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Abstract. To avoid exploitation of known vulnerabilities, it is stan-
dard security practice to not disclose any model information regarding
the antennas used in cellular infrastructure. However, in this work, we
show that end-user devices receive enough information to infer, with high
accuracy, the model-family of antennas. We demonstrate how low-cost
hardware and software setups can fingerprint the cellular infrastructure
of whole regions within a few minutes by only listening to cellular broad-
cast messages. To show the effectiveness and hence risk of such finger-
printing, we collected an extensive dataset of broadcast messages from
three different countries. We then trained a machine-learning model to
classify broadcast messages based on the model-family they belong to.
Our results reveal a worryingly high average accuracy of 97% for model-
family classification. We further discuss how inferring the model-family
with such high accuracy can lead to a class of identification attacks on
cellular infrastructure and we subsequently suggest countermeasures to
mitigate the fingerprint effectiveness.

1 Introduction

Modern cellular networks, particularly 4G networks, provide extensive support
for various applications, encompassing communications, manufacturing, logis-
tics, smart homes, and more. In 2021, smartphone subscribers using 4G ac-
counted for around 60% of the total number of subscribers worldwide and this
percentage is predicted to be around 55% in 2025 [20], showing that 4G, and
hence its security, is going to remain highly relevant in the coming years. Consid-
ering the crucial role of mobile networks in society, they run the risk of becoming
prime targets for adversarial state actors [48,44,47]. Such adversaries have am-
ple resources and often may go to great lengths to prepare and execute hacks
and attacks. One type of security vulnerability is knowledge of the vendor and
model of mobile network infrastructure equipment (e.g., antennas or radio units
(RU)), which an adversary may leverage to increase the impact of a targeted
attack. For example, attackers could exploit knowledge of the antenna model
to create disturbances in mobile networks or to gain full authority over data
and voice traffic [38]. O-RAN Work Group 11 (Security Group), for example,
in their O-RAN Security Threat Modeling and Remediation Analysis [31] also



2 A. K. Bhattacharjee et al.

highlights possible threats like T-O-RAN-04, T-RADIO-01, T-RADIO-02, which
can aggravate if the attacker knows the model or model-family of the antenna.
We use the term “model-family” to refer to a series of similar models offered by
a specific vendor (see Section 6.3 for the full definition). While base stations do
not directly broadcast such model information, we demonstrate that with a com-
bination of low-cost hardware and machine learning it is possible to accurately
fingerprint and hence classify the antenna model-family in a mobile network. In
particular, our contributions can be summarized as follows:

– We show that broadcast messages from base stations can be utilized to fin-
gerprint the model-family of an antenna.

– Our proof-of-concept fingerprint procedure has achieved an accuracy of 97%
for model-family and vendor classification.

– Due to the sensitive nature of our data and measurements, we have decided
to not release it as open data. Researchers with an interest in the data and/or
a possible collaboration are invited to contact us.

2 Background

In this section, we start by introducing some terminology related to radio access
networks. Subsequently, we discuss related work on device fingerprinting.

2.1 Terminology

In Figure 1, we present a typical communication setup between user equipment
and cellular towers (base stations) in a radio access network. User Equipment
(UE) refers to devices that are able to communicate via telecommunication tech-
nologies, such as 4G and 5G. Unlike portions of the radio spectrum reserved
internationally for industrial, scientific, and medical purposes, known as ISM
bands, e.g., used in WiFi, in the telecommunications industry licensed spectrum
is predominantly used. In the standards, the telecommunication operators that
lease spectrum for mobile communication are called Mobile Network Operators
(MNO). MNOs bid and lease, for a long period, spectrum through government-
controlled auctions. In these auctions, the MNOs purchase the rights to transmit
signals over specific frequencies in specific bands. These sets of frequencies are
uniquely identified with the E-UTRA Absolute Radio Frequency Channel Number
(EARFCN). EARFCN is registered following the Evolved Universal Terrestrial
Radio Access (E-UTRA) standards. MNOs are also assigned unique identifiers,
Public Land Mobile Network (PLMN), that are used in the cellular technologies
provided by a specific network operator in a country.

MNOs install base stations, called evolved Node Base Station (eNB) in 4G.
These base stations are the gateways of an MNO’s Radio Access Network via
which UEs connect to the mobile network. UEs can listen and search different
licensed bands to get service or roam between operators. There are two directions
in the communication between UE and eNB: (i) Downlink (DL) from eNB to
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Fig. 1. Simplified overview of a Radio Access Network.

UE, and (ii) Uplink (UL) from UE to eNB. From a hardware perspective, an
eNB deployment has multiple antennas that cover a specific area around the
eNB. From a logical perspective, there are multiple cells of the MNO running
on top of these antennas. A Cell is a combination of downlink and uplink MNO
resources assigned to serve UEs in a particular area. The center frequency of
a cell is called Carrier Frequency. Each Cell has a unique global identifier, the
E-UTRAN Cell Global Identifier (ECGI), which is also a unique identifier within
a PLMN.

The communication between UEs and eNBs utilizes the licensed spectrum
used by a specific operator. In our study, we identify MNOs by listening to their
corresponding PLMN ID that is received in the information contained in the
downlink broadcast and control channels from the cell (uniquely identified by
ECGI) of an eNB, as illustrated in Figure 1.

3GPP has outlined different types of architectural splits for the Radio Access
Network (RAN) in [7] for enabling various deployment scenarios. Among these,
split 7.2x is often cited as a viable option for Open RAN. This split divides
the base station into four main functional units: the antenna (which transmits
and receives radio signals), the radio unit (which processes the signals), the dis-
tributed unit (which handles non-radio functions such as MAC layer operations),
and the control unit (which manages radio resources).

2.2 Related Work

Device fingerprinting has been a popular research topic in various domains.
Knowing the vendor or network equipment model could, for example, provide in-
sights into the potential impact of exploiting known vulnerabilities in the identi-
fied equipment. We survey some generic active fingerprinting methods and zoom
in on fingerprinting methods for radio access.
Active Fingerprinting. Active fingerprinting techniques send probe packets to
trigger replies that can unveil the hardware vendor, hosted services, or operating
system of network equipment [15,8,41]. These techniques are less successful in
fingerprinting radio access network equipment that run proprietary protocols
and require UE authentication. Moreover, active measurement methodologies
are intrusive and thus can be detected by mobile network operators.
UE Passive Fingerprinting. Previous studies [27,39,18,49] show that it is
possible to obtain UE information, e.g., the unique Subscriber Identity Module
(SIM) identifier, to launch attacks, e.g., denial-of-service attacks, impersonation,
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and location tracking. The proposed methods rely on passive fingerprinting tech-
niques by analyzing the traffic traces of mobile operators. Passive remote finger-
printing using microscopic deviations in device hardware (clock skew), can also
be applied [25]. Although these techniques can accurately fingerprint individual
devices and the operating system, they do not fingerprint the hardware vendor.
[40] demonstrates that hardware and software characteristics of UEs with cellu-
lar capabilities can be determined in LTE networks. This knowledge can be used
to perform battery-draining attacks on IoTs cellular devices.
UE and eNB Localization. Fingerprinting has been used to localize UEs and
eNBs [35,24,21,50,46,45]. These techniques utilize signal processing and machine-
learning. Such localization information can be used to launch sophisticated at-
tacks that target UEs or eNBs.
Cellular Infrastructure Data Fusion. Online information can be utilized to
fingerprint cellular infrastructure. Crowd-sourcing projects collect information
using mobile applications and other sources and maintain websites with maps
of cellular infrastructure , e.g. with information about the location, bands, op-
erator, etc. Examples of such projects are Cellmapper [12], OpenCellid [34], and
Mozilla Location Services [29]. These websites may also utilize publicly available
information about the exact location of the cellular antennas that is available
in some countries. However, these websites do not offer information about the
model-family and vendor of cellular infrastructure, e.g., antennas or Radio Units.

A few governments offer (public) documentation about the location of cellular
antennas and sometimes even the vendor and model of the equipment. We,
as part of the work for this paper, therefore investigated multiple countries to
check whether vendor and model information was disclosed that could be used
as ground truth for our work, but “luckily” this was found only for very few
countries (or specific regions).

3 From Fingerprinting to Vulnerabilities

In this section, we present a fingerprinting methodology and possible vulnerabil-
ities that can take advantage of knowing the model-family of the target antenna.

3.1 Fingerprinting

An adversary can receive and collect broadcast messages transmitted by base
stations, for example by using a laptop equipped with a USB dongle. We assume
that the UE of the adversary will never connect to the network, else a more
detailed reconnaissance might be possible.

In this paper, we devise a proof-of-concept fingerprinting method that takes
advantage of the information broadcasted by base stations. More precisely, since
the base station’s configuration directly affects the content of the broadcast
information, if an MNO uses similar configurations or even the default vendor
configuration on its devices, this will be visible from the broadcast message. The
adversary can record such broadcast information and train a machine-learning
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model to predict the vendor or model-family of the device. This approach does
require that the adversary collects – through visual inspection – the vendor or
model-family ground truth necessary to train the machine-learning model.

While it is important to notice that, even if the visual inspection is provid-
ing information about the vendor/model-family, this procedure cannot be used
to substitute our fingerprinting method. The main problems related to visual
inspection are: (i) the antenna is rarely clearly visible, so visual inspection only
occasionally leads to specific results; (ii) if the target antenna is inside a closed
premise (like a restricted site) the ground truth collection is not possible without
having access to the area; and (iii) to obtain ground truth, the bottom view of the
antenna for the interface layout should be clearly visible, which is not often the
case, as antennas are also placed on rooftops, especially in urban deployments.

3.2 Vulnerabilities

Given that cellular networks are of vital importance to society, they may be
prime targets for adversary state actors [48,44,47]. The attackers can exploit
the model’s information to create disturbances in telecom networks or gain full
authority over data and voice traffic [38]. Such adversaries have ample resources
and often may go to great lengths to prepare and execute hacks and attacks.
The precise threats from knowing the model-family of the equipment depend on
the type of deployment, e.g.: (i) an antenna deployed separately from the radio
unit (RU), distributed unit (DU), and control unit (CU); or (ii) antenna and RU
deployed together [22,16,30,9], with DU and CU deployed separately. Via finger-
printing, for both deployments, knowing the model-family enables an attacker
to infer information like antenna pattern, antenna transmission power and gain.
With this information, the attacker can, for example, optimize smart jamming
attacks [26,14,42,13]. The first attack that can be improved is the jamming of
massive MIMO systems [42]: by knowing the antenna/antenna+RU model the
attacker uses the information about the antenna to make better channel estima-
tion techniques. This leads to increased vulnerability to jamming attacks that
target their channel estimation process. Another attack that can be improved is
the jamming of user equipment served by directional antennas by exploiting the
main lobe and nulls [13] which helps to identify vulnerable areas where signal
quality inside the coverage of the base station is low. By leveraging information
such as antenna pattern, maximum transmitted power, and antenna gain, the
attacker can more accurately calculate the link budget which allows the attacker
to use way less power to make an attack on the uplink of UE in the vulnerable
areas [23].

In the antenna and RU deployment, knowing the model of the hardware
containing the RU deployment can reveal valuable information to attackers about
the processing capabilities [19] of the base station’s functional component. This
can enable them to target those with lower processing power via a denial-of-
service attack. Or, by making use of online databases such as MITRE [28] and
security company reports [43,51], specific identified CVEs related to base station
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Fig. 2. Fingerprinting phases.

models can be found. Such vulnerable base stations can then be scanned to
exploit the CVEs for network attacks.

4 Methodology

Our proof-of-concept fingerprinting method consists of a preparatory phase in
which a machine-learning (ML) model is trained. During this phase, the broad-
cast message emitted by the antennas and the corresponding ground truth, i.e.,
the model-family or vendor must be collected. The subsequent phases involve col-
lecting the broadcast message from the target antennas and predicting their la-
bels using the trained model. Figure 2 illustrates the three fingerprinting phases.

4.1 Fingerprinting Phases

Phase 1 – Training. This phase aims to collect the labeled dataset needed for
the ML training. The data collection is contained in the specific target country to
provide better results. For the data collection one must first select the antennas
for which both the broadcast message and the ground truth can be obtained.
To find all available antennas, the data collector can rely on the support of
numerous websites that provide information on the location of antennas in the
target country. Even without such websites, the ground truth can be collected,
but more deployment sites may have to be visited and checked by traveling
around the country. For selected antennas, it may be possible to approach the
deployment site and collect both the transmitted broadcast message and the
ground truth. The message can be collected using a USB dongle connected to
a laptop, while the ground truth can be collected through visual inspection, as
explained in Section 5.4. Once the dataset is collected, a pre-processing step is
applied to remove some features. After this step, the labeled dataset can be used
to train an ML model. The trained model is the output of this phase.

Phase 2 – Broadcast Message Recording. In this phase, the broad-
cast messages from the antennas are collected. This operation is performed only
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for antennas for which the ground truth is not available. Once the broadcast
messages have been collected, the same data pre-processing as used in the train-
ing phase is applied to these data. The output of this phase is an unlabelled
fingerprinting set of features from the target antennas.

Phase 3 – Model-Family Inference. The goal of this phase is to infer
the model-family of the antennas collected in the fingerprinting set, relying only
on their broadcast messages. To perform this task, the fingerprinting set is given
as input to the trained model, thereby obtaining as output the predicted model-
family for each antenna.

4.2 Listening

In this section, we describe the equipment that can be used to collect broad-
cast messages emitted by base station antennas. Connecting a UE to a network
involves initiating a random access procedure. During this phase, the UE lis-
tens to the network’s control and broadcast channels for the Master and System
information blocks (i.e., MIB and SIB). The data received via these channels
provides the UE with the information needed to send the initial message to
begin communication with the network.

The data we collected only includes some of what is broadcasted in the access
procedure. We decided to use only the SIB and not the MIB. The reason behind
this decision is that the MIB is not always available through the use of the
QCSuper [36] code that we used with the USB dongle. Therefore, to simplify
the fingerprinting requirements, we decided to keep only the data contained in
the SIBs. We also decided to restrict the data collection to only the first two
SIBs (i.e., SIB 1 and SIB 2). These SIBs are indeed available in all the countries
investigated, allowing us to make our results as generic as possible.

In Figure 3, we illustrate the data collection procedure for the 4G Dongle
UE. To perform the USB dongle attach procedure, we used a programmable
SIM card from the Open Cells Project [32]. To ensure that the dongle minimizes
the data exchanged with the MNO, we programmed the SIM card to fail to
connect. To get this behavior, we inserted incorrect credentials in the SIM. The
consequence is that every time the dongle tries to connect, the MNO rejects it
since it is not part of the subscriber list. This does not affect our data collection,
since our purpose is to collect the broadcast messages sent before the connection
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phase failure. This procedure is not fully passive. However, the generated data
exchange is very short and does not constitute anomalous behavior from the
point of view of an MNO. Indeed, when a UE attempts to authenticate itself
in a country without a roaming connection, the failure of a connection due to
invalid credentials is an expected occurrence, as the SIM card has not been
provisioned for roaming.

It is worth mentioning that the data collection procedure can be rendered
entirely passive by utilizing open-source UE solutions such as srsRAN and Ope-
nAirInterface [33]. These projects provide the flexibility to modify the code,
enabling a complete passive data collection approach.

5 Experimental Setting

To demonstrate the feasibility of the proof-of-concept fingerprinting methodol-
ogy, we collected a large dataset of broadcast messages. We first describe the
setup used to run the experiments along with our data collection procedure. We
then discuss some ethical considerations about our work. Finally, a detailed pro-
cedure for the labeling phase, the pre-processing, and the considered ML models
are presented.

5.1 Data Collection Setup

For our data collection, we used a machine equipped with Ubuntu 18.04 and
Linux kernel 5.4.0-132-lowlatency. The data collection code has been imple-
mented in Python version 3.6.9 using QCSuper commit 5c4e529 and Tshark
version 2.6.10. As USB dongle, we used the Quectel EG25-G [37] with firmware
version EG25GGBR07A07M2G. To collect the photos (i.e., visual inspection) of the
antennas, we used a Samsung Galaxy A50 equipped with a 36× zoom lens [10].

5.2 Measurements

We performed three separate data collections in three different countries. To
perform this data collection, we used a laptop equipped with a USB dongle. We
collected the broadcast messages emitted by the antennas of 4G base stations
(i.e., SIB 1 and SIB 2). To collect the data, we placed the laptop equipped
with the dongle in proximity of the target antennas. Since the antennas do not
spread their signal in close proximity, we kept a minimum horizontal distance
between the dongle and the antennas of at least 15-20 meters to avoid bad
signal reception. We also kept a maximum distance of 200 meters to maximize
the likelihood of the dongle receiving multiple broadcast packets from the target
antennas. For all countries, we used public websites to collect information on
available eNBs and their positions. We further tried to optimize the variety of
the antennas included in our dataset, by collecting the data from an area as broad
as possible. For the ground truth collection, we adopted two different strategies:
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Country 1 Country 2 Country 3

MNOs 3 3 3
Vendors 2 4 3

Vendors brand measured* E, H A, H, K, N H, K, N

Model-families measured 4 17 18

Available bands
1, 3, 7, 8,
20, 28, 38

1, 3, 7, 8,
20, 28, 38

1, 3, 7,
20, 28

Municipalities measured 7 7 10
Physical cells measured 100 33 32
Collection period August-December 2022 December 2022 December 2022

* A: Amphenol, E: Ericson, H: Huawei, K: Kathrein, N: Nokia-CommScope.

Table 1. Details about the data collection.

(i) visual inspection, and (ii) public information. The details are provided in
Section 5.4. In Table 1, we present an overview of our data.

In Table 2, we provide a detailed overview of all the measurements we per-
formed. In total, we collected 112,806 measurements. The vast majority of mea-
surements were collected in Country 1, which is the largest of the three countries
in terms of population, mobile users, and number of cells. For Countries 2 and
3, we had access to detailed ground truth data to train our classifier. For Coun-
try 1 we had to perform visual inspections to create a labelled set. It is worth
mentioning that collecting ground truth data for the model-family classifier was
significantly more difficult than for the vendor classifier. Nevertheless, we could
identify the ground truth at the model-family level for 73.75% of the total amount
of antennas for which we found the vendor ground truth. In particular, 19,68%
for Country 1 (visual inspection) and 97.81% and 99.07% in Countries 2 and 3,
respectively. The received broadcast messages for a given antenna were identical
during our measurements and at different times of the day.

5.3 Ethical Considerations

Although the 4G dongle UE we used initiates and sends a failed attach procedure
with the eNB, it does not create any traffic load or harm to the mobile network
infrastructure or other mobile users. We did not perform any authorized or
unauthorized connection to any mobile networks during our experiments.

5.4 Labeling

This section describes the labeling process used for training.

Public Sources. For Countries 2 and 3 the ground truth was already available
online. Therefore, we did not need to perform a visual inspection for collecting
the dataset labels. To match the broadcast messages collected to the corre-
sponding antennas we exploited the ECGI and the TAC fields available in the
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Number of Country 1 Country 2 Country 3

Measurement locations 62 29 13
Tower/pylon locations 10 17 10
Building deployment locations 52 12 3

Ground truth available NO YES* YES
Manual inspection labeling YES NO NO

eNodeBs measured
(grouped by operator)

188 155 43

Vendor available 21 69 40
Vendor not available 167 86 3
Model identified 10 69 40
Model not identified 178 86 3

ECGI (grouped by operator) 2,036 992 807

Measurements 76,556 23,389 12,861
Measurements with ground truth for vendor 9,261 14,266 6,227
Measurements with ground truth for model-family 1,823 13,953 6,169

Unique measurements with ground truth
for vendor before features removing

9,098 14,169 5,556

Unique measurements with ground truth
for vendor after features removing

306 409 305

Unique measurements with ground truth
for model-family before features removing

1,784 13,868 5,498

Unique measurements with ground truth
for model-family after features removing

87 403 298

* The data was only available for a specific region in this country.

Table 2. Statistics about our dataset.

broadcast message. These fields are also reported in the online website we used
and they allowed us to match the broadcast messages with the corresponding
ground truth. In particular, for one country the ground truth was provided for
all available antennas, while in the other only a specific region was making this
information publicly available. For the former, we collected data for the whole
country, while for the latter, we collected data only for the region for which the
data was available.

Visual Inspection. In Country 1, the ground truth was not provided by
any public source. Therefore, we needed to collect the ground truth by visu-
ally inspecting the antennas. Since for most of the antennas, the ground truth
can not be inferred through visual inspection, the first optimization was to
define an antenna set for which it will probably be possible to extract the
vendor/model-family. To perform this optimization, we took advantage of Google
Street View [17]. Analyzing the images available on Street View, we did a pre-
liminary screening. We excluded from the data collection those deployment sites
where the antennas were not completely visible. For efficiency reasons, we per-
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formed the broadcast message collection and the ground truth collection at the
same time.

Once the set of optimal antennas was defined, we started the ground truth
collection task. We went close to the target deployment sites and took pictures of
the antennas. To take the pictures, we used a zoom lens combined with a common
smartphone camera. Sometimes, a basic picture analysis might be enough to
collect the vendor identity, since the brand symbol might be directly visible on
the collected pictures. However, since most of the time the brand was not present
or not clearly visible, we compared the collected pictures with the pictures of
the antennas provided by the vendors in their datasheet. In particular, we took
advantage of two important peculiarities of the antennas: (i) their shapes usually
differ from vendor to vendor, providing first immediate feedback on the vendor
identity, and (ii) the connectors arrangement on these devices and the colors
used to mark the connectors differ from vendor to vendor. Thanks to these
peculiarities, we could retrieve the vendor ground truth for a relevant number of
antennas for which we had collected data. The process to define the model-family
is similar, however, the percentage of success is lower. Indeed, different models
from the same vendor might look really similar, not allowing a clear definition of
the exact model-family. In general, it is important to note that, for both classes,
it is not always possible to gather ground truth for the reasons explained in
Section 2.2 and Section 3.1.

5.5 Pre-processing

The data collected from the broadcast messages can be directly used as fea-
tures for an ML algorithm. However, pre-processing is still required to remove
some features (both for training and testing). The process we applied consisted
in removing features from our dataset. In particular, we applied a three-step
feature(s) removal. First, we removed features like the “tac”, and “ecgi” which
can identify the antennas. Second, we removed all the metadata introduced by
Wireshark (e.g., timestamps), which might generate a bias for the classifier. Fi-
nally, we removed all the features that are not available in all countries. We
applied this last step to generalize the results obtained through our experiments
as much as possible. After this pre-processing, we obtained a final amount of 53
features. The remaining 53 features are all Information Elements collected from
the SIB1 and SIB2 (of the broadcast information from the eNBs) and therefore
3GPP compliant. A full list of the features is provided in the Appendix.

5.6 Classification Methods

To identify the model-family of an antenna, we experimented with four well-
known classifiers [11]: Logistic Regression (LR), Support Vector Classifier (SVC),
k-Nearest Neighbors (KNN), and Random Forest (RF). We selected these clas-
sifiers since they are among the most popular and commonly used. We applied
a nested cross-fold validation to evaluate the accuracy of our approach. In the
outer loop, we performed a stratified 5-fold cross-validation. Since we made no
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preliminary assumption about the popularity of certain models, we applied an
over-sampling on each training set of the outer loop (i.e., we duplicated random
samples for the smaller classes). The over-sampling mitigates the over-fitting due
to the imbalanced dataset, since the resulting set contains a balanced number of
samples for each class. Since the number of samples available for some classes was
limited, we preferred to perform an over-sampling instead of a down-sampling
to avoid a strong reduction in the variety of samples for the bigger classes. In
the inner loop, we performed another stratified 10-fold cross-validation to split
the training set into a training set and a validation set. This inner split has
been used to perform a grid search and find the best hyper-parameters on which
to train the investigated model. In particular, LR was evaluated for ℓ1 and ℓ2
penalties, with C ranging from 10−4 to 104 (for a total of 20 steps). For SVC,
we considered linear and RBF kernels, we varied C among [10−2, 10−1, 100, 101]
and (for the RBF) gamma among [10−4, 10−3]. For KNN, we varied the number
of neighbors to among [1, . . ., 20]. Finally, for RF we considered from 10 to 100
estimators (steps of 10 and extremes included) and a max depth from 6 to 31
(steps of 5 and extremes included).

The process applied for inferring the vendor was quite similar to the one just
described for the model-family. The main difference is that we were able to apply
a down-sampling instead of an over-sampling, since the number of samples per
class were not so different.

6 Analysis

In this section, we evaluate the performance of our fingerprinting methodology
for the scenarios described in Section 5.4. Section 6.1 describes how we assess the
best classifier for our scenarios. In Section 6.2, we discuss the most important
features of our fingerprinting methodology, while, in Section 6.3, we report the
results. Finally, sections 6.4 and 6.5 investigate the robustness and limitations
of our approach.

6.1 Classifier Evaluation

We evaluated the fingerprinting methodology in different scenarios and configu-
rations. To select the best classifier, we compared the fingerprinting validation
accuracy for all considered classifiers. For the model-family inference scenario,
RF and KNN achieved an average accuracy of 0.95 with no statistical difference,
while SVC and LR were both under 0.90. For this scenario, we decided to keep
the RF classifier to take advantage of the feature importance function naturally
provided by RF. Thanks to this score function, we have been able to determine
which features are most important, and, consequently, suggest possible coun-
termeasures. For the vendor fingerprinting scenario, RF outperformed the other
classifiers with an average validation accuracy of 0.97. Among the other classi-
fiers, KNN achieved an average accuracy of 0.88, while SVC and LR were 0.68
and 0.84, respectively.
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(a) Model-family scenario
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Fig. 4. Feature importance for the Random Forest model in our two inference scenarios.
The variance reported refers to the results obtained over the different nested cross-fold
runs.

6.2 Assessment of Feature Importance

As reported before, the Random Forest classifier provides an importance score
for each feature given as input to the classifier. For each feature, the importance
is computed as the mean of accumulation of the impurity decrease within each
tree: the higher this value is, the more important the corresponding feature is.
The variance reported in the Figures 4a and 4b corresponds to the mean decrease
in impurity variance among the five runs of the outer loop cross-validation. In
Figure 4a, we reported the importance of the features given as input to the
Random Forest classifier for our main scenario (the model-family inference). As
explained in Section 5.5, we kept only the features for which there were no miss-
ing values among all investigated countries. For readability, we only plot the
features for which the importance was not zero. Analyzing the figure, we can
see that rootSequenceIndex is in general the most important feature. Its im-
portance, however, changes a lot between the different countries. In particular,
in Country 1 the prachFreqOffset, and fbi had a higher impact compared to
the other features, showing that in different countries the discriminating pro-
cess between different model-families might focus on different information. The
same insight is also visible between countries 2 and 3 based on qrxlevmin, pIR-
TargetPower, nRBCQI, and n1PUCCHAN. Indeed, for these three features the
difference between the feature importance for countries 2 and 3 were really high,
still suggesting a difference in the factor that allows to discriminate between
model-families. In Figure 4b, we report the importance of the features for our
vendor scenario. We can see that the results for countries 2 and 3 are more similar
to each other than for the Country 1. The most relevant features for the Coun-
try 1 were siwindowlength, alpha, and p0NominalPUSCH, while for the other
two countries the importance was more concentrated on the rootSequenceIndex
features. This shows an entirely different pattern for the classification strategy
adopted in Country 1. Another important difference is the higher variance of the
mean decrease in impurity for Country 1. This higher variance indicates that the
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Scenario Configuration Country 1 Country 2 Country 3

Model-Family
Three classifiers 0.967±0.008 0.983±0.004 0.985±0.002
One classifier 0.965±0.010 0.989±0.003 0.984±0.002

Vendor
Three classifiers 0.999±0.001 0.985±0.005 0.941±0.018
One classifier 0.998±0.001 0.965±0.013 0.966±0.020

Table 3. Results for the RF classifier in both scenarios and configurations.

importance of the various features has undergone large changes between the dif-
ferent outer cross-validation runs. Therefore, the model has selected trees with
varying features among the other runs.

6.3 Supervised Learning Results

We report the RF classifier accuracy on the collected datasets according to our
validation results. For each scenario, we also evaluated the trained model in two
distinct configurations. The first configuration consists in training three distinct
classifiers (one for each country). Each classifier is tested only on data from the
specific country it has been trained on. The second configuration consists in
training only one classifier on data from all three countries. We evaluated the
accuracy of the same classifier on the three subsets corresponding to our three
countries. In Table 3, we show the performance of the RF model on our two
scenarios (vendor and model) and for each of these on both configurations.

Model-family Inference. This is our main scenario, where we evaluated the
RF classifier’s performance in identifying an antenna’s model-family. Whenever
possible, we do not try to identify the model directly, but the model-family.
Indeed, knowing the specific model is not always necessary, since vulnerabilities
are often related to groups of similar devices rather than a specific one.

Since the concept of “model-family” is not always explicitly defined, we man-
ually define the vendors’ families for this experiment. The starting point for defin-
ing a model-family is the model code reported in the data sheets made available
online by the vendors. For different vendors, we applied different strategies. In
particular, for Huawei’s devices (which were present in all countries), we defined
the family based on the semantics of the model name (which is composed of
different parts that gradually become more specific): the identifier we used as
the model-family consisted of the model code, from which we removed the last
and most specific part. We do not individuate semantics in the model codes for
the other vendors. Therefore, we only removed the version (that is frequently
included in the model code).

For the results reported in Table 3, we can see that the results for both
configurations are quite similar. Both accuracy and variance do not differ much.
We can therefore assume that providing data from multiple countries does not
provide an advantage to the classifier in terms of accuracy. Instead, we can see
that the performance of Country 1 is slightly lower than those of the other two
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countries. This observation is important since the number of model-family classes
for Country 1 is significantly lower compared to the number of classes for the
other two countries. The average accuracy values were 97.8% and 97.9% for the
first and the second configuration, respectively.

Vendor Inference. As in the previous scenario, we tested on two distinct
configurations: three classifiers trained, each only on a single country, and one
classifier trained on data from all countries. The classifiers were completely in-
dependent of the ones from the previous scenario.

The first configuration (three classifiers trained, one per country) reports
good results with a minimum accuracy of 94.1% for Country 3. The perfor-
mance for Country 1 reached values close to 100%. This result indicates that the
collected samples are almost linearly separable. In section 6.5, we further inves-
tigated the dataset from this country, trying to describe its differences from the
other collected datasets. The second configuration (one classifier trained) shows
similar results. The average accuracy values were 97.5% and 97.6% for the first
and the second configuration, respectively.

6.4 Sensitivity Analysis

In this section, we propose an experiment that investigates the sensitivity of our
classifier. In particular, this experiment analyzes the redundancy of informa-
tion provided by our features for our specific classification problem. To perform
this analysis, we implemented an iterative procedure to remove features from our
datasets and evaluated the accuracy of our model. In particular, the cycle we im-
plemented works like this: (i) we evaluate the accuracy of our RF classifier on the
dataset and if the accuracy is lower than 85%, we exit the cycle, (ii) we calculate
the importance of the features, and (iii) we remove the most important feature
from the dataset and we restart the cycle. The result of this experiment for
the model-family fingerprinting for Country 1 shows that the accuracy remains
higher than 85% until 3 features have been removed. In the other two countries
the results are slightly different: removing one feature for Country 2 the results
drop down to 64.20%, while for the third the accuracy even dropped down to
56.15%. These results are important since they show that: (i) the performance
of our algorithm might change from country to country, which demonstrates the
big influence of configuration choices by the MNOs and vendors, and (ii) most
of the information might be contained in few features, simplifying in part the
task of providing a valid countermeasure.

6.5 Limitations

Our experiments demonstrate cellular infrastructure fingerprinting only based
on broadcast information is possible. However, some limitations must be taken
into account. Preliminary experiments testing the accuracy of a classifier trained
on the dataset of one country on another country show that the model is not
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transferable between countries. As we collected data from three countries, we
propose to extend the data collection from other countries. Another limiting
factor for data collection is finding sites where only a single MNO is deployed.
In fact, when there are antennas by several MNOs on a single deployment site,
it is impossible to trace the collected broadcast message back to the antennas of
the transmitting MNOs. Consequently, even if it is possible to collect the ground
truth for all the MNOs that share the deployment site, it would not be possible
to associate the labels with the corresponding collected broadcast message. If an
attacker does not care about a specific MNO, and only wants to exploit antenna
vulnerabilities in a specific region, then this limitation goes mute.

7 Countermeasures

The high accuracy that fingerprinting can achieve, together with the associated
risks, call for countermeasures. Since the broadcast data are directly connected to
the internal configuration of antennas, the natural countermeasure is to diversify
the configuration of the different antennas of the same vendor. This countermea-
sure does have limitations though, as the configuration modification could have
impact on the network’s overall performance.

Our study also shows that in some countries (countries 2 and 3), it is easy
for an adversary to have access to ground truth information that can be utilized
to train classifiers. Details about the mobile network model-family and vendor
are optional to be included in mobile network antenna installations, and we thus
recommend leaving this information out from public sources.

8 Conclusion

Cellular networks play a critical role in communications and hence in the various
applications that depend on secure communications. Society’s (economic) depen-
dence on cellular networks makes them prime targets for adversarial actors aim-
ing to exploit vulnerabilities and disrupt communications, potentially thereby
gaining control over data and voice traffic. To avoid exploitation of known vul-
nerabilities, it is good security practice to not disclose information regarding
the model-family and vendor of the deployed cellular equipment. However, this
work shows that it is nonetheless possible to accurately and swiftly identify the
model-family of antennas. To our surprise, this is already possible with a low-cost
hardware setup along with machine-learning techniques. Our results, based on
extensive measurements collected in three countries, show that fingerprinting-
based classification can achieve a staggering average accuracy of 97% for both
model-family and vendor classification. Our future work will focus on developing
countermeasures that modify the configurations of the base station to obfuscate
information about the model-family while minimizing the impact on the net-
work performance. We also plan to apply our method to mobile networks in
other countries.
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Appendix

We present the list of the 53 features used to train and test our ML model. Addi-
tionally, we provide descriptions of the key features (presented in Figure 4a and 4b).
Due to space issues, the names of the following features have been shortened in Fig-
ures 4a and 4b: preambleInitialReceivedTargetPower → pIRTargetPower, zeroCorrela-
tionZoneConfig → zCZoneConfig, timeAlignmentTimerCommon → tATimerCommon.
For documentation on the specifications, we refer to 3GPP specifications [1,2,3,4,5,6].
qrxlevmin: The IE Q-RxLevMin is used to indicate for cell selection/re-selection the
required minimum received RSRP level in the (E-UTRA) cell. Corresponds to param-
eter Qrxlevmin in TS 36.304 [5]. Actual value Qrxlevmin = fieldvalue ∗ 2[dBm].
fbi: The IE FreqBandIndicator indicates the E-UTRA operating band as defined in TS
36.101 [6].
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siwindowlength: Common SI scheduling window for all SIs. Unit in milliseconds,
where ms1 denotes 1 millisecond, ms2 denotes 2 milliseconds and so on.
numRApreambles: Number of non-dedicated random access preambles in [1].
powerRampingStep: Power ramping factor in TS 36.321 [1]. Value in dB.
preambleInitialReceivedTargetPower: Initial preamble power in TS 36.321 [1].
Value in dBm.
maxHARQMsg3Tx: Maximum number of Msg3 HARQ transmissions in TS 36.321
[1], used for contention based random access. Value is an integer.
nB: nB is used as one of parameters to derive the Paging Frame and Paging Occasion
according to TS 36.304 [5]. Value in multiples of ‘T’ as defined in TS 36.304 [5].
rootSequenceIndex: RACH ROOT SEQUENCE, see TS 36.211 [2, §5.7.1].
prachConfigIndex: prach-ConfigurationIndex, see TS 36.211 [2, §5.7.1].
zeroCorrelationZoneConfig: NCS configuration, see TS 36.211 [2, §5.7.2: Table
5.7.2-2] for preamble format 0-3 and TS 36.211 [2, §5.7.2: Table 5.7.2-3] for pream-
ble format 4.
prachFreqOffset: prach-FrequencyOffset, see TS 36.211 [2, §5.7.1].
referenceSignalPower: Reference-signal power, which provides the downlink reference-
signal EPRE, see TS 36.213 [3, §5.2]. The actual value in dBm.
Pb: PB , see TS 36.213 [3, Table 5.2-1].
nSB: Nsb see TS 36.211 [2, §5.3.4].
puschHoppingOffset: see TS 36.211 [2, §5.3.4].
groupHoppingEnabled: Group-hopping-enabled, see TS 36.211 [2, §5.5.1.3].
nRBCQI: N

(2)
RB , see TS 36.211 [2, §5.4].

n1PUCCHAN: N
(1)
PUCCH , see TS 36.213 [3, §10.1].

p0NominalPUSCH: PO NOMINAL PUSCH See TS 36.213 [3, §5.1.1.1], unit dBm.
This field is applicable for non-persistent scheduling only.
deltaFPUCCHFormatx: ∆F PUCCH(F ) for the PUCCH formats 1, 1b, 2, 2a, 2b, 3,
4, 5 and 1b with channel selection. See TS 36.213 [3, §5.1.2] where deltaF-2 corresponds
to -2 dB, deltaF0 corresponds to 0 dB and so on.
alpha: α See TS 36.213 [3, §5.1.1.1].
T3xx: the T3xx timers(T300,T301,T310, and T311) are used to control various aspects
of radio resource management and handover procedures. See TS 36.213 [3].
p0NominalPUCCH: PO NOMINAL PUCCH See TS 36.213 [3, §5.1.2.1] (unit dBm).
deltaPreambleMsg3: ∆PREAMBLE Msg3 see TS 36.213 [3, §5.1.1.1]. Actual value =
field value * 2 [dB].
n310: Maximum number of consecutive “out-of-sync” or “early-out-of-sync” indica-
tions for the PCell received from lower layers.
TimeAlignmentTimerCommon: The IE TimeAlignmentTimer is used to control
how long the UE considers the serving cells belonging to the associated TAG to be
uplink time aligned. Corresponds to the Timer for time alignment in TS 36.321 [1].
Value in number of subframes.

Due to space limitations, the remaining features that do not appeared as model features,

can be looked up in the 3GPP specifications [1,2,3,4,5,6]: cfou (cellReservedForOpe-

ratorUse), cbon (cellBarred), ifra (intraFreqReselection), preambleTransMax,

raResponseWindowSize,macContentionResolutionTimer,modificationPeri-

odicCoeff, defaultPagingCycle, highspeedFlag, hoppingMode, enable64QAM,

groupAssignmentPUSCH, sequenceHoppingEnabled, cyclicShift, deltaPUC-

CHShift, nCSAN, n311, ulCyclicPrefixLength, additionalSpectrumEmission.


