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Abstract—With the ongoing digitalization, an increasing num-
ber of sensors is becoming part of our digital infrastructure.
These sensors produce highly, even globally, distributed data
streams. The aggregate data rate of these streams far exceeds
local storage and computing capabilities. Yet, for radical new
services (e.g., predictive maintenance and autonomous driving),
which depend on various control loops, this data needs to be
analyzed in a timely fashion.

In this position paper, we outline a system architecture
that can effectively handle distributed mega-datasets using data
aggregation. Hereby, we point out two research challenges: The
need for (1) novel computing primitives that allow us to aggregate
data at scale across multiple hierarchies (i.e., time and location)
while answering a multitude of a priori unknown queries, and (2)
transfer optimizations that enable rapid local and global decision
making.

Index Terms—database, computer network, computer system

I. INTRODUCTION

A few decades ago, digitalization1 entered many processes
of modern society, from public administration to e-commerce,
from transportation to industrial automation, ultimately perme-
ating our everyday lives. Now, we are in the middle of a digital
revolution of unprecedented intensity where digitalization will
force the future convergence of the physical and digital worlds
with ubiquitous, novel, and disruptive applications. A prerequi-
site for the digital future is timely and dependable information
from the physical world that allows the physical processes and
their digital representations to interact through multiple real-
time control loops at different levels of time, spatial scale, and
detail.

We consider settings, e.g., smart factory and network man-
agement, where data, physical processes, and their models are
distributed [15]. Consistency, real-time accuracy, data sharing,
joined processing, and data privacy needs to be provided
based on user and or process requirements. They are subject
to the constraints of the available computing and bandwidth
resources as well as security and data privacy restrictions.

Maintaining a digital representation of the real world in a
consistent and timely manner is challenging. The challenges
arise when handling data at different scales of time (from sub-
millisecond to hours, and days, spanning easily 6-7 orders
of magnitude) and space. Other challenges include handling
heterogeneous, non-stationary, and non-uniform, distributed
data streams. Furthermore, sensing must efficiently produce

1Digitalization here refers to the process of leveraging digitization (the
conversion of analog media into digital form) to improve business processes.

summaries of the physical world, while achieving specific
(task-defined) approximation guarantees and respecting pri-
vacy during data integration and analysis.

Our vision is driven by the increasing deployment of sensors
and their increasing resolution, particularly at the edge of the
Internet [1], [3], [4]. These sensors produce data at a rate that
outpaces the capacity growth of wide-area networks.

This trend has led to the creation of datasets that originate
from many different sources. These datasets can no longer be
fully stored and/or processed within a single computer system.
We refer to them as mega-datasets. A mega-dataset can only
be handled by a distributed, yet local system, e.g., a cluster
of compute nodes. We define a distributed mega-dataset as a
collection of physically distributed mega-datasets.

Processing the distributed mega-datasets, in a coordinated,
yet distributed fashion in real-time requires novel computing
primitives. Such primitives need to summarize data in a form
that supports (a) support arbitrary queries on the data, (b)
combining summaries gained from different locations or at
different moments in time times, (c) adjusting the aggregation
granularity, (d) adapting to variations in data and queries.
Further, these primitives should (e) make use of domain
knowledge to provide meaningful levels of aggregation. At
the same time, they need to use minimal resources and address
data lineage, quality criteria, and time constraints.

In this paper, we present our vision of how distributed mega-
dataset can be successfully handled. We introduce a possible
architecture and give two examples of computing primitives
to handle them. Throughout the remainder of this paper, we
use two cases, namely, Smart Factory [19], [23] and Network
Monitoring [20].

II. USE CASES

A. Use Case: Smart Factory

Traditionally, a factory consisted of single-purpose ma-
chines, which followed a rigid sequence of instructions and
interacted with each other, e.g., by moving goods over a con-
veyor belt. Hereby, monitoring was limited to a small number
of sensors with limited capabilities. This factory design limited
the machine’s range of operation and necessitated constant
supervision and frequent interventions by human operators.

Drastic changes have happened since then, e.g., the intro-
duction of collaborative robotic arms [17] and autonomous
forklifts [5]. Robotic arms extend the range of movements
that a machine can perform and simplifies the interaction with



Machine
< 1s

Production Line
< 1m

Edge
< 1w

Cloud

Line Line

Factory

Corporate 
HQ

…

I
N

O
U
T

M M M I
N

O
U
T

M M M

WAN

…… …

(a) Smart Factory.

Region Region…

Network

Routers

Cloud

WAN

… …

(b) Network Monitoring.

Fig. 1: Two settings with distributed mega-datasets: Smart Factory (left) and Network Monitoring (right). The dotted lines
represent the lines of (partial) control from higher to lower hierarchy levels.

human operators. Autonomous forklifts extend the reach of
factory automation into the warehouse. Both are examples of
recent innovations, which are enabled by a combination of
high-resolution sensors (e.g., 3D cameras) and a multitude of
lower-resolution sensors. As a consequence, their data rates
have exploded, e.g., a single 3D camera can produce 52
GB/h of uncompressed data and a high-resolution camera
can produce 17.5 GB/h of uncompressed data. The data rates
have increased to a degree that they often require dedicated
data processing equipment, which enables new more complex
behavior and richer interactions. Still, these innovations are
constrained by limited compute and storage resources in the
vicinity of the machine and limited sharing of data across
machines.

The next step in the evolution of factories will be “the”
fully automated factory consisting of autonomously operating
parts. It will rely on rapid local decision making while
respecting today’s factories setups (particularly at the machine
and production line level) and at the same time it will be
able to constantly adapt to insights gained across factory
lines and different factory locations. This adaptation will
enable improvements to the efficiency of existing processes,
e.g., adjustments to degrading machine mechanics, as well as
enable new processes, e.g., for mass customization.

In Figure 1, we illustrate (on the left) the typical hierarchical
structure of a factory. Machines connected by a conveyor
belt or related technology (the production line) are located at
the lowest level. The controller of the production line is one
level above. Besides the control of the respective machines,
this level may also control supporting processes, such as the
movement of materials and products. All production lines are
monitored and managed on the factory level, which may lever-

age additional data (e.g., from factory cameras). Some part of
the gathered data/information may be exported into the Cloud
resp. dedicated datacenters, where it can be combined with
additional resources (e.g., for Enterprise Resource Planning
or ERP).

Given the ever-increasing data flood from all sensors, mega-
datasets arise at different points in the factory. As a whole,
they form a distributed mega-dataset. Different applications
require this data to be processed in different ways. While some
require the data to be processed immediately as data streams,
others require it to be stored, either temporarily or almost
permanently, to answer (interactive) queries at a later point,
e.g., on the history of produced goods for supply-chain man-
agement. Similarly, applications have different requirements:
they differ in the degree of precision that they require, e.g., in
terms of measurements over time; whether they require data
from a single mega-dataset or multiple mega-datasets; what
timeliness they require, e.g, decision making at the machine
resp. factory level may require results between 1 second and
1 minute respectively.

There are many applications that can be enabled by better
use of the factories’ data. To name but a few: (a) predictive
maintenance, the analysis of operational data belonging to a
type or class machines of machines to predict failures and
schedule maintenance operations accordingly; (b) supply chain
management, procedures for tracing product failures back to
the material used in the production steps or to variations in
the production process itself; (c) process mining, the review of
production processes attained by combining operational data
and enterprise data to identify sources for efficiency gains.



# Challenge Smart Factory Network Monitoring

1 Increasing computation requirements High-resolution camera feed High-speed traffic inspection
2 Large number of devices producing data streams Streams of sensor data Streams of flow data
3 Massive combined data rates Machine and factory-level sensors flow exports from switches, routers, etc.
4 Rapid local decision making Machine control Repair of network failures
5 High data variability Differing sensor types Logs, flows, packets
6 Analytics require full knowledge Predictive maintenance Traffic engineering & provisioning
7 Hierarchical structure Machines, production lines, factories Devices, regions, networks
8 Varying requirements across applications Maintenance vs. process optimization Attack mitigation vs. load balancing
9 A priori unknown queries state of production network state

TABLE I: Challenges of distributed mega-datasets and examples from both use cases

B. Use Case: Network Monitoring

Today’s de facto communication medium is the Internet, a
network of networks. To cope with the increasing demand and
complexity, network operators have to manage their networks.
Network management requires an accurate view of the net-
work, based on the continuous analysis of network data, i.e.,
network monitoring.

In the past a coarse-grained view of the network was
sufficient. Today, network operators must have a fine-grained
view of their networks. They have to continuously keep
track of their network activity both over relatively large time
windows, e.g., days or busy hour (6pm to 12am), for network
provisioning or to make informed peering decisions as well
as over smaller time windows, e.g., minutes, to identify and
rectify unusual events, e.g., attacks or network disruptions. To
that end, they typically rely on either flow-level or packet-
level captures from routers within their network. As gathering
such data for every packet is often too expensive at high-speed
links, packets are sampled, e.g., 1 of every 10K packets [7].
Still, even the resulting datasets can exceed multiple Terabytes
per day and router. Thus, sending this data to a central location
may or may not be possible, e.g., due to data protection regula-
tions, or desirable, due to bandwidth restrictions. Rather, each
dataset produced by a set of routers forms a “local/regional”
mega-dataset. These datasets together with additional network
configuration data, e.g., topology, network element state, and
routing configuration, form a distributed mega-dataset.

Many problems that network operators face can be re-
solved by analyzing such a distributed mega-dataset or a
subset of mega-datasets. It can help to (a) determine network
trends, e.g., popular network applications or traffic sources; (b)
compute traffic matrices, for planning network upgrades, (c)
investigate performance and/or DDoS incidents, i.e., identify
affected network parts and possible sources, (d) perform dy-
namic traffic engineering, by aggregating flow statistics across
time and sites, (e) answer interactive queries on the state of
the network.

III. ARCHITECTURE

In both use cases distributed mega-datasets arise and similar
challenges have to be addressed. We summarize 9 key chal-
lenges in Table I and associate each of these challenges with
the operation of smart factories (middle column) and network
monitoring (right column). These challenges motivate us to
propose the following novel data processing architecture.

The design of our architecture leverages the following
observations: (a) data has to be filtered and aggregated prior
to computation (Challenge 3), (b) data from different data
streams, with varying rates and characteristics, have to be
combined (Challenge 2), (c) processing has to enable local
(Challenge 4) and far-reaching control loops (Challenge 6), (d)
processing has to be spread out over a hierarchy of physical
processes, resources, and restrictions (Challenges 1, 7), (e)
computation has to be modular to include different aggrega-
tion, analytics, and application logic (Challenges 8 and 5) and
(f) data has to be stored at different aggregation granularity
for future, yet unknown, queries (Challenges 9).

Flexible yet resource efficient data summarization is at
the heart of extracting timely information from distributed
mega-datasets. For this purpose, we propose novel computing
primitives that construct summaries of the data, which can be
combined across the hierarchy.

A. Building Blocks

We base our architecture on four building blocks, see
Figure 2a. These are Data Stores (“collect & aggregate”),
Analytics (“transfer & process”), Applications (“model &
learn”), and Controllers (“resolve conflicts & decide”). In the
following, we describe each building block in more detail. For
an illustration of the architecture see Figure 2b.

Data Store: A data store aggregates data, using one or
multiple instances of computing primitives, which we refer to
as aggregators. We describe data stores in depth in Section IV
and computing primitives in Section V.

Applications: To satisfy the varying needs of the users of
the distributed mega-datasets, we envision a range of different
applications. Each application embodies the decision logic for
a single purpose. Applications can be long-running processes
or enable short-term queries. They function as an interface to
the users to gather information from the data stores. Thus,
they can serve monitoring or reporting purposes. We envision
that most applications run on a compute cluster, either at the
edge or in a datacenter. Applications can be purely local,
e.g., one that supervises the temperature of all machines of a
specific type, or global ones, e.g., one that tracks the efficiency
of different factories in different countries. Other application
examples are process mining and predictive maintenance.
Applications have two ways to interact with the physical
world. They can either contact the controller, to manipulate
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Fig. 2: Breakdown of processing

physical processes directly, or install triggers in the data store,
to influence future behavior. As the name suggests, triggers are
triggered by events and then signal a controller. We envision
that the latter can be used for simple conditions that need
real-time reactions while the former is used to detect complex
situations and may require complex actions, e.g., an update of
the controller’s logic.

Analytics: Many applications require processing beyond the
computing primitives capabilities that can be installed within
the data stores. They may require computation ranging from
big data analytics, e.g., primitives that exploit “embarrassingly
parallel” computation (MapReduce, etc.), which can run on
various devices, to more complex computations, even those
that require specific hardware (e.g., GPUs, TPUs or FPGAs).
In principle, we envision Analytics as a toolset that includes
machine learning, graph processing, as well as big data
systems such as Flink [16], Spark [14], etc. But, it does not
have to stop here. Rather, it can also include visualization and
statistics toolkits, e.g., R [10] or MATLAB [21], or tools to
build interactive data visualizations, using e.g., Shiny [2].

Controller: For operating at production speed, machines may
not be able to wait for input from applications. Yet, some
validation may be necessary to avoid failures, e.g., raising
a robot arm beyond its highest point. Thus, we envision a
local control logic, the controller. The controller monitors the
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Fig. 3: Architecture (view from the perspective of a level)

machine, e.g., using a set of patterns, which can be installed
at the data stores as triggers. When a trigger matches the
controller is activated and regulates the machine accordingly.
The logic for the controller is installed and updated by
individual applications but are checked for conflicts by the
controller prior to installation.

B. Data and Control flow

The Manager component manages the architecture. We
describe both the data and the control plane in turn.
Data flow: Having described the components of our system,
we now turn to explain how data flows through the system and
fires consecutive actions. Data is first pushed from the sensor
(based on a request or a prior subscription) to the data store. In
the data store, data is aggregated according to a chosen set of
computing primitives. If any registered trigger matches a data
summary (including possibly raw storage of the data), it acti-
vates the controller which regulates the respective machine(s).
Independent from whether or not triggers are activated, the
data store sends data to any registered Analytics pipeline. The
pipeline performs pre-processing (e.g., using MapReduce),
data transfer (scatter and gather semantics) and inference (e.g.,
using a Machine Learning algorithm). A pipeline feeds the
processed data to one or possibly many applications. The
applications, in turn, decide whether to install new rules in
the controller and can also forward the data for monitoring
or reporting purposes. Conflicts between rules are resolved
locally at the controller.
Control flow/Manager: Its configuration is a major challenge
in realizing the architecture. The control plane which we



envision is shown in Figure 3b. The Manager assigns and
adapts resources according to the varying application needs.
For each application, it records the application requirements in
terms of the required data source and aggregation format (e.g.,
sample or histogram) and the required precision (e.g., sample
rate or bin size). The manager then uses this information
to decide (a) what data should be kept from which sensors
(b) what computing primitive should be installed, (c) how
the computing primitives should be configured and (d) what
analytics is deployed within the infrastructure (from the level
of the machine up to the datacenter). Besides the storage
within the data stores (shown in Figure 3b), the Manager tracks
the availability of network bandwidth and computing nodes
across the architecture. In summary, the manager controls all
components of the architecture.
Hierarchy: So far, we described the architecture that handles
one data store, which corresponds to one single mega-dataset.
In the case of distributed mega-datasets, each mega-dataset is
stored in its own data store. Further data stores exist to merge
and aggregate data from multiple mega-datasets, depending
on the need of the applications. We have depicted an example
of a hierarchy in Figure 2b. In this example, the data stores
responsible for combining data are located closer to a center
of the infrastructure, i.e., closer to compute clusters, while the
other data stores are located closer to the majority of physical
processes. The manager decides what data stores should be
deployed based on the needs of the applications and connects
the Analytics pipelines with the respective data stores.

C. Security, Privacy, Lineage, and Integration
Security & Privacy: In our architecture, privacy can be
enforced, by limiting what summaries can be shared with the
analytics component and at what granularity. Other summaries
and more precise data may still be used by a local Controller.
Security can be achieved, by encrypting data along the Analyt-
ics pipelines, requiring updates to the Controller to be certified
to ensure authenticity, and by requiring authorization prior to
interaction with the manager.
Lineage: An unavoidable problem in systems interacting with
and processing sensor data is faulty or missing data. To address
this problem we need to track data as it moves through and
is transformed by the system. This process is referred to as
“lineage”. Data lineage can, e.g., be used to identify faulty
sensors or retract erroneous rules. Data lineage [6], [22] can
be differentiated into schema-level and instance-level lineage.
Schema-level lineage tracks the transformation of data from
sensors to applications with respect to changing formats and
the locations of transformations. It can help to identify how
data came to its current format, but it cannot give information
on specific results. Instance-level lineage tracks individual
items as they move through the system. It can be used to see
how faulty data propagates, but it usually comes at a high cost
(high overhead). The identification of a lineage mechanism
for each computing primitive and analytic component at the
envisioned data rate and with the flexibility of this system is
an unsolved challenge.
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Fig. 4: Datastore

Integration: Another problem that we have not touched upon
is the integration of data beyond the operational data. We
envision that applications will also make use of business data,
e.g., the Enterprise Resource Planning database. This can be
realized by the interaction between the business data and a
data store located at a central data center.

IV. DATA STORE

We show our vision for the data store in Figure 4. The
data store selects and collects data from sensors and then
feeds their data into aggregators, instances of computing
primitives, that have subscribed to the respective data streams.
Queries received by the data store are broken into sub-queries
and are forwarded to the respective aggregator. Sub-queries
for aggregators stored at other data stores are forwarded or
resolved on a local replicate. The main responsibility of the
data store is to ensure that the storage and network resources
are efficiently used:

Storage: Note that the data store is the only entity in our
architecture, which stores data. All other elements might cache
data or intermediate results (depending on their implementa-
tion), but they are not expected to persistently store raw or
summarized data. Hence, when a data store chooses to delete
data, it cannot be recovered. Thus, storage space has to be
carefully allocated and managed.

We identify three basic strategies for storing data in the
data store: (1) storage with predefined expiration, (2) storage
using a round-robin mechanism, and (3) storage using a
round-robin mechanism and hierarchical aggregation. The first
strategy gives application developers the guarantee that data is
stored for a fix time duration. Note, choosing the time period
optimally in advanced may be difficult. The second strategy
optimizes the use of storage in the sense that it fully utilizes
the storage. In this case, the duration that the data is stored
depends on the data rate. The third strategy is a combination
of the first and second one in the sense that older data is not
expired but aggregated to a coarser granularity with a smaller
footprint and then stored. This guarantees long-term storage
but at the price of reduced detail due to aggregation. More
sophisticated strategies may regard stored data as a storage



investment that has to be traded off against future queries that
it will help answer. These strategies may compress or delete
data that is deemed of lesser interest in the long-term.

Network Transfers: Different data stores gather data at
different locations. Yet, some analysis requires their joint
processing. Thus, data in one data store may have to be
combined with data from other data stores to answer queries
across the distributed mega-dataset. In this case, the data store
has the choice of (1) shipping the query to the data or (2)
replicating the respective aggregator(s). A basic strategy for
this decision is to replicate the data produced by an aggregator
when the data it holds has been accessed at least n number
of times by a remote data store, when at least b of its bytes
have been transferred or when it has created a transfer volume
of at least p percent of its own storage volume. Each of these
strategies is heuristic in nature. More sophisticated strategies
can be developed using predictions of future accesses. We
address this problem in more detail in Section VII.

V. COMPUTING PRIMITIVES

A major challenge in realizing our architecture is the
efficient summarization of data across multiple sources and
locations to answer a priory unknown queries. This is accom-
plished by computing primitives, which can be used by the in-
dividual data store to create data summaries, aggregates of raw
data, from the incoming data streams. Computing primitives
can use aggregation methods from simple statistics over time
bins (e.g., sum, mean, median, and standard deviation) and
sampling methods to more complicated streaming algorithms
(e.g., heavy hitter detection or even hierarchical heavy hitter
detection).

Yet, none of the above methods are suited to unleash the
full capabilities of our proposed architecture as they do not
support any of the following: support arbitrary queries, enable
the combination of data summaries, have an adjustable level of
aggregation, self-adapt to incoming data and queries and take
domain knowledge into account, to create more meaningful
summaries. Thus, we need novel computing primitives. In the
following, we discuss these desired properties in more detail.

A. Design properties

Support arbitrary queries: Each computing primitive needs
to enable arbitrary queries, particular a priori unknown queries,
on its respective data summaries. While the format of the
queries depends on the particular data organization, each prim-
itive should permit flexibility, e.g., in the degree of precision.

Can combine summaries: For integration into the hierarchy
of data stores, computing primitive should be able to com-
bine data summaries. Each summary represents a single time
interval and a collection of data streams at a single location.
Hence, a combined data summary can answer queries over
data from multiple locations (including differences between
the locations).

Adjust the level of aggregation granularity: In most cases,
the raw data is produced at rates that are too high for storage

or timely processing. Therefore, computing primitives should
aggregate data into summaries that can be stored and timely
processed. Furthermore, to deal with volatility in the rate of
incoming data streams, computing primitives should be able
to adjust their level of aggregation granularity over time.

Self-adaptive: Every summary produced by a computing
primitive increases the storage and processing footprint of the
data store. To limit the occupied storage, the summary should
continuously re-organize the data it stores and its level of
aggregation granularity according to the incoming data streams
and queries. If the manager were to know all future requests in
advance, e.g., because the set of application is fixed, it would
be straightforward for the manager to choose the appropriate
aggregation level for the computing primitive. Yet, most of the
time this information is not available. Therefore, computing
primitive should ideally be able to adjust the granularity on
demand. Where this is not possible due to the aggregation
method, the applications may be forced to specify at which
aggregation level they want to operate.

Uses domain knowledge: Knowledge of the data domain
can help create more meaningful computing primitives where
aggregation has a semantic relationship to the data. Such
computing primitive can enable queries to express their desired
level of aggregation in terms of the domain.

B. Toy Example

A toy example of a computing primitive can be an aggre-
gator that uses random sampling. This primitive can produce
a data summary in the form of a sampled time series and has
the following properties:

• Query: It enables queries on a time series, e.g., by
selecting all data points in a given time frame that exceed
a given value.

• Combine: Two summaries, i.e., time series, can be
combined by combining individual data points from the
respective time series.

• Aggregate: The level of aggregation can be changed by
adjusting the sampling rate of the time series.

• Self-adapt: The time granularity required by incoming
queries and the rate of the incoming data can be used to
adjust the sampling rate.

• Domain knowledge: This computing primitive using
random sampling is an example of aggregation without
domain knowledge.

VI. EXAMPLE: COMPUTING PRIMITIVES FOR
NETWORK MONITORING

Here, we revisit the use-case of network monitoring and
present a computing primitive for this use case. In the case
of network monitoring, data summaries across the hierarchy
should enable queries ranging from network troubleshooting
to routine summaries on a set of distributed flow features
vectors. (Recall, a flow feature vector is, typically, a 5-tuple
and summarizes traffic information per flow: packet and byte
count.) The challenge here is that we need succinct and space
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efficient data summaries of network flows to accurately and
quickly answer queries and tackle network management tasks
that involve multiple sites and/or span multiple time periods.

Our current proposal is to rely on the concept of generalized
flows as aggregation unit: Flows summarize related packets
over time at a specific aggregation granularity. Possible flow
types include “5-feature” flows, i.e., protocol, source and
destination IP, source and destination port. Other flow types are
“2-feature” flows, e.g., source and destination IP or destination
IP and destination port. Each feature can be generalized by
using a mask, e.g., by moving from an IP to a prefix. By
generalizing from flows in this way, we arrive at hierarchies
of features, whereby an IP a.b.c.d is part of the prefix a.b.c.d/n1

and a.b.c.d/n1 is a more specific of a.b.c.d/n2 if n1 > n2.
We propose a novel computing primitive, namely Flowtree,

for computing generalized flows. Flowtree is a self-adjusting
data structure which uses existing network traces as input
and works on the fly. Since the input data is often heavily
sampled prior to ingestion, the Flowtree does not provide exact
summaries. Rather, it allows us to distinguish heavy hitters
from non-popular flows and summarize data across different
network sites and time.

Flowtree takes advantage of the fact that flows are part of
a tree, where each observed flow and each generalized flow
thereof is a node. One node is a parent of the other when
its flow is the most specific generalized flow of the other.
We annotate each node with a popularity score, which can be
either its packet count, flow count, byte count, or combinations
thereof. The popularity score of a node is the sum of its own
popularity score plus the popularity scores of the children.

Flowtree supports a number of operators, which we have
described in Table II. Merge and Compress enable us to
compute efficient summaries across time and/or space. In
effect, they allow us to add the time and location as features.
For example, given two instances of the data structure A1 for
time period t1 (location l1) and A2 for t2 (l2) we construct a
summary for the joined time period (both locations) by setting
A12 = compress(A1∪A2). For more details see [20]. Flowtree
is an example of a novel computing primitive. It supports
queries, enables the combination (Merge and Diff ) of data
summaries, includes an adjustable level of aggregation and

Operator Description

Merge Join two Flowtrees into one (requires either shared time or
location).

Compress Summarize the lower level nodes of a Flowtree.
Diff Subtract the popularity scores from flows appearing in one

tree from the other.
Query Return the popularity score of a single flow.
Drilldown Return the flows and popularity scores that are children of a

single flow.
Top-k Show the k flows with the highest popularity score.
Above-x Show all flows that have a popularity score above x.
HHH Return all flows across the Flowtree that have a substantial

popularity score.

TABLE II: Flowtree operators

adapts the level of aggregation to the incoming data using its
tree structure. Furthermore, it is modeled closely after the data
domain, which enables aggregation along the level of subnets.

We propose to use Flowtree as computing primitive per flow
within the data store. Parameters at each data store include
feature sets as well as time and location granularity that are
kept at the data store. The resulting Flowtrees can (a) be
exported to data stores, e.g., to be build trees at larger time
or location granularity, (b) be exported to an analytic engine,
which we refer to as FlowDB, or (c) can be queried directly
by an application. FlowDB takes flow summaries as input,
stores, and indexes them while using them to answer FlowQL
queries. FlowQL is an SQL-like query language which uses
Flowtrees operators to answer network management questions.
More specifically, with FlowQL the user chooses his operator
via a SELECT clause, one or multiple time periods via a FROM
clause, and the feature set via a WHERE clause. Moreover, he
can use the WHERE clause to add restrictions, e.g., source IP
= a.b.c/24.

Together, the resulting system, called Flowstream, see Fig-
ure 5, is an instantiation of the architecture outlined in Sec-
tion III. Thus, the router sends its raw flow data to a data
store 1 . The data store uses Flowtree as its aggregator to
compute summaries 2 and potentially exports these to other
data stores 3 . The data store can either further aggregate them
or use them 4 to answer user queries via the FlowQL API 5 .

VII. TRANSFER OPTIMIZATION

In Section V we described how data stores have to exchange
data to support queries across locations. These data exchanges
require careful optimization of the available resources. Par-
ticularly, because the resources of a data store will often be
shared between multiple instances of computing primitives. In
this section, we frame the problem of network optimization as
a trade-off between the cost of shipping query results and of
replication (illustrated in Figure 6) and give an example of a
possible mechanism.

When a data store receives a query for combined data A ,
it must first ensure that the respective data is locally available.
When this is not the case, it has to query the respective data
store B and collect the result C before it can process D
and answer the query E . The time spent on retrieving data
from another data store increases the latency of the individual
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Fig. 6: Optimizing data transfers with adaptive replication

query and, when done repeatedly, increases the system’s
use of the network. The former can become a problem for
applications that have low latency requirements, while the
latter can degrade the performance.

The performance can be improved both by reactively
caching [18] earlier results and by proactively replicating data
to the local data store. Of the two, caching is the more con-
strained approach, as it can only help for repeat queries. For
this reason, we focus on replication. (Note, that the approaches
are not mutually exclusive, but can be combined.) Due to the
size of the mega-datasets, full replication of data between data
stores introduces massive transfer and storage cost. Instead,
the data maintained by a data store can be partitioned to allow
partial replication. Then, the data store can trade off the cost of
replicating individual partitions against their estimated future
access pattern. In some use cases, this access pattern may
be known in advance, e.g., when applications use predefined
queries. When it is not known in advance, which is more often
the case, access patterns have to be estimated from previous
accesses.

In our architecture (see Section III), the accesses of parti-
tions 1 can be recorded by the manager. From these accesses,
the manager can record, for every partition, the time at which
it is accessed and the data volume of query results. The
manager can use this information to classify partitions and
predict further data transfers that a partition is involved in 2 .
A threshold can be used to balance the predicted future access
of a partition against the cost of replicating the partition. If
the predictions for a partition exceed a threshold, the manager
can initiate its replication 3 . The replication is then executed
between the two data stores 4 . We refer to the replication
of data partitions on the basis of prediction of their future
accesses as adaptive replication.

In the remainder of the section, we describe one example
for an adaptive replication mechanism. As a simple approach,
we use the aggregated data volume of past query results of one
partition to predict its expected number of future accesses.

To this end, we rely on results derived for the classical ski

rental problem [8], [12]. In this theoretical problem, a skier is
faced with a choice between buying a ski-set for a large one-
time cost and renting the ski-set for a small daily payment. He
will face the same decision choice every day, until he either
chooses to buy the ski or his skiing career ends. The length
of his skiing career is unknown in advance and so he has to
choose in the face of uncertainty. This problem is similar to
choosing the right moment of replicating a single partition, in
that renting the ski-set corresponds to shipping queries, buying
the ski-set corresponds to replication and the days to the point
in time where queries for the given partition appear. Work by
Karlin et al. [12] showed that the best (deterministic) worst-
case solution for this problem is to buy the ski-set when money
equal to the price of buying has been spent on rent.

Our problem is similar to a variant of the ski rental
problem [9], [11], [13] where the probability for the number of
skiing days is known to follow a given probability distribution.
Under this condition a better solution, i.e., a better threshold
can be found for the average case [9], [13]. In our scenario, the
probability of future accesses is not known, but the aggregate
result size for older partitions are from a distribution that can
be used to predict future access for partitions created at a later
date. We are currently evaluating this method and variations
thereof on an enterprise-level query trace.

In summary, adaptive replication is an essential mechanism
to reduce the data volume transferred across the network.

VIII. SUMMARY

Digitalization goes along with data floods from many dis-
tributed sources. Using two use cases, smart factory and net-
work monitoring we point out why and how distributed mega-
datasets arise. These datasets cannot be stored or processed
locally. Yet, they need to be processed to support the correct
interactions with and the necessary control loops of the real
world. Indeed, an accurate reflection of the digital world with
bounded capacities for communication, storage, computation,
and accuracy is challenging.

To address this challenge, we propose an architecture for
handling mega-datasets which consist of a hierarchy of data
stores, applications to address the needs of the users via data
analytics, controllers to facilitate interactions with the physical
world as directed to by the applications, and a manager that
controls the data flow.

Further, we highlight the need for novel computing prim-
itives to efficiently summarize data across different units of
time and across the many data sources. We list five essen-
tial properties: (1) the support for arbitrary queries, (2) the
production of combinable data summaries, (3) an adjustable
level of aggregation, (4) self-adaptation of the data summary to
the incoming data streams and queries and (5) use of domain
knowledge to define meaningful aggregation levels.

We apply our architecture to the network monitoring prob-
lem and show how Flowtree, an example of a novel computing
primitive, can efficiently handle a mega-dataset (network flow
data). Finally, we show how computing primitives can be used



to optimize data transfers and improve the performance of our
architecture.
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