paxson, Allman, IMC'09

- → HTTP is responsible for around 60% of the total traffic
- This trend will continue (flash video, cloud applications, datacenters, smartphones)
- → 50% of the Traffic in a Tier-1 US carrier is due a small number of CDNs
- → Netflix in 2011 was responsible for more then 30% of peak hour traffic

OFC/NFOEC 2011

Web Content Cartography

The process of building maps of hosting infrastructures

Identification:

- → Which are those of infrastructures?
- **Classification:**
- → Where are they located?
 - → At the network level
 - → Geographically
- → Who is operating them
- Deployment schemes
- → Which role does each infrastructure play

Why Web Content Cartography?

Research Community:

 \rightarrow To Better understand the *evolving* content ecosystem

Content Producers:

 \rightarrow To be able to better express their *preference* on the location

Content Distributors:

To understand their position in the market; strategic deployment

ISPs:

→ To Support of *strategic decisions*: peering vs. datacenter deployment

New Architectures

- → To Increase Content Awareness
 - → Check our work on "Content-Aware Traffic Engineering", Sigmetrics'12
 - & "Improving Content Delivery with PaDIS", IEEE Internet Computing, IMC'10

The "Expert Reviewer" Comment

Well, there are papers in the area that studied the deployment of, e.g.,

- Akamai^[1,2]
- RapidShare^[3]
- Google [4]

What is new here ...?

- ^[1] "Drafting Behind Akamai: Inferring Network Conditions based on CDN Redirections", Su, Choffnes, Kuzmanovic, Bustamante, IEEE/ACM ToN 2009.
- ^[2] "Measuring and Evaluating Large-Scale CDNs", Huang, Wang, Li, Ross, IMC 2008
- ^[3] "One-Click Hosting Services: A File-Sharing Hideout", Antoniadis, Markatos, Dovrolis, IMC 2009
 ^[4] "Answering "What-If" Deployment and Configuration Questions with WISE", Bin Tariq, Zeitoun, Valancius, Feamster, Ammar, SIGCOMM 2008

High-level Idea

The process of building maps of hosting infrastructures

Identification:

- → Which are those of infrastructures?
- **Classification:**
- → Where are they located?
 - → At the network level
 - → Geographically
- → Who is operating them
- Deployment schemes
- → Which role does each infrastructure plays

High-level Idea

The process of building maps of hosting infrastructures

Identification:

- Which are those of infras
 Classification:
- → Where are they located?
 - → At the network level
 - → Geographically
- → Who is operating them
- → Deployment schemes
- → Which role does each inf

They expose their identity by redirecting you to a server!

Utilize the network footprint! Publicly available Information!

Content Distribution Prime

Content Distribution Prime

C www.facebook.com/georgios.smaragdakis

DNS Answer Anatomy

→ Requesting a photo from Facebook

\$ dig photos-h.ak.fbcdn.net

More than 60% of websites (>30% of traffic) redirect to at least 5 non-original servers ^[1]

- ; <>>> DiG 9.7.0-P1 <>>> photos-h.ak.fbcdn.net
- 2nd Level Domain \rightarrow Application facebook ;; QUESTION SECTION: ; photos-h.ak.fbcdn.net. IN А ;; ANSWER SECTION: photos-h.ak.fbcdn.net. IN CNAME 6099 photosd.ak.facebook.com.edgesuite.net. photos-d.ak.facebook.com.edgesuite.net. 20492 IN CNAME a998.mml.akamai.net. a998.mm1.akamai.net. 62.41.85.74 IN А a998.mm1.akamai.net. А 62.41.85.90 7 ΙN Redirection -> Content Provider

^[1] "Understanding Web Complexity," Butkiewicz, Madhyastha, Sekar, IMC 2011

High-level Idea

The process of building maps of hosting infrastructures

Identification:

→ Which are those of inf Classification:

→ Where are they locate

- → At the network level
- → Geographically
- Who is operating then
- Deployment schemes
- Which role does each

They expose their identity by redirecting you to a server!

Utilize the network footprint! Publicly available Information!

Features

There are three different deployment schemes for Hosting Infrastructures ^[1]:

- → Centralized Hosting: Single server or Single Datacenter, e.g., Rackspace.
- Datacenter-based Hosting: A small number of datacenters, e.g., Limelight.
- → Cache-based: Highly distributed infrastructures with many peerings or deep inside the network, e.g., Google and Akamai.

Features:

- 1. Number of IP addresses
- 2. Number of subnets, we use \24 to take into account the scale of deployment
- 3. Number of ASes hosted in
- 4. Topological characteristics of prefix, AS

Feature Extraction via DNS

Feature Extraction via DNS

^[1] "Comparing DNS Resolvers in the Wild", Ager, Muehlbauer, Smaragdakis, Uhlig, IMC 2010

Step 1: Separating Large Hosting Infrastructures

- → Use k-means algorithm to partition the *hostnames* in clusters in the feature space (# of IPs, prefixes, ASes).
- → Clusters whose features have high values correspond to massively deployed infrastructures. (top-k clusters, k relatively small)

→ Small infrastructures are grouped together (they have similar small values for the features)

Step 2: Distinguishing Small Hosting Infrastructures

Features	(#IPs ,	#prefixes,	#ASes)	
Hostname 1	(4,	3,	2)	
Hostname 2	(2,	2,	2)	
Hostname 3	(1,	1,	1)	

Step 2: Distinguishing Small Hosting Infrastructures

For the smaller clusters:

- Build sub-clusters for each *hostname* and use network characteristics (*via BGP*), not only the features that correspond to size.
- → Test the similarity of any two sub-clusters, if they have a high similarity score then merge them.
- The final set of clusters contains all the hosting infrastructures. (Meta-CDNs are appear as separate clusters)

Experiment & Collection of Traces

Selection of Hostnames.

Requirement: Achieve a good coverage of Hosting Infrastructures.

- → Top 2,000 hostnames from Alexa
- → Tail 2,000 hostnames from Alexa

→ Around 3,000 embedded hostnames from the top 2,000

Utilization of Vantage Points.

Requirement: Sampling a large network footprint.

- → Friends & Family network, IMC 2010, IETF mailing lists
- → 133 Traces
- → 78 ASes, many commercial ISPs
- → 27 countries
- → 6 continents

Estimated Coverage: Hostnames

Estimated Coverage: Hostnames

Estimated Coverage: Traces

A single trace finds more than 4,000 subnets!
 Best 30 traces in 30 different ASes in 24 countries.
 Best 80 traces belong in 67 ASes and 26 countries.

Marginal utility to add more traces

Estimated Coverage: Traces

Cluster Results: The Elephants

•••**T**••••

Infrastructure cluster by rank

Cluster Results: The Elephants

. . . .

Different Usage of the same Hosting Infrastructure

Rank	#hostnames	#ASes	#prefixes	owner	content mix		
1	476	79	294	Akamai			
2	161	70	216	Akamai			
3	108	1	45	Google			
4	70	35	137	Akamai			
5	70	1	45	Google			
6	57	6	15	Limelight			
7	57	1	1	ThePlanet			
8	53	1	1	ThePlanet			
9	49	34	123	Akamai			
10	34	1	2	Skyrock OSN			
11	29	6	17	Cotendo			
12	28	4	5	Wordpress			
13	27	6	21	Footprint			
14	26	1	1	Ravand			
15	23	1	1	Xanga			
16	22	1	4	Edgecast			
17	22	1	1	ThePlanet			
18	21	1	1	ivwbox.de			
19	21	1	5	AOL			
20	20	1	1	Leaseweb			
TOP TOP & EMBEDDED TAIL							
					EMBEDDED		

Footprint of Hosting Infrastructures

A Continent-level View

Top Alexa hostnames

Requested				Served from		
from	Africa	Asia	Europe	N. America	Oceania	S. America
Africa	0.3	18.6	32.0	46.7	0.3	0.8
Asia	0.3	26.0	20.7	49.8	0.3	0.8
Europe	0.3	18.6	32.2	46.6	0.2	0.8
N. America	0.3	18.6	20.7	58.2	0.2	0.8
Oceania	0.3	20.8	20.5	49.2	5.9	0.8
S. America	0.2	18.7	20.6	49.3	0.2	10.1
		V				

Embedded hostnames

	Requested	Served from					
	from	Africa	Asia	Europe	N. America	Oceania	S. America
	Africa	0.3	26.9	35.5	35.8	0.3	0.6
	Asia	0.3	37.9	18.3	40.1	1.1	0.6
	Europe	0.3	26.8	35.6	35.6	0.4	0.6
	N. America	0.3	26.5	18.4	52.9	0.3	0.6
	Oceania	0.3	29.2	18.5	38.7	11.3	0.6
··· Ŧ····	S. America	0.3	26.4	18.2	39.3	0.3	14.2
-							

Metrics

The content can be downloaded from all the instances of the Hosting Infrastructure^[1]

^[1] "Content Delivery Networks: Protection or Threat?", Triukose, Al-Qudah, Rabinovich , ESORICS 2009

Metrics

Location	CP	NCP
AS1	1	0.75
AS2	0.5	0.25

Normalized Content Potential (NCP):

CP normalized by #locations that host the same content, for each content

Metrics

Location	CP	NCP	CMI
AS1	1	0.75	0.75
AS2	0.5	0.25	0.5

Content Monopoly Index (CMI): CMI = NCP / CP

Content Delivery Potential

Normalized Content Delivery Potential

High Content Delivery Potential leads to Monopoly

....

Comparison of AS Rankings

Rank	CAIDA-degree	CAIDA-cone (#customers)	Arbor (iner-AS traffic)	Potential	Normalized Potential	Content Monopoly Index
1	Level 3	Level 3	Level 3	NTT	Chinanet	Google
2	Cogent/PSI	AT&T	Global Crossing	Tinet	Google	ThePlanet
3	AT&T	MCI	Google	Global Crossing	ThePlanet	GoDaddy
4	MCI	Cogent/PSI		Deutsche Telekom	SoftLayer	1&1 Internet
5	Hurricane	Global Crossing	*	KDDI	China169 Backbone	OVH
6	Qwest	Sprint	Comcast	Telia	Level 3	Softlayer
7	Sprint	Qwest	*	Akamai	Rackspace	Hetzner
8	Global Crossing	Hurricane	*	Bandcon	China Telekom	Rackspace
9	tw telekom	tw twlekom	*	Cable & Wireless	1&1 Internet	LEASEWEB
10	INIT7	TeliaNet	*	Qwest	OVH	AOL

.

Google, Akamai??

. .

→ Signature-free Identification and Classification of Hosting Infrastructures

→ Lightweight Discovery of Hosting Infrastructure

→ Content-centric AS rankings

→ Tracking of trends in content delivery, e.g., Monopolized delivery and content hosted in Asia.

Current Agenda

→ Improvement of Coverage

→ Incorporate Passive Measurements and Information from Content Providers

→ Shed light on Strategic Decisions on Content Deployment

→ Investigate further the Interplay between Topological Changes and Content Hosting

Thank you!

Back-up Slides

DNS Quality of Answer (ACM IMC 2010, Comparing DNS Resolvers in the Wild)

vantage points (sorted by # returned IPs that are in same AS)

- → In many ISPs, the DNS deployment leads to high locality
- → Still, a high number of requests could have been served locally
- → GoogleDNS and OpenDNS mis-direct users (mis-location or sth. else?)

