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ABSTRACT
The rapid expansion of multi-cloud environments and the grow-

ing prevalence of collaborative data ownership present significant

challenges in ensuring the verifiable deletion of co-owned data. Cur-

rent approaches predominantly address individual ownership and

often rely on simplistic one-bit result protocols where a deletion

command merely outputs success or failure, turning the deletion

into a black box without proper verification. This paper tackles the

problem of secure processing and verifiable deletion of shared out-

sourced data in multi-cloud environments. We design a framework

that enables a data owner to outsource encrypted data to multiple

co-owners, who perform computations directly within their re-

spective cloud providers—ensuring that sensitive data never leaves

the cloud. Our system leverages readily available cloud Hardware
Security Modules (HSMs) to manage cryptographic keys from gener-

ation to controlled destruction—ensuring data remains inaccessible

beyond its intended use. Secure Enclaves enforce on-cloud data

computation, eliminating local copies and preventing unauthorized

exposure. Encrypted data is structured within a fixed storage model,

ensuring controlled allocation and strict storage constraints. When

data expires ormust be deleted tomeet regulatory requirements, our

framework triggers zero-residual permuted overwriting to remove

the data traces irreversibly. Verifiability is achieved at two levels:

Bounded Merkle Hash Tree (BMHT) ensures bounded storage and

verifiable deletion within each cloud provider. In contrast, Global
Merkle Forest (GMF) aggregates BMHT roots across providers, en-

abling consistent global verification. The data owner maintains

a log of these BMHT roots, allowing independent verification of

secure deletion across the multi-cloud environment.
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1 INTRODUCTION
Modern digital services depend on data-intensive systems, making

secure and provable data deletion crucial for privacy protection [27,

37]. As sensitive data moves to the cloud, concerns over integrity,

availability, and deletion grow [14, 24]. Failure to ensure proper

erasure can lead to privacy breaches, security risks, and regulatory

violations [22, 36]. Researchers have proposed solutions compliant

with General Data Protection Regulation (GDPR) [10, 17], broadly

classified into the following approaches.

a) Deletion by Unlinking [11, 25, 28]: This method severs the

data’s link to the file system, returning a one-bit success/failure

response on deletion. However, the data remains physically in-

tact, making it vulnerable to forensic recovery and lacking reliable,

secure deletion.

b) Deletion by Cryptography [4, 7, 8, 12, 18]: Data is encrypted,

securing it through its key. The data becomes unrecoverable once

the key is destroyed, though the ciphertext remains in the cloud.

This method simplifies deletion by eliminating the key instead of

overwriting multiple copies, but secure key deletion remains a

critical challenge.

c) Deletion by Overwriting [20, 26, 29, 31, 34]: In this approach,

old data is replaced with new or random data of the same size to en-

sure it is irretrievable. Overwriting offers physical deletion, making

it more robust than other methods. However, improper implemen-

tation may leave residual traces (i.e., incomplete removal of data

or unintended storage expansion) of the original data. Advanced

microscopic tools can exploit these traces, exposing the physical

remnants and compromising the data’s integrity [12].

These limitations become even more pronounced in multi-cloud

environments, where co-owned data—shared among multiple stake-

holders across diverse providers—faces significant challenges [30,

33]. Previous studies lack synchronized management to address in-

consistent deletion practices, cross-provider protocol gaps, and the

need for verifiable proofs at each step [15]. For example, European

hospitals often collaborate with multiple research institutes and

universities on specific projects, such as health data analysis, to per-

form experiments to identify anomalies, outliers, and patterns for

privacy enhancement. The data, co-owned bymultiple stakeholders,

is stored across different providers, such as AWS [35], Azure [5], or

GCP [2], depending on operational needs or resources provided. Un-

der recently established European Health Data Space (EHDS) [9, 13],
which mandates strict data-sharing and retention policies, man-

aging this co-owned data securely and transparently is essential.

When data expires or requires deletion, the hospital (data owner)

requests deletion from all relevant cloud providers. Providers verify
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consent, execute secure deletion, and return cryptographic proofs.

Co-owners and regulators use these proofs to ensure compliance

with EHDS regulations. If research institutes (co-owners) agree to

modify or delete data before expiration, the framework supports

collaborative governance, with cloud providers executing updates

and generating verifiable proofs. Secure data-sharing, decryption,

and access occur within the protocol, ensuring compliance with

EHDS requirements for sensitive data. We propose a comprehen-

sive framework for secure and provable co-owned data deletion in

multi-cloud environments, ensuring that data never leaves the cloud

and computations remain within each respective provider’s infras-

tructure. The system supports a Data Owner (DO) and multiple

Co-Owners (COs), each associated with a distinct Cloud Provider

(CP) with separate infrastructures. No local copies are ever created,

and providers maintain zero knowledge of actual data or compu-

tations. To achieve this, we integrate Hardware Security Modules
(HSMs) [21] at each CP to securely handle cryptographic keys for

encrypting and decrypting outsourced data, managing them from

generation to controlled destruction upon expiry, and ensuring

data remains inaccessible after its designated lifecycle. Addition-

ally, Secure Enclaves [1] enable on-cloud computations without

external data storage; however, their high cost restricts their use

to only the most critical operations. The framework ensures zero-

residual overwriting by applying a 3-cycle process—PRF masking

to obscure patterns, bit-order reversal to disrupt structure, and

PRP-based repositioning to eliminate recoverable traces—aligning

with NIST SP 800-88[16]. This ensures that overwritten data is

computationally irrecoverable while maintaining storage integrity.

While the scheme enforces bounded storage, we acknowledge that

filesystem or firmware-level remapping could allocate new phys-

ical blocks instead of reusing existing ones. However, since all

data remains encrypted at rest, any reallocation would be useless

without the proper decryption keys. Furthermore, to verify the

3-cycle process, each overwriting step is correctly executed, and

a new BMHT root is recalculated. Each CP constructs a Bounded
Merkle Hash Tree (BMHT), a structured variant of Merkle Hash Tree
(MHT) [19], to restrict storage expansion, ensuring that only au-

thorized updates and deletions occur within a fixed allocation to

the CP’s storage. Copies made outside the scope of the protocol

are useless without the private keys within the HSMs. Verifiable

deletion is guaranteed across two distinct levels: local verification

using BMHT within each CP and global verification via the GMF,

aggregating BMHT roots from all providers, ensuring consistency.

The system produces cryptographic evidence—including storage,

membership/non-membership, overwriting, and global proofs.

In summary, our paper makes the following key contributions:

• We present a framework for provable co-owned data deletion,

ensuring co-owned data never leaves the cloud via HSMs for key

management and Secure Enclaves for on-cloud processing.

• We propose BMHT for strict storage enforcement and deletion

verifiability at each provider, leveraging zero-residual permuted

overwriting for complete data erasure.

• We provide cryptographic proofs for storage, membership, non-

membership, and overwriting, enabling verifiable data removal.

• We introduce GMF for verifiable global proof, integrating gener-

ated local overwriting proofs across providers for consistency.

2 DESIGN GOALS
2.1 Asynchronous and Secure Communication
The solution operates in asynchronous environments where cloud

providers and stakeholders may experience communication delays

or inconsistencies. All communications, including proof exchanges,

key management, and data transmission between providers, are

protected using Transport Layer Security (TLS) or equivalent cryp-

tographic protocols to ensure security.

2.2 Threat Model
Byzantine Cloud Providers (CPs): CPs are potential Byzantine
adversaries capable of deviating from protocols, retaining data, or

falsifying proofs. They store encrypted data and initiate Secure

Enclaves for processing. We assume no collusion between the co-

owners CPs, with communication limited to the primary owner.

Trusted Data Owners (DOs): Data owners are considered trusted

entities responsible for initiating data sharing, storage, and deletion

processes. They coordinate data management activities with co-

owners and cloud providers.

Trusted-But-Forgetful Co-Owners (COs): COs, such as research

institutions, operate independently in cloud environments, adher-

ing to the security model by processing data within Secure Enclaves.

They are trusted but may forget to delete local copies if they exist.

Trusted Hardware Manufacturers: Provide HSMs for secure

key management and Secure Enclaves for isolated execution. The

framework assumes HSMs are FIPS 140 − 2 Level 3 certified for

key isolation [3], and Secure Enclaves process data in-memory,

preventing persistence or external access. Security relies on the

certified integrity of the hardware.

2.3 Security Model
Correctness: Correctness holds when a valid proof, generated

by the prover (CPs), enables the verifier (DOs or COs) to validate

storage, membership, non-membership, and overwriting operations.

Let 𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑛} ∈ B∗ be the dataset stored in the system,

where 𝑑𝑖 = (𝑘𝑖 , 𝐷𝑖 ) is a unique key-value pair stored as a leaf in

the BMHT. For a leaf at index 𝑖 , the hash is: 𝐻
leaf

= Hash(𝑘𝑖 ∥ 𝐷𝑖 ).
LetHroot denote the BMHT root hash. Correctness guarantees the

following for all proofs:

1. Storage Proof: If the Merkle tree constructed on dataset 𝐷 has

rootHroot, then the verifier can check:

𝑉𝜋storage (𝐷,Hroot, 𝜋storage) = 1.

where 𝑉𝜋storage is the verification function, and 𝜋storage is the proof

thatHroot correctly represents 𝐷 .

2. Membership Proof: Confirms that a key-value pair 𝑑𝑖 = (𝑘𝑖 , 𝐷𝑖 ) is
present in 𝐷 :

𝑉
membership

(𝑑𝑖 ,Hroot, 𝜋membership
) = 1

3. Non-Membership Proof: Confirms that a key 𝑘 ∉ 𝐷 , using its

predecessor 𝑘
pred

and successor 𝑘succ:

𝑉
non-membership

(𝑘,Hroot, 𝜋non-membership
) = 1 , if 𝑘

pred
< 𝑘 < 𝑘succ

4. Overwriting Proof: Validates that an old key-value pair (𝑘
old
, 𝐷

old
)

has been securely replaced by a new pair (𝑘new, 𝐷new):

𝑉overwrite ((𝑘old, 𝐷old
), (𝑘new, 𝐷new),Hroot, 𝜋overwrite) = 1
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Figure 1: The Framework Employs BMHT for Fixed Storage,
HSMs for Secure Key Management, and Secure Enclaves to
Ensure On-the-Fly Data Access Without Local Copies.
Security: Security ensures that no malicious cloud provider can

tamper with proofs, generate false proofs, or introduce inconsisten-

cies between BMHT roots of the GMF root. Let𝜋storage, 𝜋membership
,

𝜋
non-membership

, 𝜋overwrite be valid proofs, and let 𝜋 ′ denote adver-
sarially generated false proofs. For any efficient adversarial algo-

rithm 𝑃 ′, the probability of successfully generating a false proof or

tampering withHGMF is negligible:

Pr

[
𝑉
proof
(𝜋 ′) = 1 | 𝜋 ′ ≠ 𝜋 or H (𝑖 )

root
∉ HGMF

]
< 𝜖 (𝑘)

where 𝜖 (𝑘) is a negligible function of the security parameter 𝑘 ∈ 𝑁 ,

𝑉
proof

represents the verification function for any proof type, and

HGMF = Hash(H (1)
root
∥ H (2)

root
∥ · · · ∥ H (𝑛)

root
) serves as a globally

verifiable proof.

3 PRELIMINARIES
3.1 Bounded Merkle Hash Trees (BMHT)
The BMHT extends the traditional MHT [19] by incorporating

a fixed and sorted tree structure, ensuring efficient storage man-

agement without dynamic growth concerns. The BMHT consists

of a constant number of leaf nodes 𝑁 , each representing a prede-

fined storage block of size 𝑆 , ensuring predictable and enforceable

height. The leaf nodes are sorted in ascending order by their keys

to facilitate efficient proofs. With 𝑁 leaf nodes, the total storage

capacity is: 𝐶 = 𝑁 · 𝑆 . This fixed structure ensures consistent stor-

age limits and avoids the growth issues associated with MHT in

constrained environments. Each leaf node hash is computed as:

𝐻
leaf𝑖

= Hash(𝑘𝑖 ∥ 𝐷𝑖 ), where 𝑘𝑖 is the binary key and 𝐷𝑖 is the

data block (i.e., will be encrypted). Including the key in the hash

ensures positional integrity. Internal nodes derive their hashes re-

cursively from child nodes, culminating in a root hash 𝐻root, which

serves as a cryptographic commitment to the entire data’s integrity.

The key differences between BMHT and MHT are: (𝑖) BMHT main-

tains a fixed number of leaf nodes, enforcing strict storage limits for

predefined constraints. (𝑖𝑖) Its sorted leaf structure enables efficient

non-membership proofs via predecessor-successor verification. (𝑖𝑖𝑖)

BMHT’s fixed order ensures smaller and more predictable proof

sizes for non-membership and overwriting compared to MHT.

3.2 Global Merkle Forest (GMF)
The GMF serves as global proof by aggregating the local root hashes

of BMHT instances frommultiple cloud providers, ensuring tamper-

resistant evidence of data operations across a multi-cloud environ-

ment. For 𝑀 ∈ 𝑁 providers, where the 𝑗-th provider manages a

BMHT root hash 𝐻
( 𝑗 )
root

, the global root hash 𝐻GMR is computed

as: 𝐻GMR = ℎ(𝐻 (1)
BMHT

∥ 𝐻 (2)
BMHT

∥ · · · ∥ 𝐻 (𝑀 )
BMHT

), where ℎ(·)
denotes a cryptographic hash function and ∥ represents concatena-
tion. This structure integrates fixed storage enforcement at each

provider through BMHT while offering a unified cryptographic

commitment to the global data state. To verify the integrity of a

data block 𝐷𝑖 stored at provider 𝑗 , the proof includes the path from

the leaf node 𝐿𝑖 (representing 𝐷𝑖 ) to 𝐻
( 𝑗 )
BMHT

, along with the aggre-

gated hashes required to reconstruct 𝐻GMR. The proof is valid if:

𝐻GMR = ℎ(𝜋
global

), where 𝜋
global

combines the local proof from

𝐻
( 𝑗 )
BMHT

at each provider. This approach guarantees transparent

and verifiable operations (e.g., overwriting) across providers while

preserving the independence of each BMHT.

4 SYSTEM ARCHITECTURE
Figure 1 outlines the overall system architecture in key steps:

Initialization:TheDO initializes the system by dividing the dataset

into fixed storage blocks (e.g., 256MB) and encrypting each block

using a provided key. The encrypted blocks are mapped to a lo-

cal Bounded Merkle Hash Tree (BMHT) leaf node, which enforces

fixed storage. The padding ensures symmetric tree structure and

consistent block sizes. The DO computes the BMHT root and shares

it with Co-Owners, allowing them to verify storage integrity. The

DO retains key mappings and metadata for proof verification.

Preprocessing: TheDO prepares the data by associating each block

with a unique key and sorting the BMHT leaf nodes in ascending

order by their keys. This facilitates efficient proof generation for

both membership and non-membership verification.

Data Sharing: The DO securely shares data with COs using their

public keys (PKI) for encryption via HSMs, ensuring data remains

within the cloud until expiration. The HSMs decrypts data inter-

nally, without exposing it to the CP, and immediately re-encrypts

it using a session-specific key before processing. The Secure En-

clave is used only when data needs to be processed, preventing

unauthorized access. The DO periodically publishes a signed digest

of sorted key identifiers and BMHT root, allowing COs to verify

CP-provided membership/ non-membership proofs.

Outsourcing: The CP computes the BMHT root hash over the en-

crypted blocks via HSMs to enable verifiable integrity checks by the

DO and COs, who can request and verify proofs when needed. The

BMHT structure enforces fixed storage, preventing uncontrolled

expansion of stored data or an increase in the number of leaf nodes.

Data Access and Update: Secure Enclaves facilitate confidential
on-cloud data processing without exposing sensitive information

or creating local copies. Instead of decrypting data outside the en-

clave, a session-specific symmetric key is generated by HSMs to

encrypt data within the enclave before processing. This key en-

sures the enclave can process encrypted data without revealing the

PKI keys. The key is securely destructed upon request, preventing

unauthorized access and ensuring confidentiality.



EuroSec’25, March 30-April 3, 2025, Rotterdam, Netherlands Marwan Adnan Darwish, Evangelia Anna Markatou, and Georgios Smaragdakis

Proofs Request: The CP provides BMHT roots to be verified later

when requested by the DO or COs, ensuring freshness and avoiding

stale proofs. The CP does not proactively provide stored proofs

but instead generates them dynamically upon request: a) Storage
Proof: Confirms that the data remains within the BMHT structure,

ensuring fixed storage limits are intact; b)Membership Proof:Verifies
including specific data blocks using their BMHT path; and c) Non-
Membership Proof: Confirms specific data exclusion by verifying its

predecessor and successor in the sorted BMHT. DOs or Co-Owners

(COs) verify these proofs to ensure storage limits and data integrity.

Data Overwriting: Expired or updated data is securely erased

using zero-residual overwriting, following NIST SP 800 − 88 [16].
A 3-cycle process—PRF masking, bit reversal, and entropic shuf-

fling—ensures complete removal. The BMHT root is updated, with

overwriting verified viamembership (new data) and non-membership

(old data) proofs. Overwriting can be triggered by expiration time

or uploading new data from DO.

Global Proof Synchronization: The GMF aggregates BMHT roots

across CPs, ensuring consistent global storage verification. This

guarantees that all parties remain consistent, even in asynchronous

communication environments.

5 SCHEME DESCRIPTION
Figure 2 presents an overview of the provable structure for co-

owned data deletion in multi-cloud systems.

5.1 Initialization
The initialization phase establishes fixed storage, encrypts data

blocks, and constructs the Bounded Merkle Hash Tree (BMHT) for

efficient proof generation and secure storage.

Fixed Storage: Let the dataset be 𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑚} in dedicated

storage medium, where each 𝐷𝑖 is a data block. The dataset is

divided into fixed-sized storage blocks, each of size 𝑆 . The total

storage capacity is 𝐶 = 𝑁 · 𝑆 , where 𝑁 = ⌈𝐶/𝑆⌉ is the number of

leaf nodes. Each block 𝐷𝑖 is padded as much as necessary to ensure

symmetry as follows: 𝐷′
𝑖
= 𝐷𝑖 ∥ 𝑃𝑖 , 𝑃𝑖 = 𝑆 − |𝐷𝑖 |, |𝐷′𝑖 | = 𝑆 .

Encryption: Each padded block 𝐷′
𝑖
is encrypted using a symmetric

key 𝐾 generated by the HSMs: 𝐸𝑖 = Enc𝐾 (𝐷′𝑖 ), where Enc𝐾 (·)
denotes the symmetric encryption function.

BMHT Construction: The BMHT consists of 𝑁 fixed and sorted

leaf nodes, each representing an encrypted block 𝐸𝑖 with an as-

signed key 𝑘𝑖 . The hash of each leaf node is: 𝐻
leaf𝑖

= Hash(𝑘𝑖 ∥ 𝐸𝑖 ).
Sorting the leaf nodes by their keys 𝑘𝑖 facilitates efficient proofs

verifications (i.e., {𝐻
leaf1

, 𝐻
leaf2

, . . . , 𝐻
leaf𝑁
} where 𝑘1 < 𝑘2 <

. . . < 𝑘𝑁 ). Internal nodes are computed recursively as: 𝐻
node

=

Hash(𝐻
left
∥ 𝐻

right
), with the root hash serving as a commitment

to data integrity: 𝐻root = Hash(𝐻
left-subtree

∥ 𝐻
right-subtree

).
Tree Symmetry: To maintain a balanced tree, the height ℎ is de-

termined by: ℎ = ⌈log
2
(𝐶/𝑆)⌉. Symmetry ensures consistent proof

sizes and predictable storage management.

5.2 Verification via BMHT and Proofs
After data is stored, in addition to the DO, the CP also constructs

the BMHT to support storage, membership, and non-membership

proofs, while the DO provides COs with a signed, sorted list of key

identifiers to verify that the CP’s proofs reference the correct keys.

Storage Proof: The storage proof ensures that the dataset is cor-
rectly stored in the BMHT and remains within the fixed number

of leaves, preventing expansion. The BMHT root is cryptograph-

ically linked to the dataset using an HSMs-signed commitment:

𝜏 = Sign
HSMs

(𝐻root ∥ 𝑁 ∥ 𝑆), 𝐻 ′
root

= Hash(𝐻root ∥ 𝜏).
The CP provides:𝜋storage = {𝐻leaf1

, 𝐻
leaf2

, . . . , 𝐻
leaf𝑁

, 𝐻 ′
root
}, where

each leaf is computed as 𝐻
leaf𝑖

= Hash(𝑘𝑖 ∥ 𝐸𝑖 ). The verifier

(DO/CO) checks: 𝐻 ′
root

?

= Hash(𝐻root ∥ 𝜏), and reconstructs 𝐻root

from 𝜋storage to verify its consistency. The proof is valid if the re-

computed 𝐻root matches the expected value, confirming that the

storage structure has not been altered.

Membership Proof: The membership proof verifies the inclusion

of a specific block 𝐷𝑖 in the BMHT. The provider provides the

Merkle path 𝜋
membership

from the corresponding leaf 𝐻
leaf𝑖

to the

𝐻root, while the DO provides the expected root hash 𝐻root for ver-

ification.: 𝜋
membership

= {𝐻
sibling

1

, 𝐻
sibling

2

, . . . , 𝐻
siblingℎ

}, where
ℎ = ⌈log

2
(𝑁 )⌉ is the height of the tree. The verifier performs the

following steps: 1. Computes the root hash iteratively:

𝐻
(1)
path

= Hash(𝐻
leaf𝑖
∥ 𝐻

sibling
1

),

𝐻
( 𝑗+1)
path

=


Hash(𝐻 ( 𝑗 )

path
∥ 𝐻

sibling𝑗+1 ), if left-child,

Hash(𝐻
sibling𝑗+1 ∥ 𝐻

( 𝑗 )
path
), if right-child

(1)

for 𝑗 = 1, . . . , ℎ − 1. 2. Verifies: 𝐻 (ℎ)
path

= 𝐻root. The proof is valid if

only the computed root matches the DO’s provided 𝐻root.

Non-Membership Proof: The non-membership proof ensures

that a queried key 𝑘 ∉ {𝑘1, 𝑘2, . . . , 𝑘𝑁 }, leveraging the sorted prop-

erty of BMHT leaves and the concepts of frontier and boundary

sets [23]. Sentinel nodes −∞ and +∞ are introduced to handle

edge cases where 𝑘 is smaller than 𝑘1 or larger than 𝑘𝑁 . These are

fixed, predefined virtual keys serving as placeholders at the BMHT

boundaries [6].

Definitions and Proof Generation by CP:
Sentinel Nodes: Predefined values are assigned to sentinel hashes:

𝐻−∞ = Hash(‘-infinity”), 𝐻+∞ = Hash(+infinity”),
ensuring they are publicly known and verifiable constants. Sentinel

nodes −∞ and +∞ are included as the first and last leaves in the

BMHT: Leaves = [𝐻−∞, 𝐻1, 𝐻2, . . . , 𝐻𝑁 , 𝐻+∞].
Frontier Set (𝐹 ): The smallest subset of keys required to validate

𝑘 ∉ {𝑘1, . . . , 𝑘𝑁 }: 𝐹 = {𝑘
pred

, 𝑘succ}, where 𝑘
pred

< 𝑘 < 𝑘succ.

For edge cases: 𝑘
pred

= −∞ if 𝑘 < 𝑘1, 𝑘succ = +∞ if 𝑘 > 𝑘𝑁 .

Boundary Set (𝐵): TheMerkle hashes along the paths from𝐻
leafpred

and 𝐻
leafsucc

to the root: 𝐵 = {𝜋
pred

, 𝜋succ}, where 𝜋pred and 𝜋succ
are the Merkle paths.

Proof Generation: The CP identifies 𝑘
pred

and 𝑘succ such that

𝑘
pred

< 𝑘 < 𝑘succ, then computes 𝜋
pred

and 𝜋succ.

Verification by the Verifier:
Check Key Order: Verify: 𝑘

pred
< 𝑘 < 𝑘succ. For edge cases,

confirm: 𝑘
pred

= −∞ or 𝑘succ = +∞, ensuring sentinel nodes are

correctly referenced.

Recomputing Root from Boundary Set: The root is recomputed

using 𝜋
pred

and 𝜋succ as defined in Equation (1), where the ini-

tial condition is 𝐻
(1)
path-pred

= 𝐻root. Likewise, the successor path

satisfies 𝐻
(ℎ)
path-succ

= 𝐻root.
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Initialization(𝜆, 𝑁 , 𝑆, 𝐷, {𝑃𝐾𝑖 , 𝑆𝐾HSM }) :
𝜆 ∈ N (security parameter), 𝑁 , 𝑆 ∈ N (blocks, block size)
𝐶 = 𝑁 · 𝑆 (total storage capacity), 𝐷𝑖 ∈ B∗ (data blocks),
𝑘𝑖 ∈ B∗ is the key index assigned to 𝐷𝑖 ,

𝑃𝐾𝑖 , 𝑆𝐾𝑖 (public/private key pairs for co-owners),
𝑆𝐾HSM (HSM private key for signing operations) .

For each 𝑖 ∈ [𝑁 ] :

Pad: 𝐷 ′𝑖 = 𝐷𝑖 ∥ pad(𝑆 − |𝐷𝑖 | ), ensuring |𝐷 ′𝑖 | = 𝑆.

Encrypt: 𝐸𝑖 ← Enc(𝐷 ′𝑖 , 𝑃𝐾𝑖 ) .

Compute leaf hash: 𝐻 (𝐿𝑖 ) = ℎ (𝑘𝑖 ∥ 𝐸𝑖 ) .

BMHT Construction: 𝐻root ← BMHT({𝐻 (𝐿𝑖 ) }𝑁𝑖=1 ) .

Storage Commitment: 𝜏 ← Sign
HSM
(𝐻root ∥ 𝑁 ∥ 𝑆 ) .

Output: 𝐻root, 𝜏, {𝐸𝑖 }𝑁𝑖=1, 𝑆𝐾HSM .

Preprocessing(𝑁,𝑆, {𝐸𝑖 }) :
Map blocks: 𝐿𝑖 ← 𝐸𝑖 , ∀𝑖 ∈ [𝑁 ] .

Sort by keys: Order {𝐿𝑖 }𝑁𝑖=1 in ascending order by 𝑘𝑖 .

Output: 𝐻root, {𝐻 (𝐿𝑖 ) }𝑁𝑖=1 .

Proof Generation(𝐻root, {𝐻 (𝐿𝑖 ) }, 𝑆𝐾HSM ) :

Membership proof: 𝜋mem = {𝐻path } .

Non-membership proof: 𝜋non−mem = {𝐻pred, 𝐻succ } .

Overwrite proof: 𝜋overwrite = 𝜋mem ∪ 𝜋non−mem .

Storage proof: 𝐻 ′
root

= Hash(𝐻root ∥ 𝜏 ) .

Zero-residual overwrite: 𝐷𝑖 ← 𝜋𝑘 (ReverseBits(𝐷𝑖 ⊕ PRF(𝑘,𝐻 (𝐷𝑖 ) ) ) ), ∀𝑖 .

Output: 𝜋 = (𝜋store, 𝜋mem, 𝜋non−mem, 𝜋overwrite ) .

Proof Verification(𝜋, {𝐻 (𝐿𝑖 ) }, 𝐻root, {𝑃𝐾𝑖 }) :

Membership check: 𝐻
comp

path

?

= 𝐻root .

Non-membership check: 𝑘pred < 𝑘 < 𝑘succ, 𝐻pred, 𝐻succ

?

= 𝐻root .

Overwrite check: 𝜋overwrite
?

= 𝜋mem ∪ 𝜋non−mem .

Storage proof check: 𝐻 ′
root

?

= Hash(𝐻root ∥ 𝜏 ) .

Decision: return VALID if all checks pass.

Figure 2: Provable_Structure_Function Overview for Secure Deletion in Multi-Cloud with Zero-Residuals and Verifiability.

Validate Non-Membership: The proof is valid if: 𝐻
(ℎ)
path-pred

=

𝐻root, 𝐻
(ℎ)
path-succ

= 𝐻root, and: 𝑘 ∉ {𝑘
pred

, 𝑘succ}. If 𝑘 = 𝑘
pred

,

𝑘 = 𝑘succ, or the paths fail to recompute 𝐻root, the proof is invalid.

Verification is efficient, with storage proofs requiring 𝑂 (𝑁 ) hash
operations for root computation, while incremental updates rehash

only affected parts, reducing complexity to𝑂 (log
2
𝑁 ). BMHT lever-

ages an HSM-signed commitment, enabling 𝑂 (1) verification by

checking a single hash signature. Membership proofs operate in

𝑂 (log
2
𝑁 ), while non-membership requires verifying two paths,

yielding 𝑂 (log
2
𝑁 ). Security relies on collision-resistant hash func-

tions, ensuring data integrity, with adversarial forgery probability

bounded by 𝜖 (𝑘), where 𝑘 is the security parameter.

5.3 Data Sharing, Secure Access, Zero-Residuals
Overwriting, and Global Consistency

This phase ensures secure data sharing, controlled access, zero-

residual overwriting, and verifiable deletion across CPs using HSMs,

PKI, Secure Enclaves, and GMF.

Data Sharing and Encryption: The HSMs generates asymmetric

key pairs for co-owners (COs) at the respective provider. For each

CO𝑗 , let: {𝑃𝐾 𝑗 , 𝑆𝐾𝑗 } ← KeyGen
HSM
(1𝑘 ), where 𝑃𝐾𝑗 and 𝑆𝐾 𝑗 are

the public and private keys, respectively, and 𝑘 is the security pa-

rameter. The main HSM in the organizer CP encrypts each block

𝐷𝑖 for a CO using 𝐸𝑖 = Enc𝑃𝐾𝑗
(𝐷𝑖 ) provided by their HSM. The

encrypted blocks {𝐸1, 𝐸2, . . . , 𝐸𝑁 } are uploaded to CPs, ensuring

only authorized COs with 𝑆𝐾𝑗 can decrypt: 𝐷𝑖 = Dec𝑆𝐾𝑗
(𝐸𝑖 ). Their

HSMs is responsible for decrypting the data.

Secure Access and Session Keys: Data access occurs within

a Secure Enclave initialized by the CP to prevent persistent lo-

cal copies. The HSMs generates a session-specific symmetric key

(i.e., Time-bounded key): 𝐾session ← KeyGen
HSM
(1𝑘 ). The ses-

sion key 𝐾session encrypts the data for communication between the

enclave and COs: 𝐶𝑖 = Enc𝐾session
(𝐷𝑖 ). Once the session ends, the

HSM securely destructs𝐾session, ensuring the key’s irrecoverability:

Destroy(𝐾session).
Zero-Residual Permuted Overwriting: Old data 𝐷

old
is securely

overwritten with 𝐷new using a three-phase process based on PRFs

and PRPs [16, 32], ensuring zero-residual deletion:

1. PRF Masking: Mask 𝐷
old

via PRF: 𝐷1 = 𝐷old
⊕ 𝑓𝑘 (𝐻 (𝐷old

)).
2. Bit Reversal: Reverse bits and re-mask: 𝐷2 = ReverseBits(𝐷1) ⊕
𝑓𝑘 (𝐻 (𝐷1)).
3. Entropic Shuffling: Apply PRP for randomness: 𝐷new = 𝜋𝑘 (𝐷2).
The PRP assigns 𝐷new a new position: 𝑃new = 𝜋𝑘 (𝑃old), updating
the BMHT root: 𝐻

leafnew
= Hash(𝑘new ∥ 𝐷new) at each cycle.

Irreversibility Guarantee: Reconstructing 𝐷
old

requires inverting

PRF, PRP, and bit reversals:

𝐷
old

= 𝑓 −1
𝑘

(
ReverseBits

−1 (𝜋−1
𝑘
(𝐷new) ⊕ 𝑓𝑘 (𝐻 (𝐷1))

) )
,

Overwriting Proof with Storage Commitment: The proof en-
sures that𝐷

old
at position 𝑃

old
is securely replaced by𝐷new at 𝑃new,

where 𝑃
old
, 𝑃new ∈ N, while maintaining strict storage enforcement:

𝜋overwrite = 𝜋membership
∪ 𝜋

non-membership

After overwriting, the updated root must satisfy the fixed storage

commitment, ensuring integrity: 𝐻 ′
root

= Hash(𝐻root ∥ 𝜏). To ver-
ify the proof, the verifier checks inclusion by ensuring 𝐻

(ℎ)
path-new

=

𝐻root, confirming that 𝐷new is correctly inserted. Exclusion is ver-

ified by ensuring that 𝑘
pred

< 𝑘
old

< 𝑘succ holds, along with the

recomputed paths satisfying 𝐻
(ℎ)
pred

= 𝐻
(ℎ)
succ

= 𝐻root, guaranteeing

that 𝐷
old

is removed. The storage enforcement is validated using

Verify
HSM
(𝜏, 𝐻root, 𝑁 , 𝑆). The proof is accepted if all checks hold:

𝜋overwrite =

{
1, if all checks are satisfied,

0, otherwise.

This ensures that permuted overwriting respects the limited storage

constraints (𝑁, 𝑆) and prevents residual data from persisting.
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Figure 3: Comparison of BMHT and Traditional MHT Verification Times for Different Proofs.

Global Proof Synchronization: The GMF aggregates BMHT roots

𝐻root from all CPs, ensuring global consistency. The aggregated

root is periodically (i.e., Based on configuration) recomputed and

stored in the organizer CP’s HSMs:𝐻GMF = Hash(𝐻root1
∥ 𝐻root2

∥
. . . ∥ 𝐻root𝑚

), where𝑀 is the total number of CPs. This guarantees

consistent verification across asynchronous environments.

Encryption operations scale linearly with the number of blocks,

as asymmetric encryption for data sharing requires 𝑂 (𝑁 ) compu-

tations. Overwriting via PRF/PRP occurs per block, maintaining

𝑂 (𝑁 ) complexity. Verifying overwriting proofs, including mem-

bership and non-membership, follows 𝑂 (log
2
𝑁 ) complexity. The

GMF aggregates BMHT roots from𝑀 providers into a single-level

Merkle structure. Construction requires hashing all𝑀 roots, yield-

ing 𝑂 (𝑀), while verification is constant-time at 𝑂 (1), ensuring
minimal overhead. The security of overwriting and GMF proofs

relies on collision-resistant hashes, PRFs, PRPs, and bit reversals,

ensuring irreversibility with adversarial success probability 𝜖 (𝑘).

6 FORMAL ANALYSIS
Theorem 6.1 (Correctness). A valid proof 𝜋 generated by the

CP enables the verifier (DO or CO) to verify storage, membership,
non-membership, and overwriting operations (Def. 2.3). Formally,
correctness holds if: Pr[𝑉𝜋 (𝐷,𝐻root, 𝜋) = 1] ≥ 1 − 𝜖 (𝑘), where 𝑉𝜋 is
the verification function (i.e., mentioned §2.3), and the probability is
taken over the randomness of the cryptographic hash function and
pseudorandom permutations (PRPs) [32].

Theorem 6.2 (Security). A malicious CP attempting to forge
a proof or introduce inconsistencies across the GMF will be detected
with high probability (Def. 2.3). For any probabilistic polynomial-time
(PPT) adversary A, we have:

Pr

[
𝑉𝜋 (𝜋 ′) = 1

���(
𝜋 ′ ≠ 𝜋

)
∨
(
∃ 𝑖 ∈ {1, . . . , 𝑛} : H (𝑖 )BMHT ∉ HGMF

) ]
≤ 𝜖 (𝑘),

where 𝜖 (𝑘) is negligible in the security parameter 𝑘 .

7 RESULTS AND DISCUSSION
Verification Time (Figure 3): This experiment was conducted

on a local MacBook with a 2.3 GHz Intel Core 𝑖5 and 8 GB RAM.

It evaluates the verification time for storage, membership, non-

membership, and overwriting proofs in both MHT and BMHT

locally. Table 1 highlights BMHT’s efficiency, particularly in non-

membership and overwriting proofs. For storage proof, BMHT

achieves constant-time storage frequent verification (𝑂 (1)), main-

taining 2.15 ms across all leaf sizes due to cryptographic enforce-

ment by the HSMs, which eliminates the need for full-tree recom-

putation. While MHT requires full-tree recomputation at all times,

Table 1: Comparison of BMHT and MHT Verification Time
Complexities.

Proof Type BMHT Complexity MHT Complexity

Storage Proof 𝑂 (1) 𝑂 (𝑁 )
Membership Proof 𝑂 (log𝑁 ) 𝑂 (log𝑁 )
Non-Membership Proof 𝑂 (log𝑁 ) 𝑂 (𝑁 )
Overwriting Proof 𝑂 (log𝑁 ) 𝑂 (𝑁 )

increasing from 2.15 ms at 𝑁 = 4 to 12.23 ms at 𝑁 = 50. Member-

ship proofs are nearly identical, as both follow a Merkle path to

the root (𝑂 (log𝑁 )), yielding 0.56 ms for BMHT and 0.57 ms for

MHT at 𝑁 = 50. For non-membership proofs, BMHT efficiently

finds predecessor-successor nodes in 𝑂 (log𝑁 ), reducing verifica-
tion time to 5.60ms at 𝑁 = 50 compared to MHT’s 15.77ms, which

requires scanning all leaves. Similarly, BMHT’s overwriting proofs

leverage its structured design, achieving 8.16 ms at 𝑁 = 50 versus

MHT’s 18.32 ms.

8 RELATEDWORK
Data link removal, encryption, and overwriting are the three main

strategies that now constitute secure data deletion in the cloud

environment. Although these techniques cover several data dele-

tion issues, their shortcomings are especially noticeable regarding

co-owned data erasure in multi-cloud scenarios. The link removal

strategy severs a file’s logical connection to the filesystem [11, 28].

Kavous et al. [25] improved this with delayed deletion to prevent

accidental loss. However, the data remains in storage and is recov-

erable via forensic methods, making this approach unsuitable for

securely erasing co-owned data in multi-cloud settings where phys-

ical deletion is essential. The data encryption strategy renders data

inaccessible by encrypting it and deleting the key. Cachin et al. [4]

enforced deletion via policy-based key removal. Darwish et al. [7, 8]

introduced key-decay schemes, either corrupting ephemeral keys

or enforcing audience-based expiration. Jaeheung et al. [18] stored

keys with metadata, deleting them to make ciphertext inaccessi-

ble. Junfeng et al. [12] proposed TPM-based verification, ensuring

deletion but limiting scalability due to TPM constraints. While

effective for logical deletion, encryption-based methods rely on

secure key removal, leaving ciphertext vulnerable in multi-cloud

environments. Managing keys across providers adds complexity,

requiring verifiable deletion to prevent unauthorized access. The

overwriting strategy ensures data irretrievability by replacing it

with random or predefined patterns. Yuchuan et al. [20] optimized

overwriting efficiency with a rule transposition algorithm (RTA).

Daniele and Gene [26] introduced PoSE-s, securely overwriting
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storage media to prevent data recovery. Tian et al. [31] proposed

SEAD-OO, integrating orderly overwriting with attribute-based

encryption for fine-grained access control and blockchain-based

deletion verification. Singh et al. [29] highlighted SSDwear-leveling

issues that hinder zero residual overwriting. Existing approaches

lack verifiable deletion for co-owned data in multi-cloud environ-

ments, where global and verifiable proof of deletion is essential.

9 CONCLUSION & FUTUREWORK
We propose a provable co-owned data deletion framework for multi-

cloud environments, ensuring data never leaves the cloud. HSMs

manage key lifecycles, while Secure Enclaves enable on-cloud pro-

cessing without local remnants. Verifiability is enforced through

BMHT for storage constraints and GMF for global proof verification.

Zero-residual overwriting guarantees complete erasure with cryp-

tographic proofs. Future work includes deploying the solution on

AWS using CloudHSM, Nitro Enclaves, and Python-based BMHT,

evaluating scalability, computational overhead, proof efficiency,

and cost analysis and formal validation.
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