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Abstract—Telecommunication services are essential in ensur-
ing the operation of numerous critical infrastructures. While
mobile network security increased with the advancement
of generations, emerging concepts such as the Open Radio
Access Network (O-RAN) are transforming the traditional
operation of Radio Access Networks (RANs). Novel concepts
and technologies are finding their way into RANs with a
focus on softwareization and virtualization. This increases
the overall attack surface and introduces new attack vectors
not necessarily found in traditional RANs. This paper shows
that Denial of Service (DoS) attacks leveraging subscription
mechanisms can compromise O-RAN implementations. We
present a novel DoS attack targeting the Near Real-Time
(Near-RT) RAN Intelligent Controller (RIC). By deploying
a malicious xApp, we demonstrate how an adversary can
flood the Near-RT RIC with excessive subscription requests,
leading to service disruption. This attack exploits the lack
of rate-limiting mechanisms within the Service Model (SM),
a critical component of the Near-RT RIC responsible for
handling E2 subscription requests. We systematically evalu-
ate various attack scenarios and investigate the underlying
vulnerabilities exposed. Furthermore, we propose and assess
countermeasures to safeguard publicly accessible O-RAN
systems from such threats.

Index Terms—Open RAN, O-RAN, Radio Access Networks,
DoS, Network Security.

1. Introduction

In the era of telecommunications technologies, the im-
portance of robust and secure telecommunications systems
cannot be emphasized enough. The essential elements to

be protected are the integrity and availability of the indi-
vidual networks and the privacy of the respective users.
However, as these networks integrate a broader array of
diverse technologies, they face increasing demands and
a growing risk of security threats and vulnerabilities.
Communication networks are an essential part of critical
infrastructures, and their failure can cause far-reaching
problems. This makes them particularly interesting targets
and therefore highly susceptible to cyber attacks. The
increasing complexity of the systems poses new chal-
lenges, for which software and virtualization is used in
the respective components as a solution. However, this
also makes the systems more susceptible to classic Denial
of Service (DoS) attacks. Understanding and addressing
these emerging threats is essential to ensure the resilience
and security of next-generation wireless systems, under-
scoring the need for focused investigation and research in
this domain.

One of the most impactful and recent advancements
in Radio Access Network (RAN) technology is the in-
troduction of the Open Radio Access Network (O-RAN)
architecture [1]. O-RAN aims to bring enhanced pro-
grammability, openness, and interoperability to 5G and
6G access networks by building on the foundational
principles of Software-defined Networking (SDN) and
Network Function Virtualization (NFV). This shift aligns
with the broader trend of migrating RAN functions to
the cloud, following earlier innovations such as cloud
RAN [2] and virtual RAN [3]. O-RAN has received
significant attention from both academia and industry, with
numerous real-world deployments and trials conducted by
leading mobile operators globally [4], [5]. O-RAN has a
number of use cases that currently make the concept so
prominent. These include specialized enterprise networks



[6], energy efficient RAN operations [7], [8], cell-free
massive Multiple Input, Multiple Output (MIMO) [9] and
Artificial Intelligence (AI)-enabled RAN [10], [11]. As
O-RAN becomes increasingly critical to modern network
infrastructure, understanding its potential and challenges
is essential, making it a compelling subject for further
exploration.

The RAN Intelligent Controller (RIC) [12], a novel
network component that enables intelligence through
the deployment of eXtended Applications (xApps),
i.e., micro-services that implement AI-enabled functions
within O-RAN. Thanks to the RIC, it is possible to provide
the network with high reconfiguration and adaptation ca-
pabilities, as xApps can dynamically choose RAN network
functions as they see fit [13], [14]. This presents numerous
opportunities for future innovation while simultaneously
introducing a significant number of critical components
from a security standpoint.
Motivation. The introduction of xApps necessitates a
substantial number of interfaces to control and manage
the desired functions within the RAN. This significantly
increases the risk of traditional DoS attacks, as such
interfaces represent a common attack vector for this type
of component. Currently, the volume of traffic and damage
caused by DoS attacks is at an all-time high, with these at-
tacks being ranked among the top ten cyber threats by both
the US Cybersecurity and Infrastructure Security Agency
(CISA) [15], [16] and the European Union Agency for
Cybersecurity (ENISA) [17]. Consequently, we conclude
that O-RAN components are highly susceptible to such
attacks and are likely to become increasingly targeted in
the future. As this paper demonstrated, significant damage
can often be caused through relatively simple methods.
The impact on end users is also concerning. For instance,
a successful attack on the Near Real-Time RIC (Near-RT
RIC) could prevent users from connecting to the RAN,
effectively leaving them without service.

Numerous prominent publications primarily focus on
the general security implications of the ecosystem, offer-
ing discussions on potential attacks and countermeasures
without conducting specific tests [18], [19]. The O-RAN
alliance dedicates a working group to security evaluations.
Also, in this case, the documentation provides hints on
possible attacks without going into implementation de-
tails [20]. Recently, a few authors proposed some attacks
on the O-RAN control plane [21]–[23], and to O-RAN
xApps access control and E2 interface [24], [25].

Our objective is to study the impact of DoS to identify
potential attack vectors. The subsequent section details our
efforts in this domain.
Contributions. In this paper, we propose and practically
demonstrate a novel DoS attack against implementations
of the Near-RT RIC. Through a malicious xApp, we show
that an attacker can send a large number of subscription
requests to the Near-RT RIC rendering it unavailable. The
attack exploits the lack of a rate-limiting solution in the
Service Model (SM), a logical component in the Near-
RT RIC that manages E2 subscription requests. Instead of
providing a security analysis of all the relevant near-RT
RIC interfaces, we focus on a specific DoS vulnerability
and validate it over different near-RT RIC implementa-
tions. Compared to the existing literature on E2 security,
we hence provide a practical attack and its evaluation to

showcase the effect of this vulnerability and investigate
possible countermeasures.

To validate our attack, we test it on two prominent
implementations of the RIC, i.e., the FlexRIC [26] and
the O-RAN Software Community (OSC) RIC1.

Through our approach, we successfully identify three
Common Vulnerabilities and Exposuress (CVEs) associ-
ated with both FlexRIC and OSC implementations. While
the underlying attack methodology is not entirely new, our
findings highlight its significant impact on contemporary
software, particularly in the context of cellular network
control. This underscores the pressing need for enhanced
security measures in these critical systems. To mitigate the
vulnerabilities exposed, we propose a straightforward rate-
limiting solution and demonstrate its efficacy using the
FlexRIC Software Development Kit (SDK). The results of
this study emphasize the importance of addressing these
threats and provide valuable insights into improving the
resilience of modern telecommunication infrastructures.
We summarize our contributions as follows:

• We demonstrate that the publicly available im-
plementations of O-RAN exhibit vulnerabilities to
RIC DoS E2 subscription attacks.

• We measure and evaluate different scenarios to
disrupt each implementation and investigate the
root causes of the identified vulnerabilities.

• We propose and assess countermeasures for all
publicly accessible O-RAN implementations.

• We disclose the vulnerabilities to the developers
of the OSC and FlexRIC and got three CVEs
assigned.

• We provide both the attack code and the mitigation
software for FlexRIC in [27].

2. Background

In this section, we present the fundamental concepts
about O-RAN. We provide a short overview of the O-RAN
working principles and functional split in Section 2.1. We
then provide details about the Near-RT RIC and xApps in
Section 2.2, while presenting its main implementations in
Section 2.3.

2.1. O-RAN Overview

Fig. 1 depicts an overview of O-RAN’s main compo-
nents and their interconnections within the data plane and
the control plane.

In the data plane, the O-RAN architecture splits the
RAN components into separate entities. The cell site
performs basic operations, such as radio frequency and
low-level physical-layer processing [1]. The edge O-
Cloud [28], directly connected to the cell site, processes
higher-level information through its three main compo-
nents, i.e., the O-RAN Distributed Unit (O-DU), the O-
RAN Central Unit - User Plane (O-CU-UP), and the O-
RAN Central Unit - Control Plane (O-CU-CP). The edge
O-Cloud then communicates with the control plane via the
E2 interface, which enables communications with the re-
gional O-Cloud [28]. In particular, thanks to the E2 termi-
nation, the Near-RT RIC receives data-plane information

1. https://wiki.o-ran-sc.org/display/RICP/Introduction+and+guides
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Figure 1: O-RAN architecture. We emphasize the func-
tional split in the access network proposed by the O-
RAN alliance and the separation between elements of the
control plane and the data plane.

and processes it to provide near-real-time control actions
for tasks, such as scheduling and resource allocation. Via
the A1 interface, the Near-RT RIC exchanges information
with the Service Management and Orchestration (SMO)
framework, and in particular with the Non Real-Time
RIC (Non-RT RIC), which provides control over a longer
period (non-real-time). Notice that a detailed explanation
of the exact role and working principle of all components
is beyond the scope of this paper. For that, we refer the
reader to the official O-RAN documentation [1].

2.2. The Near-Real Time RIC

The Near Real-Time RIC (Near-RT RIC) [29] as-
sumes responsibility for critical radio functions, including
connection management, mobility management, and the
execution of trained AI/ML models. Implemented above
the cloud computing platform known as the O-Cloud [28],
the Near-RT RIC operates with control loops ranging from
10 milliseconds to less than one second. Third parties
can deploy applications, known as eXtended Applications
(xApps), which operate on the Near-RT RIC platform.
xApps communicate with RAN functions using the E2
interface [30] based on various SMs. For instance, they
enable efficient control of RAN nodes [31], Cell Configu-
ration Control on a cell-level basis [32], and Key Perfor-
mance Measurement for enabling measurements/statistics
of RAN nodes [33]. Throughout the development of an
xApp, two primary parties are involved: the solution
provider, who creates the applications, and the service
provider, who integrates and utilizes these applications
within their network.

The end-to-end lifecycle [34] of an xApp can be
categorized into three phases: App Development, App
Onboarding, and App Operations. App Development con-
sists of the creation of the xApp. This phase involves
operations such as gathering customer feedback on use-
case requirements, incorporating feature requests, and ad-
dressing defect notifications. These inputs are integrated
into the app development cycle for implementation, re-
sulting in the creation of container images using SDKs

tailored for the intended deployment environment. Subse-
quently, the built containers are conveyed to the service
provider (RIC owner) through the onboarding process.
App Onboarding operations include establishing proper
configuration, policies, measurements, and required ana-
lytics. App Operations determines when the xApp needs to
be deployed or decommissioned. These operations could
include decisions regarding production or non-production
execution of the xApp. Additionally, this phase involves
continuous monitoring of the deployed xApp, including
alert management, event handling, and incident manage-
ment. Analysis of the monitoring data informs further
actions such as termination, healing, and scaling to ensure
optimal performance and reliability.

In the context of a hypothetical xApp, consider the
scenario of localization data for positioning of User
Equipment (UE). An xApp can be a machine-learning
algorithm that receives as input relevant data from E2
nodes and provides as output UE location information.
During training, the xApp must collect required UE-
related data, such as signal strength from E2 nodes, to
properly train the prediction model. The solution provider
receives a set of requirements from the service provider,
along with sample data for example, to facilitate the xApp
development process. Subsequently, the developed appli-
cation undergoes onboarding and validation by the service
provider, including real-life testing for UE localization,
with feedback and optimization requests provided to the
solution provider. Upon successful testing and validation,
the service provider deploys the xApp for real-world usage
by customers, who utilize the localization data.

2.3. RIC Implementations

The O-RAN specification defines the components and
protocols defining the Near-RT RIC via openly accessible
documents, allowing practitioners to develop their own
solutions. An increasing number of publicly available
implementations are currently in various stages of de-
velopment. Notably, their focus and intended use often
differ considerably. There is a significant difference in the
platform approaches and direct component implementa-
tions, such as for the Near-RT RIC. Some have developed
their own components, while others utilize already estab-
lished open-source components and integrate them. To our
current knowledge, there are eight main open-source O-
RAN platform implementation and development efforts.
These can be seen in Table 1 together with the respective
compatible Near-RT RIC implementations.

Within the scope of our research, we examine two
independent standard-compliant open-source implementa-
tions of the Near-RT RIC: FlexRIC and the O-RAN OSC
RIC. These have become well-established within the field
of O-RAN research and are supported by a substantial
user base. These are used directly or indirectly in 7 of
the 8 platform approaches. This allows us to demonstrate
a certain general impact among existing open-source ap-
proaches with our research.

The FlexRIC [43] has been developed under the Mo-
saic5G project [38], and is nowadays a widely tested
platform that proved significant improvements to the 5G
RAN. Indeed, under the wider umbrella of the OpenAir
Interface [37], FlexRIC has provided extended capabilities



TABLE 1: O-RAN platform implementation and develop-
ment efforts with the respective Near-RT RIC implemen-
tations.
○ ≡ Directly covered with our Approach
� ≡ Not covered with our Approach

O-RAN Platforms Near-RT RIC
FlexRIC O-RAN OSC SD-RAN

○ OAIC [35] ✓
� SD-RAN [36] ✓
○ Open Air Interface [37] ✓
○ Mosaic5G [38] ✓
○ O-RAN OSC [39] ✓
○ srsRAN [40] ✓ ✓
○ X5G [41] ✓
○ POWDER [42] ✓ ✓

to manage the heterogeneous 5G use cases and being
compliant with the O-RAN specification [44]. FlexRIC
comprises O-RAN compliant E2 Node Agent emulators, a
Near-RT RIC, and xApps developed in C/C++ and Python.
It is compatible with major open-source RAN projects
like OpenAirInterface [37] and srsRAN [40]. During the
development phase of FlexRIC, their development team
encountered limitations within the O-RAN E2 interface
specification of that time. Consequently, the decision was
made to introduce new types of messages to the E2
interface and rename it as E42 in the context of the
FlexRIC project. OSC is instead the official software from
the O-RAN community, the reference point for practi-
tioners and developers interested in this technology [45].
The software developed by the O-RAN alliance has been
proven effective in real-life demonstrators of O-RAN’s
performance [4], [5]. Hence, the security of these two RIC
implementations has a significant impact on the whole
community of O-RAN practitioners and developers.

In general, however, the implementation of FlexRIC
has a number of advantages, especially for emerging 5G
and 6G use cases and for O-RAN developers. The SDK
has already been evaluated on two specialized state-of-
the-art 5G use cases and showed 50% reduced round-
trip time, about 10 times less CPU consumption, and
only one-third of the memory consumption compared to
the OSC reference implementation [26]. Furthermore, the
FlexRIC Near-RT RIC was developed as a SDK with
a modular architecture that enables the construction of
specialized service-oriented controllers. Throughout this
paper, we therefore use these two standard compliant
Near-RT RIC implementations with a strong focus on the
FlexRIC implementation.

3. Threat model

In this section, we discuss the attacker’s aim and
capabilities. We introduce our proposed threat model in
Section 3.1. In Section 3.2, we provide an overview of the
closest related threats discussed in O-RAN specifications.

3.1. Our Proposed Threat Model

We assume the victim is an O-RAN compliant service
provider. In particular, the attacker targets the Near-RT

Near-RT RIC

O-RU

E2 NodexApp1

xApp2

xAppn

E2
Termination

A1

A2

X
X

Figure 2: Depiction of the threat model. We consider
both insider attacker A1 and outsider attacker A2. The
malicious/compromised xApp sends a large number of
subscription requests to the E2 termination, preventing
legitimate services (xApps or E2 node) from properly
communicating (denoted via the red X in the figure).

RIC and its capability to establish connections between
xApps and E2 nodes. The attack aims to disrupt the
victim’s O-RAN architecture service. This includes slow-
ing down the services provided to all/some clients or
completely blocking the services provided. A successful
attack is assumed when the Near-RT RIC crashes, thereby
making it impossible for new users to access the RAN.

In Fig. 2, we plot our considered threat model. The
attacker’s objective is to send an elevated number of
subscription requests to the E2 termination such that the
Near-RT RIC can not keep up with a large number of
requests and thus fails in providing services to legitimate
components.

To achieve this objective, we assume that the attacker
can control one or more xApps deployed in the target
Near-RT RIC. This can be achieved by two different types
of attackers, i.e., the insider attacker A1 and the outsider
attacker A2. In the first, the attacker A1 is an authorized
user of the Near-RT RIC. This includes two possible
actors: (i) a third-party company that develops xApps to
be deployed by the network operator; and (ii) a network
operator sharing the RAN hardware infrastructure with
other operators. Notice that the second actor is feasible
only thanks to the RAN sharing capabilities enabled by O-
RAN [46]. Currently, no security measure exists to check
whether xApps have malicious intentions. Therefore, the
Near-RT RIC owner has no means to assess whether the
xApp in the onboarding process will perform malicious
activities. Despite considering the operator (RIC owner) as
competent and trusted, onboarding a malicious xApp still
represents a severe threat to the O-RAN architecture. The
motivations for A1 include disrupting the network service
for operators and preventing them from leveraging the
advantages offered by xApps. For instance, considering
the shared RAN scenario, a competitor operator could
onboard a malicious xApp to degrade the service quality
of other operators and induce users into changing their
service provider.

In the second scenario, the attacker A2 is an external
user that has no legitimate access to the Near-RT RIC,
but manages to compromise an already deployed xApp.
Noticing that xApps are containerized microservices (e.g.,
Docker instances in a Kubernetes cluster in OSC), the at-
tacker can leverage known vulnerabilities to achieve priv-
ilege escalation [47]. Possible motivations for A2 include
disrupting the access network on behalf of competitor



operators, military operations, terrorism, or hacktivism.
We assume that the attacker has no privileged position

compared to other regular users. This implies that once the
attack is successful, the service will no longer be available
even to the attacker. Therefore, we assume that, for the
attacker, the benefit of blocking the service for all users
is the main goal.

3.2. O-RAN Reference Threat Model

We base our threat model primarily on the O-RAN
Security WorkGroup specifications [20], [48]–[50]. The
O-RAN system faces internal and external threat entry
points, encompassing risks from within and outside its
infrastructure. The O-RAN alliance identifies both threat
surfaces and the associated security threats.

Considering our scenario, relevant threat surfaces in-
clude but are not limited to, the decoupling of components
and their retrieval from a Trust Chain, containerization and
virtualization that further separate software and hardware,
and the reliance on open-source code which elevates expo-
sure to public exploits. These surfaces do not find effective
security measures in the current state-of-the-art in the O-
RAN domain.

Based on the identified threat surfaces, entry points,
and vulnerabilities, the O-RAN alliance identifies specific
threats that pose risks to its functionality. Regarding our
considered scenario, the O-RAN Security WorkGroup 11
provides an extensive categorization of such threats [20],
[48]–[50]. They fall into three main categories: threats
concerning O-RAN system components, threats related to
lifecycle management (LCM), and threats targeting the O-
Cloud infrastructure. O-RAN system component threats
encompass risks directed at the system itself, including
general threats (T-ORAN-01, T-ORAN-02, T-ORAN-03,
T-ORAN-06, T-ORAN-09), threats against the Near-RT-
RIC (T-NEAR-RT-01), and threats against the xApps (T-
xApp-01, T-xApp-02, T-xApp-03). Life Cycle Manage-
ment (LCM) threats pertain to the threats related to the
xApp life cycle management as explained in Section 2.2,
such as T-App-LCM-01, T-App-LCM-02, T-App-LCM-
03, T-App-LCM-04. Additionally, they identified threats
such as T-GEN-01 targeting the cloud infrastructures host-
ing the O-RAN system components. Interested readers are
encouraged to consult [20], [48]–[50] for further details
on these threats.

4. Methodology

In our study, we thoroughly analyze the attack vector
of subscription DoS and assess its impact on the com-
ponents in three different deployment configurations of a
Near-RT RIC. In the following sections, we evaluate the
resilience of the Near-RT RIC in different scenarios.

Given that the Subscription Manager (SubM) is a
fundamental platform service within the Near-RT RIC, it
assumes responsibility for orchestrating E2 subscriptions
from xApp to the E2 node (e.g., eNodeB or gNodeB).
Fig. 3 illustrates the interrelationships between the rele-
vant components. A HyperText Transfer Protocol (HTTP)-
based Representational State Transfer (REST) interface fa-
cilitates the connection between the xAPP and the SubM,
as well as between the Routing Manager and the SubM.

RMR
REST

xAPP
Subscription

Manager

Routing
Manager

E2 Termination

Figure 3: Interface overview of the SubM and relevant
neighboring nodes.

Communication between the E2 Termination and the
SubM relies on RIC Message Router (RMR) messages.
An xApp subscription request message may encompass
multiple E2 subscriptions, each requiring the xApp to
generate a distinct instance ID. A notable limitation lies
in the restriction to only one concurrent E2 subscription
or subscription deletion procedure towards the E2 node
per time unit across the E2 interface. This constraint
arises from the SubM’s ability to consolidate new E2
subscriptions contingent upon having already received a
successful response from the E2 node. Consequently, E2
subscriptions and subscription deletions may experience
queuing temporarily, turning the SubM into a possible
bottleneck, particularly under a high volume of requests
[51].

4.1. Attack Procedure

In all scenarios under consideration, we conduct a DoS
attack leveraging a manipulated xApp deployed within the
system. This involves the adaption of a prototype xApp
to continuously send Subscription Requests (SubReqs) to
the Near-RT RIC. Fig. 4 shows a schematic representation
of the expected request interactions within the FlexRIC
implementation. The sequence diagram for the attack
within the OSC Near-RT RIC implementation exhibits
an identical structure, with the only distinction being the
replacement of the E42 abstraction layer introduced by
FlexRIC with conventional E2 requests.

The underlying premise behind the attack vector is
the flooding of the Near-RT RIC with a substantial vol-
ume of requests originating from the xApp. This influx
may eventually surpass the system’s processing capacity,
leading to potential consequences such as reduced service
performance, characterized by increased latency, or, in
severe cases, system failure attributed to internal software
anomalies.

Should such a scenario arise, all components situated
southbound of the architectural hierarchy would become
disconnected from the system. In most scenarios, this dis-
connection would affect the entire data plane. The formal
description of the attack procedure can be as follows. A
malicious xApp is characterized as

xAppn = LoopSubReq(), (1)

which transmits a certain total number of Subscription
Request (SubReq) to the connected Near-RT RIC per time
unit Tu, defined as

δ =
∑
Tu

SubReq. (2)

A maximum number ξ of processable SubReqs per Tu is
allocated to the Near-RT RIC before it is either overloaded
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Figure 4: Sequence diagram of the Subscription DoS
attack on the FlexRIC Near-RT RIC.

and can no longer keep up with the processing of the
individual requests or before an internal software problem
arises. Hence, if

δ > ξ, (3)

regular operation of the Near-RT RIC is no longer possi-
ble.

This issue presents a significant problem for end
users: new users are unable to establish connections, al-
though existing connections are likely to remain active.
The situation becomes increasingly problematic if, as
described in Section 6.1, all components (Central Unit
(CU), Distributed Unit (DU), and Near-RT RIC) must be
restarted to restore normal operation following an attack.
Consequently, existing connections would be terminated,
resulting in a complete service failure for the end user.

4.2. Baseline Scenarios

To conduct the attack successfully, a compliant Next
Generation Node Base (gNB) setup comprising O-RAN
Central Unit (O-CU) and O-RAN Distributed Unit (O-
DU) is essential. For simplicity, these components are re-
ferred to collectively as E2 nodes. Additionally, seamless
connectivity between the E2 nodes and the Near-RT RIC
must be established via an E2 setup request. Subsequently,
registration of the malicious xApp (or multiple instances,
if required to amplify the payload) is necessary, accom-
plished through a setup request to the Near-RT RIC. These
preparations form the fundamental prerequisites. Through-
out our integration testing, we encountered significant
challenges in assembling a functional test environment
for the individual software components. This difficulty
primarily stems from the necessity for numerous indepen-
dently developed software components to operate cohe-
sively. Consequently, the ongoing development of individ-
ual components often results in rapidly emerging depen-
dencies, causing operational complications. To facilitate
the reproducibility of our experiments, we meticulously
documented the specific git commit versions utilized, as
presented in Table 2. Furthermore, we have developed a
Docker environment [27] specific to SC1 and SC2, that
enables a quick replication of our attacks with minimal
effort by using our DoS setup script.

In the following, we provide a concise overview of
four fundamental scenarios implemented in Sections 4.2.1
through 4.2.4, outlining the interaction among components
and highlighting the intended outcomes following a suc-
cessful attack.

4.2.1. SC1 - FlexRIC Standalone. This scenario lever-
ages the most recent version of the FlexRIC [43] project,
involving the deployment of the Near-RT RIC alongside
two E2 node agent emulators, emulating the functionalities
of the O-CU and O-DU. Subsequently, the designated
xApps can be executed via command-line calls. It is
expected that upon activation of the malicious xApp, there
will be a notable escalation in CPU utilization by the
Near-RT RIC, culminating in system instability leading
to eventual failure.

4.2.2. SC2 - FlexRIC, srsRAN, Open5GS. To add a
higher degree of realism to our experiments, beyond the
limits of emulation as observed in SC1, we introduce a
more complex scenario. Herein, we employ the srsRAN2

gNB in conjunction with srsUE, which gives us the
flexibility to opt for either physical evolved Node Bases
(eNBs) and UEs utilizing Software-defined Radios (SDRs)
for over-the-air transmissions, or virtual radios facilitated
through ZeroMQ (ZMQ) for the transmission of radio
patterns between applications. Anticipated outcomes in
this scenario mirror those observed in SC1, characterized
by not being able to establish connections with new UEs
and disruptions to the connectivity of existing gNBs and
UEs with the core network.

4.2.3. SC3 - OSC O-RAN, ORAN-SIM H-Release.
Given that the first two scenarios leverage the adaptable
SDK FlexRIC, and we aim to also evaluate our method-
ology utilizing the Near-RT RIC provided by the OSC
platform, we opt for the H-Release, accompanied by its
integrated E2 Simulator, constructed on top of the E2
Application Protocol (E2AP) version 1. We hypothesize a
scenario outcome where the subscription management pod
within the Kubernetes cluster, responsible for overseeing
subscriptions, encounters a failure event, subsequently
initiating an automated regeneration and restart process.

4.2.4. SC4 - OSC O-RAN, ORAN-SIM I-Release.
For SC4, in contrast to SC3, the changes are limited to
the software components and are incorporated into the
latest software version, which corresponds to the I-Release
enabled by OSC. Comprehensive information regarding
the individual commit versions is accessible in Table 2.

5. Implementation

In the following sections, we discuss the implementa-
tion details explaining the methodology behind executing
the attacks. Our introduction of distinct scenarios featuring
diverse software components enables comprehensive cov-
erage of prevalent O-RAN software. Nevertheless, minor
discrepancies arise in the execution of the attack due to
the varied software configurations. Assessing structural
security vulnerabilities across all implementations is a

2. https://www.srsran.com

https://www.srsran.com


TABLE 2: Listing of O-RAN software component im-
plementations evaluated in our study with associated Git
commit.

Software Git Commit

SC1

FlexRIC 1f04cc558ebc8da9de6a620762bc02f5db4ecb4a

SC2

srsRAN Project 2f90c8b60e9396a7aed59645c98dbcbccda2bf7c

srsRAN 4G ec29b0c1ff79cebcbe66caa6d6b90778261c42b8

Open5GS be7d08bffc4919475e5c87355eda22e051ccc5b2

FlexRIC ddb0a6add3c866d5ba50f8c60336b3d403c92b58

SC3

ric-dep b0753dc1d115fd4e996e07846610f6e469b562b3

E2-interface 215d350dbe06a4c7ee370815f26128a7f7e160cb

appmgr 139295eb66cb5cedbae5e3746d9ace128104bb69

hw-go 3a0d348e429ea0f3f3d2a1d5eb54ec8758d1a262

SC4

ric-dep 0a6f18efda7b20b9d3d9d6bf80a9e0feedddd8e7

E2-interface 95005a3d8b62f04e46cca615bdbffa2842827bdd

appmgr 361faacb46d1f379406b205034c818fef37a9d76

hw-go 3a0d348e429ea0f3f3d2a1d5eb54ec8758d1a262

challenging task, as these systems vary significantly and
are often still in the early stages of development. However,
the underlying methodology remains consistent with the
aforementioned description. Below, we draw a distinction
between FlexRIC and the Near-RT RIC realized by OSC.

Table 2 lists the commit of each component we lever-
aged for our analysis. All commits refer to the most recent
versions of their respective releases available at the time
of publication. Specifically, for OSC software, the H and I
releases are utilized. For FlexRIC, version 2.0.0 released
in December 2023 is employed, while a newer version
from February 2024 is used in the experiments involving
the srsRAN components.

5.1. FlexRIC

The FlexRIC [43] deployment adheres fully to the
O-RAN standards. It incorporates various service models
that support the standard Key Performance Measurement
(KPM) versions 2.01, 2.03, 3.00, and RC version 1.03. It
integrates different encoding schemes based on the utilized
service model (ASN.1, flatbuffer, and plain). For xApps,
a sqlite3 database connection is enabled to persistently
store received indication data for subsequent applications.
This versatility renders FlexRIC highly adaptable and
compatible with nearly all O-RAN use cases.

To realize our methodology, we have made slight mod-
ifications to the KPM monitoring xApp example sourced
from FlexRIC. Specifically, we have encapsulated an infi-
nite loop around the query process for KPM metrics. This
loop continuously dispatches queries alongside preceding
subscription requests to the Near-RT RIC until both the
Near-RT RIC and the xApp experience a crash. The
respective code excerpt and the associated alteration are
detailed in Algorithm 1.

Algorithm 1 Original FlexRIC xApp source code,
wrapped in an endless loop to achieve a DoS.
1: while True do
2: kpm sub data t kpm sub = {0};
3: uint64 t period ms = 100;
4: kpm sub.ev trg def = gen ev trig(period ms);
5: const int KPM ran function = 2;
6: for i = 0; i < nodes.len; + + i do
7: kpm sub.sz ad = 1;
8: kpm sub.ad = CALLOC(1, sizeof(kpm act def t));
9: assert(kpm sub.ad ̸= NULL and ”MEM Exh.”);

10: ngran node t const t = nodes.n[i].id.type;
11: bool du or gnb = t == ngran gNB

or t == ngran gNB DU ;
12: const char ∗ act = du or gnb?

“DRB.RlcSduDelayDl” :
“DRB.PdcpSduV olumeDL”;

13: ∗kpm sub.ad = GEN ACT DEF(act);
14: h[i] = REPORT SM XAPP API(

&nodes.n[i].id,KPM ran function,
&kpm sub, sm cb kpm);

15: assert(h[i].success == true);
16: FREE KPM SUB DATA(&kpm sub);
17: end for
18: end while

Executing FlexRIC necessitates the initial steps of
building and installing the FlexRIC project, including the
modified xApp into the build pipeline. Subsequently, the
Near-RT RIC can be initiated, alongside the E2 node
agent emulators for CU and DU with default configuration
settings. Given that the operational dynamics of FlexRIC
xApps diverge slightly from those in an OSC O-RAN,
the process only involves launching the compiled C file.
Subsequent observation enables the assessment of the
effects of the DoS attack.

5.2. OSC O-RAN

Deploying an xApp within the Near-RT RIC frame-
work of the OSC implementation entails a more intricate
and error-prone sequence of steps from the developer’s
perspective compared to the FlexRIC deployment. Primar-
ily, this process necessitates the flawless operation of the
complete Kubernetes cluster, alongside the containerized
E2 interface simulator responsible for emulating the gNB.
Subsequently, it is imperative to establish successful con-
nectivity between the gNB and the Near-RT RIC, followed
by the creation of an entry in the routing table facili-
tated by the routing manager. Only thereafter can docker
containers, be on-boarded to the chartmuseum and subse-
quently installed within the cluster utilizing the dms cli
tool. For implementation purposes, we have employed the
hw-go sample application, within which an infinite loop
has been integrated within the xAppStart callback. Algo-
rithm 2 illustrates this straightforward adaptation within
the authentic code segment.

Algorithm 2 OSC xApp source code for the endless
sending of subscription requests.

1: nbList← e.GETNBLIST;
2: while True do
3: for each nb in nbList do
4: e.SENDSUBSCRIPTION(nb.InventoryName);
5: end for
6: end while



6. Evaluation

In this section, we present our findings derived from
the execution of distinct attacks across the respective sce-
narios, explaining the effects of each. The experiments and
measurements were conducted within Virtual Machines
(VMs) hosted on a Proxmox environment. Each VM is
configured identically, equipped with 6 CPU cores of
Intel(R) Core(TM) i5-9500 CPU @ 3.00GHz and 64 GB
of RAM, operating under Ubuntu 20.04-2.0.

Experiments SC1 and SC2 underwent comprehensive
measurement and evaluation encompassing a diverse array
of metrics. Detailed documentation on the replication
of the attacks is accessible via our dedicated GitHub
repository [27]. Furthermore, we explain the identified
consequences on the OSC implementations for the attack
scenarios SC3 and SC4.

In our evaluation, we concentrate our experiments
on analyzing CPU load during the respective attacks.
Although we recorded memory consumption for all mea-
surements, it did not exhibit any significant characteristics.
This can be explained by the fact that flooding the end-
point with packets necessitates processing each incoming
message, which is highly CPU-intensive. While certain
DoS attacks can significantly impact memory consump-
tion, our preliminary evaluations indicate that this is not
the case for our attacks. Therefore, we have chosen to
focus exclusively on a detailed analysis of the effects on
CPU consumption in this section.

6.1. SC1 - FlexRIC Standalone

To establish a comparative reference for our attacks,
we initiate a ground truth measurement as a baseline. As
depicted in Fig. 5, this baseline illustrates the simultaneous
start of all required components, maintaining a consistent
level of CPU utilization throughout the 120-second run-
time. Subsequently, we conduct two distinct Attack Case
(AC) test runs:

• ACαSC1 → Single execution of the DoS attack
with no subsequent component interaction.

• ACβSC1 → Single execution of the DoS attack
with two subsequent restarts of the Near-RT RIC.

In the setting of ACαSC1, our implementation ex-
hibits the expected effect described above. Following a
brief startup phase, the Near-RT RIC significantly in-
creases its CPU power consumption under the constant
load of subscription requests. Shortly after executing the
xApp, the Near-RT RIC collapses. Fig. 6 clearly illustrates
this rise and the abrupt stop shortly before the 40-second
mark. This indicates that from approximately second 40,
there is no longer a connection between the CU, as well
as the DU, and the control plane. Hence, it is reasonable
to assume that the condition outlined in (3) manifested.

The total peak CPU load during an attack increases,
typically leading to the collapse of the Near-RT RIC
within a few seconds of the attack. In general, the duration
of a successful attack falls within the range of 10 seconds
or more. Additionally, there is roughly double the CPU
performance of CU and DU compared to the baseline
measurement, attributed to their efforts to send metrics
to a large number of subscribed xApps. In the case of

ACβSC1, the subsequent restart of the Near-RT RIC
exhibits interesting behavior characterized by a sudden
increase in CPU payload. These spikes amount to a peak
of 133% (a number greater than 100% is possible since
the virtual execution environment has 6 CPU cores and
thus theoretically 6 × 100% is achievable). The cause is
that the Near-RT RIC immediately attempts to resolve all
RIC indication messages previously accumulated by the
DoS attack after restarting. This behavior can also be seen
after a second restart, as in Fig. 7. Our tests show that
the problem persists even after multiple attempts. Only a
complete restart of all components, including CU and DU,
allows normal operation to be restored after a subscription
request DoS attack.

6.2. SC2 - FlexRIC, srsRAN, Open5GS

This scenario is analogous to SC1, affirming the as-
sumption described in Section 4.2. Only the emulated CU
and DU are replaced by srsRAN components. In essence,
the baseline ground truth measurement in Fig. 8 depicts an
increased CPU consumption of the srsRAN gNB and UE.
This augmentation arises because, unlike in SC1, a purely
emulated data plane is not employed here; instead, a 5G-
compliant network is utilized, comprising the components
outlined in Section 4.2.2. Furthermore, we also split in
this scenario the remaining experiments into two distinct
groups:

• ACαSC2 → Single execution of the DoS attack
with no subsequent component interaction.

• ACβSC2 → Single execution of the DoS attack
with two subsequent restarts of the Near-RT RIC.

The same equivalent effects of the SubReq DoS attack,
as previously noted in SC1, are observable in Fig. 9 and
10. This demonstrates that not only does the emulated
scenario entail far-reaching effects in the event of such
an attack, but also components such as the srsRAN 4G
and 5G software radio suites are impacted by the attack’s
effects if FlexRIC is employed as the Near-RT RIC within
the RANs. This further underscores the threat scenario for
real, as opposed to merely simulated, RANs.

6.3. SC3 - OSC O-RAN, ORAN-SIM H-Release

In the current implementation of SC3, the underlying
technology has transitioned towards the adoption of the
OSC O-RAN. This scenario investigates the impact of
SubReq DoS attacks on the pods operating within the Ku-
bernetes cluster and assesses their effects on the simulated
gNB. A prerequisite for this assessment is the successful
installation and error-free operation of all pods, alongside
the proper functioning of the gNB simulation facilitated
by the E2 simulator, which must be running and connected
to the Near-RT RIC. Upon successful onboarding of the
malicious xApp into the operational cluster through the
dms cli, as outlined in Section 5.2, our attack protocol is
initiated. The attack simulation, denoted as ACαSC3, is
configured to trigger an immediate restart in the event of
component failure, which is attempted up to three times
before further steps are discontinued. Fig. 11 depicts the
120-second measurements of Kubernetes pod states for
both the E2 manager (ricplt-e2mgr) and the malicious
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SC1.
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Figure 6: DoS for ACαSC1.
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Figure 7: DoS with restarts for
ACβSC1.
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Figure 8: Baseline CPU Usage for
SC2.
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Figure 9: DoS for ACαSC2.
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Figure 10: DoS with restarts for
ACβSC2.

xApp (ricxapp-hw-dos), along with the gNB connection
status.

The analysis of these measurements yields the follow-
ing observations:

1) Following the initiation of the malicious xApp,
it takes approximately 22 seconds for the gNB
to crash.

2) Approximately 4 seconds subsequent to the gNB
restart, the E2 Manager crashes, encountering
a runtime error attributed to segmentation
violation, consequently transitioning into an
error state.

3) Following this, a similar pattern to (2) emerges
during the subsequent two restarts of the gNB,
with a slight variation: the pod transitions to the
CrashLoopBackOff state before resuming normal
operation. This is a result of the internal handling
of pod restarts within Kubernetes, which imposes
a back-off delay with each restart. This cumula-
tive delay increases with iterative failures, lead-
ing to an increased delay in subsequent restart
attempts.

In our experimental trials, we find that exclusively
executing a full redeployment of the entire set of Near-
RT RICs without deploying the malicious xApp proves
effective in resolving this behavior. This reaffirms the con-
clusions drawn in SC1 and SC2, indicating that following
a SubReq DoS incident, only a comprehensive reset of the
RIC, accompanied by complete downtime for all users and
services, can extinguish the impact of the attack.
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Figure 11: Kubernetes pod states with gNB connection
status for SC3 during SubReq DoS attack with gNB
restarts.

6.4. SC4 - OSC O-RAN, ORAN-SIM I-Release

Scenario SC4 mirrors the structure of SC3, with the
only modification being the utilization of the latest version
of the I release. In this iteration, we notice a disparity in
the impact of the OSC O-RAN implementation compared
to our previous observation in SC3, where the SubReq

DoS attack was conducted.
In our experimental framework, executing an attack

now results in the effective prevention of new E2 gNB



simulations from establishing connections. Should our
modified xApp start before the actual gNB connection,
leading to a significant influx of SubReqs directed towards
the Near-RT RIC, we can handicap the initiation of new
gNB connections. To gain a better understanding of these
effects, we conduct multiple simulations with varying de-
grees of malicious loads. To modulate the rate of SubReqs

transmission, we introduce a simple delay before each
iterative processing of the requests. We categorize these
simulations into five distinct groups, each characterized
by a different average rate of SubReqs transmission per
unit of time:

• SM4Mα → This measurement serves as a ground
truth reference, wherein the RIC is utilized, and
no xApp exhibits malicious behavior.

• SM4Mβ → This measurement is conducted with-
out introducing any delay in the transmission of
SubReqs.

• SM4Mγ → In this measurement, a delay of 2 ms
is incorporated into the request loop.

• SM4Mδ → This measurement involves the inclu-
sion of a 5 ms delay in the request loop.

• SM4Mϵ → Here, a delay of 10 ms is introduced
into the request loop.

During the execution of the individual test categories,
we record timestamps in a log file corresponding to the
moment when each SubReq was dispatched. Additionally,
for measurements SM4Mγ to SM4Mϵ, we introduce a
delay in milliseconds prior to sending each request. This
intentional delay manipulation enables a certain degree of
control over the total number of SubReqs per unit of time.

The outcomes of this test series are illustrated in Fig.
12. The figure presents the average total count of SubReqs

per 10-second interval against the probability percentage
of a successful gNB connection. Evidently, as the volume
of SubReqs increases, the likelihood of a successful setup
response diminishes. This underscores the potential of a
determined attacker to prevent new gNB connections with
a considerable degree of success, provided that sufficient
effort is made in terms of SubReq volume.

Such a scenario poses significant challenges, espe-
cially in instances where a gNB experiences a failure and
undergoes a restart. Routine reboots, such as those occur-
ring after updates or similar events, are also conceivable.
If an attack is ongoing during such critical moments, the
gNB faces obstacles in resuming normal operation within
the RIC post-restart.

6.5. Sources of Vulnerabilities

Due to the implementation differences, we also iden-
tified independent potential causes of errors. Within the
FlexRIC SDKs, an assertion error triggers application
crashes, with more detailed information available in Sec-
tion 7.1, where we analyze the underlying problem.

Regarding the issues within SC3, we suspect an al-
gorithm complexity problem, expressed in the terminol-
ogy of the Common Weakness Enumeration (CWE) Root
Cause Mapping of Vulnerabilities (RCMV). Initially, the
gNB aborts with a core dump, subsequently leading to
a runtime panic error in the e2mgr, with indications of
an invalid memory address or a nil pointer dereference
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Figure 12: Average number of SubReqs per 10-second
time window in comparison to the percentage of success-
fully started gNBs in SC4.

upon restart. Consequently, the e2mgr crashes with the
SIGSEGV segmentation violation, code=0x1 addr=0x0
pc=0x91d016.

In SC4, we characterize the described issue within
the CWE RCMV as resource exhaustion. The key aspect
here lies in the overwhelming inflow of SubReqs, leading
to an overload of the Near-RT RIC and consequently
rendering other legitimate components, such as new con-
necting gNBs, incapable of establishing new connections
via legitimate requests. Consequently, this results in a
SETUP-RESPONSE-FAILURE within the timing of the
gNB.

6.6. Ethics and Responsible Disclosure

We took measures for responsible disclosure to pre-
vent the discovered vulnerabilities from affecting real-life
deployments and the diffusion of our work. We followed
different approaches based on their original release model
for the affected components.

In particular, we contacted the project’s original devel-
opers for the FlexRIC. They acknowledged our findings
and proposed a first solution. However, after testing, we
found that the problem persisted, and we shared our
proposed solution with the FlexRIC team.

Regarding the OSC implementation, we opened two
issues on the Jira page of the OSC Near-RT RIC project3.
The issues have been assigned and are currently under
investigation.

We have been assigned three CVEs (CVE-2024-
34034, CVE-2024-34035, CVE-2024-34036) for our find-
ings within the FlexRIC and OSC implementations from
the MITRE CVE Numbering Authority. All three were
reviewed and accepted by the CVE Numbering Authority
(CNA).
Next, we present the claims in each filed CVE:

• CVE-2024-34034:
SubReqs vulnerability in FlexRIC 2.0.0 - The com-
ponent crashes during a Subscription Request DoS
attack, triggered by an assertion error. An attacker

3. https://jira.o-ran-sc.org/projects/RIC/issues/



Algorithm 3 Basic pseudocode for handling subscription
request DoS prevention in Near-RT RIC.
Require: maxSimultaneousXappsSubs← α
Ensure: cSubs ≤ maxSimultaneousXappsSubs

1: if new.SUBREQ(xAppID) then
2: cSubs← get.COUNTCURRENTSUBREQ(xAppID);
3: if cSubs ≤ maxSimultaneousXappsSubs then
4: handle.SUBSCRIPTIONREQUEST(xAppID);
5: add.SUBREQARRAY(xAppID)
6: else
7: break
8: end if
9: else if del.SUBREQ(xAppID) then

10: test
11: end if

must send a high number of E42 Subscription
Requests to the Near-RT RIC component.

• CVE-2024-34035:
SubReqs vulnerability in O-RAN OSC Near-RT
RIC H-Release - To trigger the crashing of the
e2mgr, an adversary must flood the system with
a significant quantity of E2 Subscription Requests
originating from an xApp.

• CVE-2024-34036:
SubReqs vulnerability in O-RAN OSC Near-RT
RIC I-Release - To exploit this vulnerability, an
attacker can disrupt the initial connection between
a gNB and the Near-RT RIC by inundating the
system with a high volume of E2 Subscription
Requests via an xApp.

7. Countermeasures

In this section, we show how a simple countermeasure
can mitigate our proposed attack without significantly
impacting the performance under regular network usage.
This is intended to demonstrate how such attacks can
potentially be avoided by means of simple measures. In
particular, we focus on a countermeasure that efficiently
prevents the attacks for FlexRIC shown in SC1 and SC2.

Algorithm 3 shows a schematic pseudocode of how
our DoS prevention works.

The main idea is to create a global dynamic array
containing the number of active subscription requests of
an xApp. Upon receiving a new subscription request, the
algorithm checks the number of active subscriptions of
the requesting xApp and allows for a new one only if the
total number of active subscriptions is below a pre-defined
threshold value α.

7.1. Problem Analysis

In the context of investigating the faulty Near-RT RIC
functionality under DoS SubReq attacks, several critical
observations can be made that lead to the clarification
of potential problems within the operational framework
of FlexRIC. First, it can be observed that the Near-
RT RIC module is prone to lose connection with the
associated E2 nodes as a result of the high volume of
SubReqs. This loss of connection, which is assumed to
be possibly related to the timeout of the SUSBCRIP-
TION REQUEST RESPONSE, interrupts the seamless in-

teraction between the Near-RT RIC and the E2 nodes,
triggering a change of the RIC state to PENDING EVENT
within the e2 event loop.

Subsequently, under such circumstances, the Near-RT
RIC tries to handle the pending event by attempting to
consume a file descriptor. This action entails invoking
the consume fd function within the codebase, designed
to read from the file descriptor to facilitate its removal.
However, it is observed that during this process, an as-
sertion check for the file descriptor’s validity, specifically
fd > 0, fails to hold true. In the particular scenario under
investigation, the file descriptor falls below the expected
threshold, indicating an anomaly within the system. It is
possible that the reduced value of the file descriptor could
be due to various factors, including possible socket errors
or other forms of undefined behavior.

Following discussions with FlexRIC developers, this
assumption has been validated. The prevailing method
in FlexRIC is to promptly confirm and subsequently fail
upon a timeout occurrence. We believe that this approach
is suboptimal, as timeouts can be induced by malicious
activities, as demonstrated in our case. A first attempt4 to
solve this problem tried to overcome the assertion problem
of fd > 0, which occurs after a certain time under
DoS. However, this proved to be ineffective against our
attack, from which we conclude that an all-encompassing
DoS protection scheme based on our initial preventive
measures is necessary. The fail-fast approach used in
the FlexRIC project offers advantages in troubleshooting
and simplifies implementation, but is suboptimal from a
security standpoint. Such an approach is susceptible to
exploitation by attackers who can induce repeated fail-
ures, potentially resulting in a denial of service (DoS)
by rendering the system inaccessible to legitimate users,
as observed in our case. Additionally, this approach can
leave the system in an inconsistent or insecure state, where
certain processes are terminated while others remain oper-
ational, thereby creating potential vulnerabilities.It is also
concerning that the software is already being deployed in
this manner in some customer projects.

Of particular concern is the absence of robust error-
handling or recovery mechanisms within the codebase to
address and mitigate such abnormal states. This deficiency
underscores a critical gap in the Near-RT RICs fault
tolerance and resilience strategies, necessitating further
investigation and mitigation efforts to fortify its opera-
tional stability and reliability. The capacity of the RIC to
process SubReqs is inherently dependent on the hardware
utilized, the allocated resources (e.g., threads), and the
frequency of indication messages requested by xApps.
However, scaling up resources should not be the sole
solution to managing high request volumes. In order to
mitigate resource-based attacks, approaches such as our
proposed mechanism need to be integrated and further
developed with existing security solutions.

7.2. Implemented Measure Details

We have created a premise within the build script
that allows the subscription request DoS prevention

4. https://gitlab.eurecom.fr/mosaic5g/flexric/-
/commit/2af360ca7727198f6bd624ef77746b027d42ec17
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Figure 13: Overhead measurements for FlexRIC SubReq

DoS prevention in milliseconds (ms).

to be activated or deactivated. If it is to be acti-
vated, msg handler iapp dosprev.h is imported instead of
msg handler iapp.h. Within this, a subscription tracker is
created at the beginning in the initial message iapp handle.
In the case of an E42 RIC SUBSCRIPTION REQUEST
handle, the DoS prevention trigger is tested before the ac-
tual subscription request is executed. This checks whether
the xApp from which the subscription request comes
exceeds the number of permitted simultaneous xApp sub-
scriptions with this request. If this is not the case, the
subscription request is executed normally and the xApp
ID is then added to the list within DoS prevention. In all
other cases, the subscription request is ignored. A global
parameter can be used to define how many simultaneous
subscription requests an xApp can create and maintain.
The list into which new SubReqs are inserted functions as
a buffer for a potential surge of requests. This mechanism
can lead to a bottleneck during an attack, resulting in
delays for legitimate requests. Nonetheless, this is an
acceptable trade-off to mitigate attacks. Our initial load
tests already show that FlexRIC can maintain stability and
does not crash.

7.3. Prevention Overhead Evaluation

The reason for carrying out overhead measurements
is the need to strike a balance between security and per-
formance. While implementing robust security measures
to protect against DoS attacks is essential, these measures
often lead to additional computational and communication
overhead. This overhead can affect the overall perfor-
mance of the system and the user experience. Therefore,
a thorough assessment of the overhead created by the
countermeasures deployed is essential to make informed
decisions about how to deploy them.

By quantifying the overhead caused by our DoS pre-
vention mechanism, we aim to provide insights into the
trade-offs between security and performance within the
Near-RT RIC. Our empirical evaluation of the mean and
standard deviation in Fig. 13 allows us to show that with
a minimal average overhead of around 0.015 ms, the

SubReq DoS can be effectively prevented. The results
presented are divided into 4 measurement categories:

• Mα → Shows the measurements with DoS pre-
vention activated and related to the value for max-
imum simultaneous SubReqs per xApp of 10.

• Mβ → Indicates measurements with DoS preven-
tion enabled and with reference to the value for
maximum simultaneous SubReqs per xApp of 100.

• Mγ → Measured values for implementation with-
out DoS prevention in standard operation.

• Mδ → Runtime values measured for execution
without DoS prevention under load of the SubReq

DoS attack shortly before collapse of the Near-RT
RIC.

All measurements are taken for the same total runtime
and under the number of twenty simultaneously deployed
xApps. The measured time is the duration it takes the
handle callback function, triggered for new incoming
E42 SubReqs, to process and confirm them. It is very
unlikely that multiple malicious xApps can be deployed
simultaneously. As a hypothetical, unrealistic upper limit,
we have set twenty as the maximum number of parallel
malicious xApps. The number of xApps would have to
be enormously high to see a major impact. Since it is
extremely unlikely that an attacker could secretly deploy
so many xApps, this does not fall within our threat model.

The measurements of Mα and Mβ indicate a relative
homogeneity of the transit times, as the standard deviation
is almost equal to the mean value and thus indicates a
symmetrical distribution. This shows a relatively stable
and consistent overhead of a maximum of 0.015 ms in
the case of 100 possible simultaneous SubReqs. Which
we consider to be a minimal and therefore acceptable
amount of computational time overhead for an active
prevention of the described attack. Considering that it is
improbable for a typically functioning xApp to transmit
over 100 SubReqs, our preventive measure does not yield
any additional drawbacks.

In the case of Mδ , the widely differing mean value and
standard deviation reflect the large significant scattering
of the runtimes around the mean value during the attack.
This can be explained by the fact that the measurements
are taken shortly before the Near-RT RIC collapses and
that the data set still contains fast response times and,
subsequently, increasingly higher response times.

Changing the request pattern, e.g. by varying the
request frequency, has no impact on our approach as a
producer-consumer buffer absorbs such peaks. Apart from
that, in our tests, we have the worst case (for the Near-
RT RIC component in terms of incoming requests to be
processed) with the highest possible load by sending all
requests immediately.

7.4. Potential Additional Steps

The measures we have taken so far to prevent the
attack are only a first step. Several additional security
measures need to be implemented to address this attack
strategy before the system is fully secured against this
problem. Furthermore, they should be properly extended
to cover the different possible DoS exploit points. Some
of these measures include:



• xApp authentication. Authentication plays a fun-
damental role in understanding the source of mes-
sages. Indeed, with a proper authentication mech-
anism, it would be possible for the Near-RT RIC
to properly queue the received requests.

• Timing Threshold. Given the authentication frame-
work, the Near-RT RIC could impose a service-
based timing threshold on xApps. In particular,
based on the specific functionality of the xApp,
the Near-RT RIC could impose a maximum rate of
acceptable requests without impairing the xApp-
provided service.

• Cloud-based DoS prevention. Similarly to com-
mercially available solutions, the SMO could in-
clude a service dedicated to packet filtering, such
that subscription requests are not directly handled
by the Near-RT RIC if not properly validated by
the external DoS prevention service.

Furthermore, more focus needs to be put on concrete
vulnerability research. One possible approach to varying
request patterns is protocol fuzzing, which is orthogonal
to our proposal. In our approach, we generate requests
with valid methods (system functions, interfaces, commu-
nication data - are not changed) that lead to a problem-
atic system state. Hence, we do not modify the request
payload, as this would not result in a denial of service.
However, changing the payload to unforeseen content is
important to check all possible system states. Therefore, it
is necessary to pursue such approaches to prevent potential
invalid system states triggered by non-valid input data.

7.5. Applicability to Other Implementations

In theory, this simple mitigation measure can also
be applied in the OSC implementation. Currently, this
approach assumes that there is no malicious entity in
the system and therefore all xApps behave exactly as
specified. Due to the implementation differences of the
individual approaches, the integration of the countermea-
sures must be customized. For the OSC implementation,
we tend towards a more far-reaching and all-encompassing
overall solution. This could be implemented in the form
of a generic security monitor. We envision a central se-
curity authority that can effectively enforce request rate
limiting for the specific endpoints, active DoS detection,
general anomaly detection, and regular checks of security
guidelines.

As already described, the mitigation measure we have
shown is merely a first demonstration of how easy it is to
effectively prevent such attacks. It is not a final solution.
Thanks to the simple use and the proven low overhead,
significantly worse scenarios and effects can be effectively
and quickly eliminated. If this measure is now combined
with the measures described in Section 7.4 and possibly
combined within a security monitor as just described, we
believe that the general attack surface for the Near-RT
RIC will be drastically reduced.

8. Related Work

The security of O-RAN is currently understudied.
The majority of works focus on developing novel and

efficient solutions for resource management leveraging the
novel features of O-RAN. There currently exist survey
papers exploring the possible threat surface and attack
implications on O-RAN [18], [19], [52]. As their scope is
to provide a comprehensive overview of the technology
and its possible security implications, the authors did
not perform evaluations to assess whether the proposed
threat vectors are exploitable and if they lead to severe
consequences for an O-RAN deployment.

8.1. O-RAN Security Research

Soltani et al. [21] leverage the similarities between
Software Defined Networks (SDN) and O-RAN to show-
case how an SDN security flaw (i.e., poisoning bearer
context migration) may affect an O-RAN deployment
and significantly affect its performance. Tseng et al. [53]
exploit the lack of a mutual authentication mechanism
between routing services in the Near-RT RIC to poison
the routing table and hence disrupt the victim’s services.

The paper closest to our work is from Hung et al. [24],
who focus on the E2 interface and the access control
of xApps towards its services. The authors show that
the RIC routing manager is not able to correctly handle
duplicate xApps, only routing packets to the latest de-
ployed one, thus creating possibilities for an attacker to
stop the information flow to the legitimate xApp via a
duplicate malicious one. Furthermore, the authors show
that an xApp sending a RIC subscription response to the
E2 termination causes a crash, making the E2 termination
unavailable. Our work differs from that of Hung et al. [24]
in two key points. First, our threat model envisions a
malicious xApp sending subscription requests to the E2
termination of the Near-RT RIC. Different from malicious
responses that could be identified by checking for the pres-
ence of their request counterparts, malicious subscription
requests are harder to detect. Indeed, they are fundamental
components of the RAN function lifecycle and cannot
be discarded. The second key difference is that we show
that the vulnerability we disclose affects all Near-RT RIC
implementations currently available, rather than only the
OSC implementation.

In recent work, Chiejina et al. [25] conducted one
of the first system-level analyses of adversarial attacks
and defensive mechanisms targeting the intelligent com-
ponents integrated as xApps within the near-RT of an
O-RAN system. Using a lab environment, they identified
the vulnerability of ML models to adversarial attacks and
the subsequent adverse effects on both the models and
network performance. They also demonstrated that these
effects persisted despite the system’s rapid RTT capa-
bilities to meet stringent latency constraints. Their work
unveiled shortcomings of the current O-RAN architectures
and proposed a future O-RAN system design and security
direction.

A novel methodology has been developed in [54],
utilizing the MITRE ATT&CK framework to objectively
assess specific threats in O-RAN. This work analyzes the
O-Cloud component within the O-RAN ecosystem as a
representative example, demonstrating that no single threat
class possesses complete security. The analysis reveals
that the entire component responsible for the virtualization
of the RANs reaches a high average exploitability score



of 8.7 out of 10. This underscores the susceptibility to
existing vulnerabilities and highlights the necessity for
addressing security risks within O-RAN.

A recent work by Thimmaraju et al. [23] highlighted
the architectural weakness of O-RAN centralized con-
troller, similar to vulnerabilities in Software-Defined Net-
working (SDN) controllers. The authors conducted a se-
curity risk assessment study of two state-of-the-art open-
source Near-RT RICs for known security vulnerabilities
via dependency and configuration analysis by develop-
ing an O-RAN A1 interface security testing tool called
OAITT. They present novel timing and storage covert
channels between Non-RT RICs and the Near-RT RIC that
exploit the A1 protocol. Their research led to the reporting
of Threat “T-A1-04” in the O-RAN Study on Security for
Non-RT RIC. They also identified and reported a denial
of service vulnerability in the µONOS (version 1.4) A1
interface implementation. Complementing to our work,
the above studies show that the architecture of O-RAN
RIC is vulnerable to covert channel and DoS attacks.

Few other research works proposed security solutions
for O-RAN. Wen et al. [55] proposed 5GSPECTOR, a
methodology to detect layer 3 attacks (e.g., overshad-
owing), leveraging the programmability offered by O-
RAN, its xApps, and their metering capabilities. Atalay et
al. [56] proposed an authorization framework for xApps,
where xApp onboarding on the Near-RT RIC is subject to
the presence of valid JSON web tokens. Neither of these
two solutions can mitigate our proposed attack. Indeed,
5GSPECTOR focuses on attacks where the malicious
user exploits the physical layer. Therefore, it cannot de-
tect repeated malicious subscription requests (our attack).
While the solution from Atalay et al. may seem like a
possible countermeasure for this attack, their authorization
framework only prevents a malicious user from onboard-
ing non-authorized xApps (external attackers). However,
we also focus on insider attacks, i.e., attackers that can
deploy or exploit seemingly legitimate xApps to generate
a volumetric DoS attack.

8.2. DoS Research in O-RAN

Currently, there are not many papers that deal with
DoS specifically for O-RAN. Some papers mention DoS
as a possible attack vector and also partially outline possi-
ble DoS attack paths. However, these publications do not
conduct a feasibility study or other more detailed neces-
sary investigations. To the best of our knowledge, there
are only three publications that describe and investigate
a DoS attack in detail. They all focus on the Fronthaul
Interface (FHI) and the A1 interface. Table 3 presents
related work on the topic DoS in O-RAN as well as the
attacked interface and the O-RAN component.

Liao et al. [22] developed a control-plane DoS attack
against the fronthaul interface of O-RAN. With a software
tool, they simulate attacks and evaluate their impact using
a DU-Radio Unit (RU) testbed based on OSC source code.
Their experiments demonstrate that C-Plane DoS attacks
can cause significant disruptions, particularly in user-plane
message processing. However, their current testbed lacks
full compliance with real-world O-RAN deployments, ne-
cessitating further evaluation.

Work Interface Component
Liao et al. [22] FHI C-Plane
Felina et al. [57] FHI C/U-Plane
Thimmaraju et al. [23] A1 Near-RT-RIC
Our work E2 Near-RT-RIC

TABLE 3: Comparison of existing work for DoS in O-
RAN and their affected components, as well as the used
interface.

Felina et al. [57] also perform a DoS attack targeting
the control- and user-plane of the O-RAN fronthaul inter-
face. They introduce a custom-built tool that is compliant
with O-RAN end-to-end test specifications and generates
high-volume packets targeting the O-DU and O-RAN
Radio Unit (O-RU). They vary attack parameters such as
traffic type, data rate, and spoofed source Medium Ac-
cess Control (MAC) addresses to evaluate the impact on
system throughput, block error rate, and overall stability.
Their experiments demonstrate varying levels of system
vulnerability, highlighting that certain configurations are
susceptible to severe service degradation.

The work by Thimmaraju et al. [23] mentioned above
also found that µONOS (version 1.4) is susceptible to a
DoS attack. The attack exploited the A1 interface by send-
ing a high rate of legitimate policy PUT requests, causing
excessive processing delays and ultimately crashing the
Kubernetes A1 pod. This resulted in a complete service
disruption, requiring manual efforts to restart the pod and
reinstall policies.

9. Conclusion

In this paper, we demonstrate that a relatively simple
subscription-based DoS attack can disrupt popular O-RAN
implementations. The proposed novel DoS attack against
the Near-RT RIC implementations proves highly effective.
Indeed, employing a malicious xApp, we illustrate how
an attacker can flood the Near-RT RIC with numerous
subscription requests, rendering it inaccessible. The result-
ing issues lead to the initial unavailability of the service
for new user connections, followed by a complete service
outage for the end user when all affected components must
be restarted to restore normal operation. Our measure-
ments are conducted under realistic conditions mirroring
those encountered in real RAN deployments. The exploit
takes advantage of the lack of a rate-limiting mechanism
in the SM, a logical component within the Near-RT RIC
responsible for managing E2 subscription requests in cur-
rent implementations. It is noteworthy that the requisite
number of requests for a successful attack varies across
different implementations, underscoring the adaptability
and potential widespread impact of such attacks.

Additionally, we discuss simple countermeasures that
prove highly effective with minimal operational over-
head. Given the increasing significance of O-RAN and
5G architectures in future networks, it is imperative to
scrutinize their security. To facilitate further exploration in
this domain, we are making the source code for the attack
and the mitigation for FlexRIC publicly available. As part
of our future research agenda, we intend to investigate
the impact of subscription-based DoS attacks on other
components of O-RAN architecture.
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Appendix A.
Open Science and Data Availability

The code necessary to carry out the attack from SC1

is available in an GitHub repository [27]. This repository
enables the execution of the E2 Subscription DoS attack
on the FlexRIC Near-RT RIC implementation. The attack
is fully executable within a Docker container and can be
initiated via a Makefile, which enables a quick and un-
complicated execution. However, for SC2, the deployment
of srsRAN and Open5GS is required, while for SC3 and
SC4, a fully operational OSC O-RAN Kubernetes setup is
necessary. As a result, we do not provide a fully automated
test environment.
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https://o-ran-sc.org
https://docs.srsran.com/projects/project/en/latest/index.html
https://docs.srsran.com/projects/project/en/latest/index.html
https://x5g.org
https://www.powderwireless.net
https://gitlab.eurecom.fr/mosaic5g/flexric
https://www.virtualexhibition.o-ran.org/classic/generation/2021/category/intelligent-ran-control-demonstrations/sub/intelligent-control/140
https://www.virtualexhibition.o-ran.org/classic/generation/2021/category/intelligent-ran-control-demonstrations/sub/intelligent-control/140
https://www.virtualexhibition.o-ran.org/classic/generation/2021/category/intelligent-ran-control-demonstrations/sub/intelligent-control/140
https://www.o-ran.org/software
https://docs.o-ran-sc.org/projects/o-ran-sc-ric-plt-submgr/en/latest/user-guide.html
https://docs.o-ran-sc.org/projects/o-ran-sc-ric-plt-submgr/en/latest/user-guide.html
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