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ABSTRACT
The rapid digitalization across industries comes with many chal-
lenges. One key problem is how the ever-growing and volatile
data generated at distributed locations can be efficiently processed
to inform decision making and improve products. Unfortunately,
wide-area network capacity cannot cope with the growth of the
data at the network edges. Thus, it is imperative to decide which
data should be processed in-situ at the edge and which should be
transferred and analyzed in data centers.

In this paper, we study two families of proactive online data
replication strategies, namely ski-rental and machine learning al-
gorithms, to decide which data is processed at the edge, close to
where it is generated, and which is transferred to a data center.
Our analysis using real query traces from a Global 2000 company
shows that such online replication strategies can significantly re-
duce data transfer volume—in many cases up to 50% compared to
naive approaches—and achieve close to optimal performance. After
analyzing their shortcomings for ease of use and performance, we
propose a hybrid strategy that combines the advantages of both
competitive and machine learning algorithms.

CCS CONCEPTS
• Information systems→ Data replication tools; • Computer
systems organization→ Client-server architectures.
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Figure 1: Edge-to-cloud transfers face a trade-off between
transferring individual query results and replicating entire
partitions.
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1 INTRODUCTION
Data is the new oil. Many successful applications, such as online so-
cial networks [6], online tracking and advertisements [19], location-
based marketing and navigation [18], rely on data generated at the
edge of the network. We expect that this trend will continue, e.g.,
with the Internet of Things (IoT). Today, there are about four billion
online users, i.e., half the world population [17]. Yet, the estimated
number of connected devices already exceeds twenty billion [7] and
they generate traffic around the clock [13]. With the increasing pen-
etration of IoT, e.g., in all areas of the fourth industrial revolution
including production lines and self-driving cars, a dramatic increase
of both the number of connected devices and the produced data
at the network edge is forecasted [7]. Processing of such volumi-
nous data is necessary, e.g., to inform production-related decision
making, investments, and improve products [14].

Figure 1 illustrates a typical setting of wide-area distributed data
processing to enable data-driven applications. The data arrives
asynchronously as a stream of data partitions at the network edge.
Data partitions aggregate thousands of rows or columns, e.g., to
speed up lookups [16], enable parallel data processing [3], and
reduce storage [11]. Middleboxes at the network edge collect, store,
and analyze these partitions. These middleboxes must decide which
raw data resp. summaries to forwarded to remote data centers, i.e.,
cloud infrastructures, based on application requirements and data
access patterns. Ideally, all data partitions should be forwarded to
data centers for central processing. However, this is undesirable or
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even infeasible due to limited wide-area bandwidth, high latency to
the remote data center, data privacy regulations, or simply because
only a small fraction of the datawill ever be accessed by applications.
Nevertheless, data that is frequently accessed should be replicated
to the data centers to reduce application response time.

Recent studies have shown that online replication strategies can
reduce the cost of replicating data when data is immutable [15].
However, for many applications data ages quickly, requiring to
regularly invalidate already replicated partitions [4]. To model this
requirement, we, in this paper, consider data partitions to be im-
mutable only within (short) time windows. Hence, the task is to
minimize replication costs over several time windows. Still, histori-
cal information from preceding time windows can and should be
used to inform replication decisions. Yet, even access patterns and
popularities of partitions are subject to volatility.

In this paper, we apply the ski-rental algorithm [2, 8, 9] to de-
cide which data within a relatively short time window should be
proactively forwarded from the network edge to the cloud. Pre-
vious works have shown the potential of Machine Learning for
efficiently replicating data, e.g., in the case of Content Delivery Net-
work caching [1]. To that end, we propose a Machine Learning (ML)
based strategy for replicating data. We compare the performance
of both strategies, namely the ski-rental and the ML-based ones,
against naïve strategies, i.e., replicate all and replicate nothing, as
well as the optimal offline one.

Our contributions can be summarized as follows.

• Analysis of the potential benefit of reactive online replication
strategies in time windows at the network edge.

• Evaluation of multiple online edge replication strategies, includ-
ing competitive ratio-based and ML-based strategies, by applying
them to two real datasets that span four days.

• Introduction of hybrid online edge replication strategies that
combine the benefits of both the competitive ratio-based and
ML-based strategies.

2 DATASET
To evaluate our proposed online replication strategies we use a set
of Enterprise resource planning (ERP) database traces of a Global
2000 company [4]. After giving an overview of the traces we detail
how we cater it to our use case.

2.1 Raw Traces
The traces, see [4], record queries to various tables of an ERP data-
base of a Global 2000 company. For each table and each query, the
time of execution, as well as the accessed rows, are recorded. The
traces span less than three days. We focus on production queries
and, hence, exclude backup transfers taking place around 1 am each
day.We focus on the two tables that where accessedmost frequently
and, hence, obtain two (sub-)traces. The first trace contains roughly
100 Million rows and records about 2.5 Million queries. The second
trace has 24 Million rows and roughly 1.3 Million queries. Table 1
gives an overview of both traces.

Table 1: Trace statistics for the two largest tables [4]

Name Trace 1 Trace 2
Table size in rows [million] 100 24
Number queries [million] 2.49 1.28
Duration [days] ≈ 3 ≈ 3
Accesses in rows [million] 137 34
Avg. rows per query 55 26

2.2 Data Cleaning
In the following, we detail our modifications to the raw data to
cater them to our use case.
• For performance reasons, the original trace only contains queries
for the first 2 minutes for each 10 minute interval. To remove
these gaps, we scale the captured queries to the full 10 minute
interval.

• We introduce data partitions by aggregating 10k adjacent rows
into a single partition1, yielding roughly 10k and 2.4k partitions,
respectively.

• We focus on two (full) consecutive days and aggregate accesses
to partitions in 100-second intervals, yielding 864 data points per
partition, trace, and day.

2.3 Time Windows
For our analysis, we focus on time windows of one day which
results in two time windows per trace. Figure 2 depicts the richness
of our datasets. Clearly, the accesses recorded in both traces vary
over time and are (temporally) correlated both within and across
time windows (days): Periods with a large number of accesses
are interleaved with periods of few to no accesses. Data locality
correlations between adjacent partitions can also be observed: For
example in trace 2 for partitions 1720 through 2440 around the 5h
mark. Additionally, we note that row accesses per partition are
highly skewed. For roughly 75% of the partitions less than 1k row
accesses are recorded while for more than 1% of the partitions far
more than 10k accesses are recorded. Notably, these heavy-hitters
are observed at different times and they can change from day to
day: The common peaks at 15h on day 2 for trace 2 do not exist
in the previous day. Thus, the training process of learning from
previous windows may be challenging.

3 EDGE REPLICATION: CHALLENGES AND
OPPORTUNITIES

Next, we introduce the general systemmodel, introduce and discuss
naïve replication schemes, and analyze potential cost reductions.

3.1 Setting
As discussed in Section 1, we assume that data is stored locally at
the network edge while queries are processed in the cloud—remote
data centers. The main challenge is to decide which partitions to
replicate to the cloud and which data partitions to keep at the edge.
In this paper, our primary concern is the reduction of the transferred
data volume. We leave the inclusion of secondary cost factors, e.g.,
storage and processing cost, to future work.

1Partition sizes between 1k [16] and 1,000k [11] are common.
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Figure 2: Visualization of obtained traces. Top: row accesses aggregated over 500s intervals and 20 (trace 1) or 5 partitions (trace
2). Bottom: ECDF of cumulative row accesses per partition. Note the logarithmic x-axes.
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Figure 3: Costs of the naïve and optimal offline strategies
and comparison of naïve baseline to optimum.

While replicating a partition incurs a transfer cost proportional
to the size of the partition (in our case 10k rows, cf. Section 2),
queries to non-replicated partitions are processed at the edge and
incur transfer costs proportional to the number of accessed rows.
We refer to the former cost type as the replication cost and the latter
type as the transfer cost. We furthermore denote by partition cost the
cumulative costs for serving all queries of a partition from the edge,
i.e., the cumulative shipping cost. Clearly, replicating a partition to
the cloud only yields a benefit if the remaining partition cost is at
least as high as the replication cost itself.

3.2 Naïve Replication Strategies
A replication strategy is an algorithm that decides whether and
when to replicate each partition. Its cost is the total transfer costs
incurred within a time window across all partitions. The naïve
replication strategies are either: replicate nothing or replicate all.
These strategies do not differentiate between individual partitions.

Hence, their performance depends on the ratio of partitions whose
partition cost exceeds their replication cost. This may not only
depend on the raw access volume but also system assumptions.
For example, shipping individual rows is likely to incur a higher
overhead than replicating a partition as a whole. Furthermore, data
partitions can often be compressed significantly [11] such that the
replication cost may be a fraction of the cost of transferring all rows
individually. We refer to this ratio of replication cost to transfer cost
as the replication cost factor, whereby a factor of, e.g., 0.5 implies that
replicating a partition only incurs half the costs of transferring all
rows individually. To broaden the scope of our analysis we study 10
replication cost factors, namely {0.1, 0.2, . . . , 1.0}, albeit assuming
the same replication cost factor for all partitions.

The optimal replication strategy is to replicate an individual
partition only if its remaining partition cost is higher than its repli-
cation cost. Note, this optimal strategy can only be computed if all
accesses are known in advance. Hence, we refer to it as the opti-
mal offline strategy. While its performance is unattainable for all
practical purposes, it serves as a lower bound for other replication
strategies and quantifies the replication cost reduction potential.

Figure 3 (top) depicts the cost of both naïve strategies and the
optimal offline strategy for both traces. For smaller replication cost
factors the replicate all strategy yields the best results while for
larger ones the replicate nothing one does. Note, both are far from
optimal. Referring to the minimum cost over both strategies as
the naïve baseline, the optimality gap of this naïve baseline ranges
from 30% to 66% (cf. bottom of Figure 3). Moreover, a single strategy
may not always yield the best results: For a replication cost factor
of 0.4 neither the replicate all nor the replicate nothing strategy
consistently yield the best performance.

4 ONLINE REPLICATION STRATEGIES
Replication strategies can decide at any point in time to replicate
a particular partition. Moreover, as future accesses and pattern
shifts are often not known, these strategies are inherently online. In
the following, we introduce several strategies including some that
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Table 2: Summary of studied replication strategies

Strategy Description
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replicate all replicates partitions immediately
when a new time window starts

replicate nothing always answers queries directly
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last-partition replicates partitions that previously
exceeded its replication cost

classifier uses random forest classifier trained
on previous time window

hybrid replicates if ski-rental or the
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ve

classifier strategy would do so

ski-rental replicates once replication cost has
been exceeded (threshold=1)

last-threshold sets ski-rental threshold to optimal
one of previous window

optimal offline uses knowledge about future to in-
form replication decisions

offer competitiveness guarantees. A replication strategy is called
c-competitive if for any sequence of time windows and any access
pattern the strategy’s cost is at most c-times that of the cost of the
optimal (offline) strategy. Next, we first discuss our competitive
strategies and then propose several heuristics, including machine
learning based ones. See Table 2 for a summary of all strategies
studied in this paper.

4.1 Competitive Strategies
When competitive analysis first arose, Karlin et al. [8, 9] presented
a very simple but effective competitive online algorithm for the
so-called ski-rental problem: a skier may either rent skis or buy
them but does not know the length of her vacation. Karlin et al.
proved that the best 2-competitive strategy is to buy the skis once
the cumulative daily rental fees would exceed the price of purchase.

This ski-rental strategy is applicable in the context of replication
schemes (cf. [15]): once the cumulative transfer costs exceed the
replication cost, the partition is replicated. Clearly, this strategy is
also 2-competitive and the result by Karlin et al. [9] also implies that
no c-competitive strategy can exist for c < 2. However, empirically
tuning the threshold which is used to decide when a partition is
replicated might be beneficial in practice. In particular, one may
replicate a partition once the transfer costs exceed t-times the
replication cost. Notably, for any constant t > 0, the respective
strategy ismax{1+ f /t, 1+ t/f }-competitive, where f denotes the
replication cost factor.

Harnessing information on the previous time window, we pro-
pose the last-threshold strategy: (i) for the previous time window
the optimal threshold t is computed and (ii) for the current time
window the t-threshold strategy is executed.

4.2 Heuristic Strategies
Next, we propose several heuristics, i.e., strategies not providing
performance guarantees.

Last-Partition Strategy. Given the accesses from the previous
time window one can compute a posteriori optimal replication
decisions. Accordingly, a simple strategy is to immediately replicate

partitions which should have been replicated using the threshold
from the previous time window. Interestingly, if access patterns are
invariant over time, this strategy is optimal.

Machine Learning Strategies. All of the above-discussed app-
roaches handle partitions equally: upon meeting a certain com-
mon criterion, replication is performed. This is not necessary and
my give rise to improvements. To motivate fine-granular machine
learning algorithms, consider the following (cf. [10]). First, access
patterns are (highly) correlated across both: the temporal and the
data-locality dimension (cf. Section 2) and the above approaches
are agnostic to this seasonality. Second, the above approaches are
agnostic to common (sub-)patterns shared by heavy hitters and
which may hence be harnessed to perform replications early on.
Third, learning-based approaches may be robust towards linear
transformations of access patterns recorded in previous windows,
e.g., due to increased demand.

To evaluate the potential of learning which partitions to replicate,
we cast the problem as a classification problem. Specifically, we view
partition accesses as time series and create for each point a feature
vector together with the (a posteriori known) classification decision
whether the replication at this point would have been beneficial. We
generate features by using a set of well-studied aggregation meth-
ods (e.g., sum, mean, max, etc.) over varying numbers of preceding
points.

To perform the actual classification, we propose to use random
forest classifiers [5] because these scale well even for large training
sets, are implemented in several frameworks, and allow for human
interpretation. Specifically, we propose to train the classifier over
the preceding time window and, then, apply the obtained classifica-
tion model to the current time window. The classifier then returns
a classification probability in the range [0, 1]. We (by default) in-
terpreted it as Boolean replication decision by checking whether
the probability lies above 0.5. Besides deciding on a classification
probability threshold, various classification model parameters need
to be calibrated. We defer this discussion to the evaluation.

Besides the above classifier strategy, we also propose to bridge
machine learning and competitive strategies to preserve perfor-
mance guarantees (to some extent) while harnessing fine-granular
trace histories. In particular, we propose the hybrid strategy that
executes both the ski-rental and the classifier strategy: if either
strategy decides to replicate a partition, the hybrid strategy also
performs the replication. Intuitively, by using the disjunction of
both, we aim at replicating heavy-hitters early on while preserving
the 2-competitiveness for partitions whose transfer cost eventually
exceeds the replication cost. We note that calibrating even such
simple classification models requires substantial effort and defer
implementation details to the evaluation section (cf. Section 5.1).

5 EVALUATION
We now evaluate the performance of the diverse replication strate-
gies (cf. Table 2) on the dataset introduced in Section 2. Before
reporting on the results, we give some details on the calibration of
the machine learning-based strategies.
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Figure 4: Performance relative to the naïve baseline, i.e., the minimal cost of the naïve approaches.
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5.1 Classifier Calibration
Accurately calibrating classifiers while not over-training is challeng-
ing. First, due to the skewed partition cost distribution, partitions
that should not be replicated dominate. We adjust the model to this
imbalance by weighting feature vectors according to their class
frequency. Second, feature vectors differ in importance: correctly
recognizing partitions whose partition cost is either very low or
very high is of vital importance. Hence, we again adjust the weights
accordingly. Third, to further increase the accuracy of the clas-
sifier we combine our random forest classifiers with an isotonic
regression model [12].

Being interested in the off-the-shelf performance, we employ
the default classification probability threshold of 0.5 for the basic
classifier strategy. For the hybrid strategy, we increase this threshold
to 0.8 to minimize incorrect replication decisions but also discuss
various other thresholds below.

5.2 Results
Figure 4 shows the performance of the strategies relative to
the naïve baseline for the 2nd day for both traces. A number
lower/higher than one reflects a reduction/increase in the relative
total cost. Notably, most strategies reduce the costs for a wide range
of replication cost factors. The last-partition strategy is an excep-
tion: its potential reductions are outweighed by its additional costs
for replication factors below 0.4. The competitive ski-rental strat-
egy overall outperforms the basic classifier approach (especially on
trace 1) while the last-partition’s performance is less consistent for
trace 2. From the “pure” strategies ski rental achieves the largest
reduction with an average performance improvement of 22% and
a maximum performance of 50%. Over all strategies, the hybrid
strategy performs best with an average performance of 25% and a
maximum performance of 51%. It significantly improves upon the
standalone performance for both the ski-rental and the classifier
strategies in trace 2. Specifically, the hybrid strategy improves upon
ski-rental’s cost by 28% for a replication factor of 0.1 while yielding
the same performance as ski-rental for a replication factor of 1.0
even though the classifier alone performs 13% worse. Overall, the
hybrid strategy improves the ski-rental approach by 3% on average.

5.3 Hybrid Strategy: In-Depth Analysis
The hybrid strategy yields the best performance when manually
selecting a probability classification threshold of 0.8. While this a
posteriori choice highlights the potential benefits of such hybrid
strategies, it also highlights the challenges of robustly calibrating
machine learning models. Figure 5 depicts the performance as a
function of the classification threshold over both traces. While
choosing a threshold greater than or equal to 0.75 improves perfor-
mance, choosing a replication threshold of 0.6 yields improvements
for trace 2 while consistently worsening performance for trace 1.

To gain insights into the effectiveness of the hybrid strategy,
consider Figure 6. It depicts the precision2, recall3, and the mean
2The number of partitions being correctly identified to be replicated over the total
number of replicated partitions.
3The number of partitions being correctly identified to be replicated over the total
number of partitions that were to be replicated.
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replication time for the hybrid strategy and its sub-strategies. As
ski-rental replicates any partition that exceeds the replication cost,
its recall is 1.0. This carries over to the hybrid strategies which,
thus, also have a recall of 1.0. However, by using the classifier
the time at which partitions are replicated decreases significantly,
thereby saving transfer costs. Furthermore, the classifier’s slightly
worse precision only marginally reduces hybrid’s precision. There-
fore, it does not add excessive replication cost. This explains the
improvement of hybrid over ski-rental.

6 CONCLUSION
As the traffic at the network edge continues to grow at an un-
precedented pace, it is imperative to decide which data should be
processed in-situ at the edge and which data should be forwarded
to the cloud. In this work, we observe that such decisions have to
be reactive to volatile accesses. We study two families of online
algorithms, namely, competitive (ski-rental) and machine learning
algorithms, to inform such decisions at the edge of the network.
These algorithms proactively decide which data will be replicated
to the remote cloud, based on the recent access activity. Our results
show that ski-rental not only yields significant cost reductions (22%
on average up to 50%) compared to naïve strategies, but is also easy
to use at the edge even when resources may be limited. Moreover,
the best online strategymay depend on the scenario. To address this,
we introduce a hybrid strategy that combines the advantages of
both families of strategies. Thus, it yields the best results which are
close to the offline optimal. As part of our future research agenda,
we will investigate the learning curve of machine learning-based
algorithms in this setting. We argue that more extended training
periods may lead to better results, and thus, further improve repli-
cation at the edge. Finally, we want to extend this work to address
other cost factors, e.g., storage, processing and training time costs.
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