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ABSTRACT
Large content providers, known as hyper-giants, are responsible for
sending the majority of the content traffic to consumers. These
hyper-giants operate highly distributed infrastructures to cope
with the ever-increasing demand for online content. To achieve
commercial-grade performance of Web applications, enhanced end-
user experience, improved reliability, and scaled network capac-
ity, hyper-giants are increasingly interconnecting with eyeball net-
works at multiple locations. This poses new challenges for both (1)
the eyeball networks having to perform complex inbound traffic
engineering, and (2) hyper-giants having to map end-user requests
to appropriate servers.

We report on our multi-year experience in designing, building,
rolling-out, and operating the first-ever large scale system, the
Flow Director , which enables automated cooperation between one
of the largest eyeball networks and a leading hyper-giant. We use
empirical data collected at the eyeball network to evaluate its impact
over two years of operation. We find very high compliance of the
hyper-giant to the Flow Director’s recommendations, resulting in
(1) close to optimal user-server mapping, and (2) 15% reduction of
the hyper-giant’s traffic overhead on the ISP’s long-haul links, i.e.,
benefits for both parties and end-users alike.
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Figure 1: Traffic statistics in a large eyeball network. Gray
area illustrates the traffic growth (%) with respect to the first
data point (May 2017).

1 INTRODUCTION
The phenomenal growth of the Internet has been driven by the ever-
growing demand of users to access online content, including video,
and social networks [17, 59]. In recent years, large companies, also
referred to as hyper-giants [44] have been consolidating and increas-
ing their presence on the Internet to serve this demand. Providing
Internet-based services at scale with high quality of experience is
challenging for several reasons. First, Internet-based services need
to account for sudden increases in the demand for popular content,
which adds stress to both network links and content servers [37, 74].
Second, provisioning of content servers is difficult, especially when
the user demand is volatile. Content servers may be far from the
end users, thus, limitations of transport protocols reduce the achiev-
able bandwidth and increase the download time [24]. Finally, the
economic model of peering is optimized for revenue increase and
cost reduction, not for performance. Data over the Internet does
not always follow the optimal path and in many cases it must travel
over numerous autonomous networks [45].

Content delivery networks (CDNs) [26, 45, 51] were introduced
to address the aforementioned problems and achieve commercial-
grade performance of Internet applications. This can be realized
using different architectures [45, 69, 70]. Some of them, e.g., Lime-
light, deploy servers at data centers that provide good connectivity
with a number of networks. Others, e.g., Akamai, rely on a large
number of a highly distributed server clusters at multiple data
centers deep inside the networks. Large companies that generate
and deliver content like Google [24, 32, 77], Facebook [65], Mi-
crosoft [10], Amazon [11], and Netflix [50] created their own CDNs.
This approach allows them to customize and to optimize content
delivery for their needs and assets [36, 45, 60, 68]. Given the scale
at which they operate, it can also reduce their costs. Moreover,
CDNs establish direct peering relationships [23] with thousands
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of large and small eyeball networks, and in many cases at multi-
ple locations [3, 23, 28, 29, 33, 70, 75], sometimes even inside ISP
networks [13, 24]. However, ISPs have differing policies [20, 47].

In Figure 1, we plot traffic statistics for one of the largest eye-
ball networks world-wide, with which we established a collabo-
ration, over the last two years. Due to confidentiality, we report
the ingress traffic growth (gray area). The reference data point is
the total ingress traffic in May 2017. The total ingress traffic in-
creased linearly by around 30% per annum. This is consistent with
other reports on the growth of household traffic (compound an-
nual growth rate), e.g., Cisco Systems reports that the household’s
annual growth after 2017 is about 26% [15]. Labovitz et al. [44]
reported that in 2009 the top 130 networks were responsible for 50%
of traffic, however since 2016 less than ten networks are responsible
for around 90% of many eyeball networks’ traffic [7].

Like many other eyeball networks [7, 44], the growth and the ma-
jority of traffic for this eyeball network is dominated by hyper-giants.
We hereby refer to a hyper-giant as any organization that meets
the two following conditions: (1) it sends at least 1% of the total
traffic delivered to broadband customers in the ISP’s network, and
(2) publicly identifies itself as a CDN, or is registered as a “content”
or “enterprise network” in the public database PeeringDB [46, 54]. 1
The reason for choosing the 1% threshold strives from the long-tail
distribution of the share of traffic per organization, i.e., the top-10
hyper-giants sum up ∼75% of the ingress traffic (dashed lines with
circles), while the top-20 ∼80% (not shown). We find 1% a good ap-
proximation for the knee of the curve of our data set. The resulting
list of hyper-giants is a subset of the list reported by Böttger et al. [6],
with the exception of one hyper-giant that is clearly recognizable
as a CDN by its name and is not registered at PeeringDB.

When we turn our attention to these hyper-giants’ share of
optimally-mapped traffic, i.e., the mapping compliance, in Figure 1,
we notice a significant reduction. By optimally-mapped traffic, we
refer to the traffic that is delivered to the consumer via the closest
hyper-giant-ISP peering location. A traffic-based mapping com-
pliance is more relevant for ISPs than an analogous metric using
customer identifiers, e.g., IP addresses, because the former cap-
tures the costs for the ISP for delivering content to the end users
better than the latter. As shown in Figure 1, the majority of the
hyper-giants’ traffic is optimally mapped, a merit of their mapping
components. However, the share dropped from 75% in May 2017
to around 62% in April 2019 despite the continuous joint efforts in
upgrading network peering capacity and server infrastructures.

The user-mapping problem for CDNs. Large hyper-giants
that operate highly distributed CDNs have reported on the problem
of assigning end-user requests to the appropriate server. Although
the DNS server of an end-user is typically used as a proxy to de-
termine the location of this end-user, many studies have shown
that this location is not representative [1, 63, 64]. IP geolocation
tools are often insufficient for accurate geolocation at the city-
level [27, 38, 58]. Regardless of whether the estimation of the end-
user’s location is correct, the routing of traffic between server and
end-user may be sub-optimal [24, 45]. In this context, Akamai col-
lects measurements on a regular basis and creates topology maps

1We opt to use the term organization to reflect that a hyper-giant can manage multiple
Autonomous Systems.

to deal with the problem [48, 51]. Google [42, 77], Facebook [65],
and Microsoft [10] are using sophisticated edge architectures and
aggregate/de-aggregate prefixes to better map users to their servers.
EDNS-Client-Subnet EDNS0 extension (ECS) [9, 18] can also im-
prove user-mapping [12], however it requires large efforts by the
DNS server operators (including third party and ISPs) and the hyper-
giants [71]. Even then, maintaining optimal mapping remains chal-
lenging [22]. As our results in Figure 1 show, the user-mapping
accuracy has decreased over the last two years, i.e., fewer users are
served by the closest server cluster.

Implications of a “bad” user-mapping. The negative exter-
nalities of bad mapping are visible to hyper-giants, ISPs, and end-
users alike. For hyper-giants, the lack of optimal mapping may lead
to delays and revenue reduction [41] as well as engagement [21, 43].
For ISPs, bad user-mapping translates to (1) higher infrastructure
costs, e.g., link capacity upgrades, (2) congestion in the backbone
network and thereby higher risk of affecting unrelated third-party
traffic (of other users and service providers) [57]. ISPs are also faced
with the challenge of having little means of control over which
router traffic ingresses into their network, a problem that is known
as the inbound traffic engineering problem [34]. Finally, end-users’
perceived quality of experience deteriorates [45].

CDN-ISP collaboration. CDN-ISP collaboration has been ex-
plored in the past to alleviate the effects of badmapping, and thereby
reaching a win-win situation. One approach is to jointly deploy
the servers, either by licensed CDNs [2], or by deploying caches
of CDNs within the network [32, 50], and by utilizing micro data
centers [25, 72] in locations selected by the ISP. However, many
ISPs, especially large ones, object deploying CDN servers in their
networks [9, 20, 39, 71]. Other solutions [4, 56, 57, 76] suggest es-
tablishing an off-band communication channel between a CDN and
an ISP to exchange recommendations, i.e., mappings of user blocks
to server clusters. The ALTO/P4P approach [4, 76] shares maps
between two parties. The P4P design aims at optimizing P2P data
exchanges, while ALTO extends the idea and specifies a protocol
that enables networks to exchange maps of their network resources.
PaDIS [56, 57], on the other hand, uses a dedicated service within
the ISP that collects routing and link utilization information to
maintain an up-to-date state of the network activity. The difference
between ALTO and PaDIS is that the CDN contacts the PaDIS ser-
vice when it has to map users to appropriate servers, and ALTO
provides an information exchange. To our knowledge, neither one
of them has been tested in a real operational environment at scale.

In this paper, we report on our experience in building, rolling-
out, and operating the first-ever large scale system to enable CDN-
ISP collaboration inspired by the ALTO/P4P and PaDIS research
projects. We deploy our solution in one of the largest eyeball net-
works in the world with more than 50 million subscribers, and we
steer the traffic of one of the largest hyper-giants in the world. The
contributions of this paper are as follows:

• We present the system architecture and implementation of the
Flow Director , which enables automatic exchange of recommenda-
tions between the ISP and the hyper-giant. Flow Director collects
and analyzes more than 45 billion NetFlow records per day from
more than 1000 exporters, correlating them with BGP informa-
tion from around 600 tables to keep track of the path and ingress
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Customers (land & mobile lines) > 50 million
Daily traffic > 50 PB

Backbone routers > 1000 (MPLS)
Links (long-haul / all) > 500 / > 5000
Points-of-Presence (PoPs) >10

Table 1: Targeted eyeball ISP statistics.

points for content that hyper-giants injected into the ISP’s net-
work and provide recommendations to improve user-mapping.

• We use empirical data collected at the eyeball network to evaluate
the performance and impact of Flow Director over two years of op-
eration. Our results show that the compliance of the hyper-giant
to the eyeball network’s recommendations is very high. This
yields (1) close to optimal user-server mapping, and (2) reduction
of this hyper-giant’s traffic overhead on the ISP’s long-haul links
of up to 15%. These observations underscore the benefits of the
Flow Director for both parties and end-users alike.

• We discuss the challenges of turning an idea that appeared in a
research paper to a fully operational system in today’s Internet.

2 ISP PROFILE
To understand the mapping challenges and the benefits of col-
laborations between large eyeball networks and a leading global
hyper-giant, we deployed the Flow Director in a Tier-1 ISP with
several tens of millions of broadband and mobile subscribers. This
ISP serves more than 50 PB of traffic daily, see Table 1. It no longer
allows hyper-giants to deploy caches within the ISP. Instead, hyper-
giants connect mainly via private network interconnects (PNIs) at
more than 10 different Points-of-Presence (PoPs) in the ISP’s home
country and more than 5 international PoPs. The ISP’s backbone
consists of more than 1, 000 routers out of which several hundred
are customer facing, i.e., forwarding traffic to the end-users. The
other routers realize inter-PoP connectivity via more than 500 long-
haul links. Routing within the ISP’s network, e.g., from the ingress
point of a hyper-giant to an end-user is realized using MPLS and
ISIS. The ISP uses both IPv4 as well as IPv6.

For the testing and deployment of Flow Director , the ISP granted
us access to several data sources including the router inventory
along with their geographic locations, IGP feeds, SNMP feeds, BGP
and NetFlow data collected at the ISP’s border routers from mid-
2017 until now. Using router locations along with IGP data allows
us to determine path-lengths, and thereby, approximate latency.
By combining all of the data sources, we can compute the traffic
matrix including howmuch traffic fromwhich hyper-giant to which
destination prefix is traversing the network, for details see Section 4.
The busy hour for this ISP is at 20:00 local time—the sample we use
for daily resp. weekly comparisons.

3 OPTIMAL MAPPING: CHALLENGES
In this section, we address the questions: how optimal are the
mappings of various hyper-giants for the ISP, and what are the
impediments for improving them? Complications include (1) net-
work topology changes within the ISP as well as new peering, (2)
routing changes within the ISP e.g., due to traffic engineering, or at
the hyper-giant due to mapping changes e.g., to either increase or
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Figure 2: Share of optimally-mapped traffic of top 10 hyper-
giants over time.

decrease utilization of server clusters as well as (3) address-space
changes within the ISP e.g., to reclaim/reassign scarce address space,
or at the hyper-giant e.g., for better load balancing. In this regard,
we show that there are different mechanisms for each operation at
various time scales making an optimal mapping difficult to achieve.

3.1 Mapping compliance:
Fraction of optimally-mapped traffic

Our first question is about how the share of optimally-mapped
traffic per hyper-giant changed over time.2 Hereby, we focus on the
top-10 hyper-giants in terms of traffic share that have peering agree-
ments with the ISP, most of which exclusively use PNIs. Figure 2
shows how the mapping compliance per hyper-giant has developed
over the last two years based on monthly averages of the daily
busy-hour traffic matrix. To obtain the mapping compliance, we
calculate the ratio of the hyper-giant’s optimally-mapped traffic to
its total traffic. Here, optimalmappingmeans that the hyper-giant
sends traffic to the content consumer via the best ingress PoP i.e.,
the PoP with the shortest path to the consumer. The metric for the
cost of a path is a combination of number of hops and physical link
distance as agreed with the ISP. While this metric is the best-suited
for this particular ISP, hyper-giants may not be able to obtain a
perfect score e.g., due to overloaded servers, content availability, or
limited peering capacity at the best ingress PoP.

We observe that one hyper-giant (HG6) drops from 100% to less
than 40%. Initially, it only peered at a single location. Once it added
additional locations, mapping became relevant, however, it was not
calibrated. Other drops also show a correlation with times when
the hyper-giants added peering locations, which imposes additional
mapping challenges. In the case of hyper-giant (HG4), we see a
fairly stable share of optimally mapped traffic at about 50%. Closer
inspection shows that this hyper-giant is using round robin load-
balancing, which is detrimental for optimal mapping. For other
hyper-giants, we see fluctuations between 50% and 95%, either in-
creasing or decreasing, which underlines the challenges of deriving
and updating optimal mappings. For most hyper-giants, the share
of optimally-mapped traffic has declined within the observation
period.

There are, however, two exceptions: One is the hyper-giant that
collaborates with the ISP (HG1; blue-green circles), where we can

2Throughout this paper we use the term mapping compliance to refer to an hyper-
giant’s share of optimally-mapped traffic.
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Figure 3: Number of PoPs for the top 10 hyper-giants over
time (normalized by initial number of PoPs).

see an increase in the optimally-mapped traffic. The other one (HG2;
orange triangles) is a hyper-giant that has at times re-adjusted its
mapping based on hints from the ISP.

3.2 Hyper-giant/ISP connectivity changes
As discussed earlier, adding additional PoPs can impede optimal
mapping. Thus, Figures 3 resp. 4 show how often hyper-giants add
new PoPs or increase their peering capacity. For the latter, we
sample the SNMP feeds every 5 minutes and compute the median
value per month. For most hyper-giants, the number of PoPs as well
as the nominal peering capacity is monotonically increasing, thus
underlining the continuous investment by the hyper-giants and the
ISP, both in terms of footprint as well as capacity. While these are
planned changes that a hyper-giant should be able to account for,
we see that this is not always the case as most changes in Figure 2
are correlated with changes in Figures 3 resp. 4.

Six of the hyper-giants added peerings in new PoPs, and two
increased the number of presences twice (HG3 and HG7). In both
cases, they waited for more than 6 months before the second in-
crease. There is one outlier, which reduced its presence (HG7),
however, as expected, its mapping compliance increased. Most
hyper-giants increased their capacity by at least 50%. Noticeably,
HG6 increased its capacity by 500% while also increasing the num-
ber of PoPs. In fact, HG6 changed its delivery strategy by utilizing a
meta-CDN to rolling out its own serving infrastructure (as in [35]).
Overall, most changes occur several weeks or months apart.

3.3 Intra-ISP topology/routing changes
Next, we explore how often the “optimal” ingress PoP varies due to
intra-ISP changes. Potential changes include link changes (physical
as well as logical–MPLS ones) as well as ISIS weight changes, which
change the intra-ISP routing. While such events are common, they
may or may not impact the optimal mapping of any particular
hyper-giant.

To identify times when the optimal mapping changes, we use
daily snapshots of the ISP’s routing information. While we may
miss some short term traffic engineering events, this nevertheless
allows us to capture major upgrades. We then calculate the time
difference between such events. Note, it cannot be less than 1 day.
Figure 5(a) shows a quartile boxplot for each of the top-10 hyper-
giants using a logarithmic y-axis. For reference, we added support
lines for 1 and 2 weeks. Overall, the median time between changes
for most hyper-giants is in the order of weeks. This means that they
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Figure 4: Peering capacity for the top 10 hyper-giants over
time (normalized by the initial capacity).3

may have to adjust their mapping on this time scale. For some of
the hyper-giants, the time scale is either smaller or larger, which is
partly correlated with their number of PoPs. Moreover, some PoPs
have experienced more churn than others, which may impose more
churn on those hyper-giants that are present at these PoPs.

Next, we ask how many potential users may be affected by intra-
ISP routing changes. We calculate for each hyper-giant what frac-
tion of the ISP’s announced IPv4 space changed its “optimal” ingress
PoP. Hereby, we focus both on relatively short-term changes (1 day)
as well as long-term changes, 1 resp. 2 weeks. The latter helps
us understand if the changes are persistent or only temporal. Fig-
ure 5(b) shows the corresponding quartile boxplot per hyper-giant
for all three timescales. Typically, each change affects less than 5%
of the ISP’s address space. There are some outliers that range up
to 23%, however, almost all changes affect less than 10% of the IP
space. Interestingly, the time offset has an impact. For some hyper-
giants, the affected address space increases as we move to larger
time differences, while it decreases for others. Overall, we do not
find a consistent pattern, an important observation for both the
hyper-giant and the ISP.

Given that some hyper-giants share peering locations, we next
ask if a particular routing change affects only a single hyper-giant or
multiple ones. Figure 5(c) shows the resulting histogram using both
the 1 day as well as the 1 week offsets. Most of the changes (> 35%
for 1 day and > 20% for 1 week) only affect a single hyper-giant,
however, a significant share (> 5% for 1 day and > 10% for 1 week)
affects 8 or more hyper-giants. Short-term changes (1 day) affect
a smaller number of hyper-giants than more persistent (1 week)
changes. These observations show that optimizing for a specific
hyper-giant may influence others both positively and negatively,
which renders routing-based optimizations challenging. Further-
more, when the “optimal” ingress PoP alters due to modifications in
the routing or the topology, all affected hyper-giants need to adjust
their mapping system to leverage this new situation.

3.4 ISP’s IP distribution: PoP changes
Other reasons for changes in the “optimal” ingress PoP for an IP
are reassignments of end-user IP prefixes to a different PoP e.g., for
operational reasons, or shared DHCP pools, e.g., [53, 62]. This is
expected given the sparseness of IPv4 address space.

3Due to missing data, the X-axis is different in this plot.
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Figure 5: Quartile boxplot/histograms for top-10 hyper-giants to underline impact of connectivity changes.

Using daily snapshots of IGP data, we calculate the number of
IPv4 /32s resp. IPv6 /56s prefixes -we refer to both as IPs- that are
allocated to each PoP (after removing black-holes and accounting
for more specifics and prefix delegations). We determine three
events: IPs can (1) be newly announced, (2) be no longer announced,
or (3) have changed their announcing PoP. We aggregate these
events on a daily basis. Figure 6 shows a time-series of themaximum
churn (the sum of all three events) within a month for IPv4 and
IPv6. We immediately see that (a) there is significant change and
(b) the ISP manages both address families differently. IPv6 exhibits
more pronounced bursts, while the maximum daily churn of IPv4
is more uniform across time.

Next, we focus on the fraction of PoP changes after some days.
In particular, we ask if more than 1 resp. 5% of the ISP’s IPs changed
their announcing PoP within X days. Figure 7 shows the result-
ing empirical cumulative density function (ECDF). The IPv4 ad-
dress space has frequent changes: the likelihood of a 1% change
within 14 days is more than 90%. Further investigations suggest
that coordinated surges occur mostly on Thursdays, which are
then followed by periods without changes (i.e., weekends). A fre-
quent modus operandi is a withdrawal of some IPv4s followed by a
re-announcement several weeks later at a different PoP.

3.5 Correlation across hyper-giants
Given all of the various challenges for hyper-giants to compute op-
timal mappings on their own, we seek to find correlations in their
share of optimally-mapped traffic across the top-10 hyper-giants
over our two year observation period. Figure 8 is a heatmap of the
correlation matrix of the time series displayed in Figure 2, whereby,
we grouped the hyper-giants into clusters to underscore their cor-
relation patterns. Intuitively, a positive correlation implies that the
hyper-giants’ mapping systems react similarly e.g., to changes in
the ISP’s IP address space. A negative correlation, on the other hand,
may imply that some changes are beneficial for some hyper-giants
while detrimental for others e.g., traffic engineering within the ISP.

Overall, we seemore positive–larger–than negative–and smaller–
correlations. The data shows that positive correlations often appear
when the hyper-giants share PoPs, and negative ones appear when
their PoPs sets are different therefore, underlining that PoP diversity
and location play a crucial rule in the mapping compliance.

3.6 Takeaways
We find that a significant fraction of the traffic of most hyper-giants
is not optimally-mapped, whereby decreases in mapping compli-
ance is often correlated with topological changes, e.g., additional
PoPs or capacity upgrades, which occur at the time scale of months.
Topological changes are, on the other hand, more common events.
In this context, intra-ISP routing changes that affect the optimal-
mapping occur on aweekly basis and often involve a sizable fraction
of the ISP’s address space. Moreover, while more than 20% of the
changes only impact a single hyper-giant, some affect a majority of
hyper-giants simultaneously. Lastly, this ISP has noticeable churn
in its IP to PoP assignment (> 1% change within less than 2 weeks
for IPv4) with peaks at 4 and 15% for IPv4/v6.

All of the effects described above hinder hyper-giants’ pursuit of
determining an optimal mapping on their own. While hyper-giants
traditionally orchestrate sizable active-measurement campaigns to
determine which server is closest to a consumer, this is challenging
and will often be misleading. Still, a reasonable trade-off between
effort and accuracy for such a measurement campaign may be on a
daily to weekly basis.

4 FLOW DIRECTOR (FD)
FD is an ISP service enabling ISP-hyper-giant collaboration with
the goal of improving the latter’s mapping. To this end, FD uses
extensive network information to compute recommendations to
assist the hyper-giant’s mapping system. Thus, realizing FD within
ISPs requires a design that integrates well with ISPs’ infrastructure
while also being flexible and scalable.

4.1 Design challenges
The main challenge of Flow Director (FD) is not necessarily the task
of computing the recommendations for the hyper-giant, but rather
collecting and processing the necessary data at scale to be able to
compute these recommendations.

Conceptually, to compute a recommendation, FD must first de-
termine the cost of delivering traffic from any hyper-giant IP to any
consumer IP. To do so, FD must first determine the ISP’s topology
from intra-AS routing protocols to infer the cost to deliver traffic
from PoPs with hyper-giants’ peerings to the consumers’ PoPs and
then rank them accordingly. Given that ISPs typically only enable
traffic sampling on the ingress routers to avoid monitoring the
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Figure 8: Correlation matrix of
optimally-mapped traffic of hyper-
giants over 2 years.

same packet multiple times and to reduce the overhead, FD needs
to be able to determine this cost by using ingress flow data e.g.,
NetFlow [14]. There are several steps involved to achieve this. First,
FD needs to know the distribution of IP addresses behind each peer-
ing (ingress-point detection). Then, it needs to infer the path over
which an edge router sends traffic to a consumer from intra-, and
inter-AS routing data. Since IGP does not carry consumer prefixes,
FD also requires BGP data to identify the next hop for a consumer
IP. This presents a scaling challenge because BGP is a distributed
information-hiding protocol [8], and thereby FD needs all routes
from all BGP routers. Thus, FD has to correlate hundreds of millions
of routes from hundreds of BGP sessions with millions of NetFlow
records per second, which requires a highly scalable design.

FD works on a diverse set of inputs and needs the capability to
(1) tackle different stream volumes, (2) distinguish failures from
time lags and gracefully handle them, and (3) handle failures. To
provide maximum flexibility FD should be deployable anywhere in
the ISP: on already existing cloud solutions inside the ISP as well
as on generic hardware e.g., to enforce policies regarding network
appliances or cloud service independence. Therefore, FD has to
support public cloud services but cannot depend on their APIs as
these may not be supported by bare-metal hardware, or supported
within ISP-clouds and data centers. We note that the bare-metal
deployment use-case is the most constraining one with regards to
resource efficiency because it is difficult to scale dynamically. Up-
grading or deploying new hardware within an ISP network typically
takes weeks, if not months. Moreover, since ISP networks include
a diverse set of hardware from multiple vendors with various dif-
ferent interfaces, FD should avoid vendor specific implementations
to infer and track the network state. Thus, FD uses standardized
control plane protocols to infer the network state, which all vendors
have to support.

4.2 System architecture
The overall system architecture of FD, see Figure 9, is similar to
that of other data transformation systems. A Core Engine takes
information from the network through a set of southbound interfaces
called listeners, via Aggregators and publishes them into its internal
network database (DB). Each southbound interface is generic, in
the sense that it is replaceable without changes to the core. Thus,

to adapt FD for an ISP that uses ISIS rather than OSPF, only the
listener responsible for intra-AS routing has to be touched.

For the northbound interfaces (called interfaces), the Core Engine
uses “consumer” plugins that derive their results based upon the
Core Engine’s data and that can trigger events to publish them
to subscribers. These plugins are generic in the sense that the sub-
scriber can be one or multiple hyper-giants or some other system
e.g., an ISP internal one.

The Core Engine stores a representation of the network and
its state in a consumer agnostic model. Internally, it uses a graph
representation of the network to store the incoming data and trig-
gers the plugins for further data transformation as needed. For
scalability reason FD separates the global Internet reachability from
the internal network topology. This (1) reduces processing time and
(2) enables parallelization by pushing the computation to another
process (which may run on a different server).

4.3 Implementation
Figure 10 expands on the generic architecture from Figure 9. Each
block refers to a class of processes that are realized either as threads
and/or processes that can be distributed across multiple machines.
Each process performs data transformations.

4.3.1 Southbound interfaces.

Intra-AS routing protocols: We choose to implement one listener
per protocol, which allows for flexibility when changing to different
protocols for the same task i.e., the ISIS logic is encapsulated in
the ISIS listener. Note, each listener runs its own code base and
communicates only with the Aggregator of the Core Engine.

BGP—the inter-AS routing protocol: To use BGP to replicate rout-
ing decisions, FD needs full BGP information from all eBGP routers.
Even route-reflectors are insufficient as they already perform best
path selection and, thus, do not forward all routes to their clients.
Possible alternative such as, BGP ADD-PATH [73] or BMP [66], are
also infeasible. BGP ADD-PATH only forwards a fixed number of
alternatives, and BMP is not yet widely deployed and requires every
BGP instance on the path to export all routes (including discarded
ones). FD’s BGP listener achieves full visibility by receiving the
full FIB of each router—essentially, it is a route-reflector client of
every router. The large number of routes per router imposes a huge
strain on system memory for any reasonably sized ISP (> 850k).
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Since all tested existing BGP implementations, i.e., Quagga [61] and
Bird [19] are not suited for our use case (full FIBs from all neigh-
bors), FD includes a custom implementation supporting cross router
route de-duplication to optimize memory consumption. However,
even with this optimization FD’s BGP listener often uses multiple
hundreds of Gigabytes of RAM. Scaling it horizontally is ineffective
as the level of route replication decreases unless fast cross machine
RAM access is available.

Traffic flows exports: Currently, the best available method for
capturing traffic flows at scale on many routers is with traffic sam-
pling protocols such as sFlow [52], NetFlow [14], IPFIX [16], etc.
Carrier-grade routers easily generate millions of records per second,
which are received at a flow monitor via unordered, unreliable UDP
packets. Yet, the FD’s Core Engine needs a well-formatted, de-
duplicated, in-order flow data stream. To solve this problem, we use
a pipeline of standalone tools. This tool-chain starts with uTee [30],
a custom tool that splits the input flow stream into n load-balanced
streams based on byte count and a flow schema template of nfacct
[55]. Each nfacct instance converts its stream into a standardized,
internal format. The resulting stream is pipelined to deDup, which
(re-)combines multiple flow streams while removing duplicates to
avoid double counting-into a single flow stream.

Next, the data is piped into a set of bfTee instances [31]. bfTee
is a reliable, in-order, stream based, lock-free flow duplication tool.
We use it to protect FD against back pressure e.g., due to time lags or
failures, and as an intermediate buffer. Each bfTee has two output
streams: reliable and unreliable. The reliable one blocks on unsuc-
cessful writes, while the unreliable -but buffered- one discards data
when its internal buffer is full. The reliable stream (solid line) ul-
timately writes to a slightly modified version of zso, which is a
data rotation tool for disk storage (time based rotation was added).
The unreliable streams (dotted lines) are used for sending data to
FD. In fact, two independent Core Engine plugins receive stream
duplicates. Due to this setup one process cannot block the other
in case of slow processing and/or failures. The remaining bfTee
instances are used for testing, debugging and research purposes.
Due to the implementation, new code can be integrated into the
live stream at any time without having any effect on the production
system while getting full stream data.

4.3.2 Core Engine.

The Core Engine is a network database thatmaintains a directed,
weighted -per link direction- (network) graph called Network Graph.
It distinguishes three types of nodes (router, virtual nodes and
broadcast_domain), each identified by a unique ID. In its basic form

Network Graphmerely represents what the IGP of the network sup-
plied, however, more information is needed. This is done by graph
annotation using Custom Properties supplied by additional lis-
tener plugins to accommodate a collection of non-routing/topological
information. For example, an ISP can use its OSS/BSS system to
feed SNMP, Telemetry, or contractual information. At the same
time, CDNs can supply metadata like cluster capacities or content
availability. Internally, each custom property consists of a data type,
attached values, one or more nodes/links, and an aggregation func-
tion. The aggregation function is used to aggregate values along
the path to calculate its properties e.g., shortest path based on per
link distances or less congested path based on link-utilization val-
ues. Using Network Graph, the Core Engine offers various func-
tions, namely, Routing Algorithm, which fills the Path Cache
including all of its pre-computed Custom Properties, as well as
prefixMatch and the Ingress Point Detection, which use Link
Classification DB (details follow).

Lock-free implementation: To allow lock-free access to the net-
work graph database for many processes asynchronously, the Core
Engine uses two representations: the Modification and the Read-
ing Network Graph. All reads are handled by the Reading Net-
work, while all updates (received via the Aggregator resp. the flow
processing pipeline) are applied to the Modification Network. The
Aggregator is the gatekeeper to the internal databases and triggers
updates of the Reading Network. Lock-free access is essential as
updates are a matter fact in the Internet. By using a Modification
Network, we batch updates, whereby the minimum batch time is
the time to generate a Reading Network, which is the “valid one”
and is accessible via the northbound interface. Even in the largest
deployment it is updated in under a minute when changes trigger
a complete recalculation.

prefixMatch: The Core Engine offers prefixMatch, which
aggregates routing information into subnet prefixes. The subnets
are grouped by their attributes (i.e., BGP nextHop, Communities,
etc.), enabling massive compression as compared to BGP. Note that
prefixMatch attaches data to nodes in the topology but it does not
affect or re-trigger calculations in Network Graph or Path Cache.

Path Cache: Since path search is time consuming the Core
Engine uses a Path Cache plugin to reduce the overhead of path
lookups. The Core Engine stores all pre-calculated paths deter-
mined via Routing Algorithm in the Path Cache, along with their
Custom Properties. These only have to be updated if the IGP
weight changes due to the separation of topology within Network
Graph and Inter-AS routing information via prefixMatch. In addi-
tion, it uses multiple heuristics to keep paths that do not need to be
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recalculated from being updated. Note that this plugin chooses the
specific IGP flavor by selecting the correct Routing Algorithm.

Link Classification DB (LCDB): The LCDB is initially filled
with data from the ISP via a custom interface and then augmented
with SNMP data. Moreover, FD constantly monitors the flow stream
and correlates it with BGP. Once a new link is detected (a fairly
frequent event), it is either added manually or via the custom inter-
face. In the end, the LCDBmaintains all links in one of three defined
roles: (1) inter-AS, (2) subscriber or (3) backbone transport link.

Ingress Point Detection: To determine a network path for a
(potentially) external server, Core Engine needs the ingress router
ID for every prefix. However, BGP does not offer such information.
Thus, the Core Engine infers the mapping from the flow stream by,
first, using the Link Classification DB to filter the flows stream
captured on inter-AS interfaces. Then, it pins the flows’ source
IP addresses to the link ID. To reduce memory, Ingress Point
Detection aggregates these potentially hundreds of millions of IPs
per link ID to prefixes. A full consolidation is done every 5 minutes.

To underline the importance of tracking ingress points, we show
in Figure 11 the churn in detected IPv4 prefixes per ISP PoP for the
top-10 hyper-giants per 15 minute time bins. While the majority
of the prefixes are stable, the churn of ∼ 200 prefixes is signifi-
cant enough to potentially harm the hyper-giants’ mapping. When
looking at subnet sizes, see Figure 12, it is obvious that the driving
force for the huge churn are small subnets. Still, even large subnets
experience significant churn. Overall, this analysis underlines that
ingress points constantly change e.g., due to changes in the hyper-
giants mapping, server maintenance, BGP route changes, ISP IGP
changes, etc. The Ingress Point Detection plugin enables their
detection in almost real-time, which then enables re-assignment
and re-routing of ingress traffic within minutes.

4.3.3 Northbound interface – hyper-giant interface(s).

The final part of the system is the northbound interface and,
in particular, the interface to the hyper-giants. This is fed by the
Reading Network to allow lock-free read access by any number of
processes. The Path Ranker computes the “optimal” mapping from
every ingress point for every internal subnet by taking advantage of
the Path Cache to minimize path calculation. Hereby, the optimal
function is agreed by the ISP and the hyper-giant, even though Flow
Director only provides a recommendation to the latter. “Optimal”

can differ per hyper-giant and e.g., involve any combination of hop
count, physical distance, network distance, or other custom link
properties. In the extreme case of the hyper-giant ignoring FD’s
recommendation completely, the status-quo of no co-operation
is maintained. This makes the Flow Director useless, but has no
effect on any traffic either. The other side of the coin is that the
hyper-giant follows the recommendation blindly. While this can be
optimal for the ISP, it could potentially create a resource problem
for the hyper-giant, if Flow Director does not have information about
the hyper-giant’s capacity and content availability. To counteract
this problem, the hyper-giant can supply this information to FD’s
Custom Properties via its northbound interface. This would turn
the Flow Director into a centralized and intermediate repository of
information about the hyper-giant and ISP. Finally, Path Ranker
can communicate its recommendation using the hyper-giants’ in-
terface of choice. Currently implemented interfaces include:

ALTO-based interface [40]: ALTO, at its core, defines two
different types of mapping information. First, it creates the network
map that defines clusters of network position identifiers (PIDs)
e.g., routers, prefixes, etc. Attached to each network map are one
or more cost maps, which define the pair-wise cost between each
PID pair. In FD terms, this results in a general network map that
segments the ISP’s network, and one cost map per hyper-giant
derived via Path Ranker. Note that not all PID combinations are
needed by hyper-giant e.g., ISP internal connections. To reduce
space, the cost map omits these PID combinations. In case a hyper-
giant has different classes of content, multiple custom cost maps
can be supplied, effectively splitting the hyper-giant into several
parts. Finally, one important extension among ALTO’s multiple
extensions is the Service Side Events extension (SSE), which enables
subscriptions to an ALTO network/cost-map for a secure push-
based notification service implemented over a RESTful interface.
Note that Flow Director only supplies the network and the cost map
to the hyper-giant, while keeping topological and measurement
information out of the maps as necessary.

BGP-based interfaces (e.g., [5, 49, 75]): BGP is a protocol de-
signed to provide network-layer reachability information (NLRI).
While operators can annotate network prefixes via BGP communi-
ties by design, BGP is not designed to associate a network prefix to
another network prefix directly. However, BGP communities are
still often used to associate or group prefixes together to realize
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this mapping. Flow Director can interface with a hyper-giant over
out-of- or in-band BGP sessions. For example, in a BGP out-of-band
session the hyper-giant can announce the prefixes of its servers, to-
gether with a cluster identifier encoded in the BGP communities via
BGP. After receiving this information, FD announces back for each
cluster ID the ISP’s prefixes with a BGP-community with the server
cluster ID encoded in the upper 16 bits and the ranking value for
that cluster ID in the lower 16 bits. The case of an in-band session
works similarly, with the added tricky part of possible collisions in
the BGP-community values. In fact, the space for encoding mapping
information is halved.4 Furthermore, the Flow Director requires ad-
ditional information from both parties, i.e., which communities are
in use. These can be incorporated into the Custom Properties via
a southbound interface that needs to be customly implemented.

Customized interfaces: The last scenario includes hyper-giants
not offering an automated interaction interface. FD supports mul-
tiple output formats such as JSON/XML/CSV, which can be then
forwarded to the relevant parties via file uploads, e-mail, etc.

4.4 Data problems and failovers
Whenever one operates a large scale system with multiple different
data sources, problems occur, and things break. These can often
be detected using cross correlations and fixed by initiating appro-
priate actions. For example, configuring BGP is tedious because
each neighbor needs to be explicitly configured. With hundreds
of routers, this is not only error-prone but also entails significant
overhead. FD automates such tasks whenever possible. For exam-
ple, when a new node is detected in the Network Graph, it can
be set to automatically configure it as BGP peer with its loopback
IP. In the same manner, connection aborts are distinguished from
planned shut-downs.5FD monitors such events using a rule based
system with appropriate thresholds to keep the network state up to
date. Hereby, fast detection of errors and their resolution benefit the
ability to correlate data- and control-plane information in real-time.

It is possible to run multiple Core Engine processes, e.g., for
redundancy. In this case, each listener , except for the NetFlow one,
connects to all Core Engine processes independently. For NetFlow
(due to the volume of its data stream) we are using a floating IP that
is assigned to all Core Engines. The IP is announced via the IGP
listener and by choosing the metric appropriately it is possible
to realize fail overs, load balancing, etc.

4BGP communities are 32 bit values.
5A router shutting down withdraws its IGP information prior to shutdown. A router
going into maintenance should set itself to overload, telling the IGP not to use it in
its path calculation anymore. In contrast, a random connection abort does neither of
these.

4.5 Milestones and lessons learned
To reach the successful first deployment of the Flow Director , its im-
plementation underwent several iterations and extensions to gain
enough scalability and flexibility such that it can accommodate
the rich number of network protocols and data streams existing
in large ISP networks. Figure 13 illustrates this process. While the
initial system design and idea remain unaltered, from 2013 until
2017 we had to devise mechanisms to circumvent constraints and
limitations that we did not anticipate. For example, shortly after es-
tablishing the first BGP connection with an edge router, we realized
its memory footprint was too large. The BGP listener underwent
a major overhaul to be able to scale up the number of routers to the
order of hundreds. Likewise, while the first ISIS listener was
silent for security reasons (LSPs announcements were disabled), we
had to iterate its code basis to be able to support redundancy once
we instantiated a second FD. Similarly, along with the need to scale
up the NetFlow processing pipeline and thereby building a custom
load-balancing infrastructure, we had to devise several data-sanity
checks for NetFlow data, as it cannot be completely “trusted”. For
example, during cache flushes, reboots or when line-cards are re-
placed, updated or reconfigured, the resulting NetFlow timestamps
might be in the future (up to several months) or in the past (we
saw packets from every decade since 1970). Furthermore, even in
“normal” operation, timestamping is skewed due to cache evicts
and missing/faulty NTP synchronization. Another aspect that we
did not anticipate is inconsistencies among inventories. These are
usually manually maintained and thus prone to errors. Such in-
consistencies are, in fact, the motivation behind the LCDB, which
enables the Ingress Point Detection (another component we
did not anticipate as well but is crucial for the correct operation of
the Flow Director).

5 OPERATIONAL EXPERIENCE
Although the system was initially proposed within a research
project in 2010, and first feasibility studies showed significant po-
tential benefits (Figure 13: 2010–2014), it was not until 2015 before
it was deployed in an ISP. It also required two additional years for
FD to become fully operational and to get a contractual agreement
with a hyper-giant.6

In July 2017, a major hyper-giant with geographic diverse peering
connectivity and the ISP started their formal cooperation with the
joint goal of shortening the paths from the ingress router of the ISP
to its customers (a function of the hops and geographical distance).
Since Spring 2018 the collaboration of the ISP and the hyper-giant’s

6Even during this time the ISP benefited from the initial FD deployments via its analytic
capabilities.
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Number of machines 2
Cores/threads/hyper-threads 16/32/64 (Xeon E5)
RAM > 700 GB

Number or IPv4/IPv6 routes ∼850 k / ∼680 k
NetFlow records > 45 billion per day
NetFlow rate (peak) > 1.2 Gbps
BGP peers > 600

Num. cooperating hyper-giants 1
% steerable over all ingress traffic > 10%

Table 2: Flow Director deployment.

mapping system is fully automated. The anticipated benefit for the
hyper-giant is reduced delivery times hence, improved QoE metrics
and, on the other hand, for the ISP is reduced long-haul traffic
load, hence, reduced cost. It is important to note that FD does not
force a hyper-giant to deliver traffic from the recommended server
cluster. It can ignore the recommendation and instead serve content
from the best cluster–according to its own metrics. In fact, the
cooperating hyper-giant sometimes ignores FD’s recommendations,
if its mapping system anticipates congestion for traffic crossing the
recommended ingress points.

While the ISP system is prepared to interface with any willing
hyper-giant, at this time, the northbound interface is used by only
one hyper-giant. Still, we have used FD to manually improve the
mapping of two other hyper-giants, recall Section 3, to incentivize
them. In this section, we report on the existing fully-automated
cooperation and discuss their benefits.

5.1 Flow Director deployment
The deployment of FD within the ISP is summarized in Table 2. We
use two physically separated bare-metal servers each with 16 cores
(64 hyper-threads) and more than 700 GB of memory to accom-
modate unforeseen peaks. Each server receives live ISIS and BGP
routing feeds from all routers, which implies more than 600 BGP
peers with an average number of roughly 850 k routes. The two
servers are configured for fail-over automation, whereby both re-
ceive the routing information but only one handles flow data. The
latter processes more than 45 billion NetFlow records per day at
a peak rate which exceeds 1.2 Gbps. Currently, both live systems
use roughly 200 GB of memory (mainly for the BGP listeners), and
their average CPU utilization is less than 45 resp. 5 out of the 64
hyper-threads. The load difference is due to the processing of flow
data. Although both servers are ready to receive SNMP data to
detect backbone bottlenecks and incorporate into the Path Ranker,
the ISP does not deem it necessary for this period as its backbone
is sufficiently over-provisioned.

5.2 Impact of Flow Director
Figure 14 illustrates how the percentage of optimally-mapped traffic
for the hyper-giant evolved over the last two years. In particular,
the plot shows the mapping compliance, recall Section 3.1, as well
as the “steerable” traffic. Traffic is considered “steerable” by the ISP
if the hyper-giant’s mapping decision receives a recommendation
from the Flow Director , i.e., if their system accepts recommendations
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Figure 14: Timeline: Impact of CDN-ISP collaboration on
share of optimally-mapped traffic annotated with events:
Start (S/yellow), initial testing (T/blue), temporary hold
(H/gray), operational (O/green).

for that content. Note, steerable does not imply that the hyper-giant
follows the recommendation.

When the collaboration started, the optimally-mapped traffic of
that hyper-giant was around 70% with a declining trend, motivating
the test of FD. At the beginning, the fraction of steerable traffic
was rather small, yet, it quickly increased to 40%. This led to an
increase in mapping compliance. In December 2017, this fraction
dropped drastically when the hyper-giant and the ISP engaged
in a test to evaluate the benefits of EDNS (similar to [12]). An
investigation revealed that a misconfiguration caused the hyper-
giants’ mapping system to default to a state where it neither used the
ISPs recommendations nor the information it used to rely on prior
to the testing. This misconfiguration coincided with the holiday
season, which may explain its rather long duration.

Once themisconfigurationwas removed, the fraction of optimally-
mapped traffic increased. In addition, the hyper-giant increased the
fraction of steerable traffic, which further increased its mapping
compliance. After a transient phase, the compliance stayed in the
range of 75–84%, which is significantly larger than that of most
other considered hyper-giants. Note, this hyper-giant maintains
a large fraction of optimally-mapped traffic, despite having the
largest number of PoPs, contributes a significant fraction of the
overall ingress traffic (> 10%), and continuously increases its peer-
ing capacity.

5.3 ISP KPI: Long-haul traffic reduction
Next, we evaluate if FD meets the expectations of the ISP, namely,
if it reduces its long-haul traffic load – the ISP’s Key Performance
Indicator (KPI). A naïve way of evaluating this KPI is to sum the
hyper-giant’s traffic share for each long-haul’s link over time. How-
ever, this is infeasible since gathering flow records for all backbone
links does not scale. Moreover, transit traffic needs to be removed.
We tackle this problem by reusing FD’s unique capabilities to com-
bine flow data from the ISP’s edge routers with routing data to infer
its forwarding path and determine which links are long-haul vs.
local within a PoP using the geographic locations of the routers.
Then, we filter this traffic for destinations in the ISP’s network and
sources from this hyper-giant. However, this data is influenced by
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various trends, seasonal patterns, and other artifacts. Thus, we nor-
malize traffic to account for traffic growth and customer migration
as follows:
Ingress-traffic trends: We eliminate seasonal trends by normal-

izing the volume of ingress traffic within a time period to
a constant, keeping the relative traffic share of each edge
router unaltered.

Customer migration: Over the past two years, the ISP has mi-
grated users to Broadband Network Gateways (BNGs), which
increases the hop count by one. We mitigate this artifact by
ignoring BNG links.

Figure 15(a) shows the benefit of FD on the hyper-giant’s long-
haul traffic using May 2017 as reference. Thus, the value for May
2017 is 100%. When the collaboration started, we see a decrease.
However, around December 2017 we see a significant increase. This
coincides with the hyper-giant’s misconfiguration of its mapping
system after the ISP’s EDNS test. Once FD is fully utilized, the
fraction of long-haul link traffic has a strong declining trend. The
plot also shows the hyper-giant’s traffic share for all backbone links
(again normalized). Note, the backbone traffic declined overall but
has started increasing in 2018. This is not that surprising given that
a reduction in long-haul traffic is often at the expense of increased
intra-PoP traffic. Overall, the “relative” decline in long-haul traffic
of more than 30% is impressive.

Naturally, the ISP has increased its network capacity and its
footprint within the last two years by not only increasing capacity of
existing links but also deploying new physical or logical links. This
will also either decrease or increase the path length. Unfortunately,
we do not have a direct way to separate the impact of these upgrades
from the benefits of the cooperation via FD. Moreover, there are
reasons why the benefits of the activation of FD are not always
realizable and are not immediately visible, including:
Content availability: Some content is only hosted on a subset of

the hyper-giants infrastructure.
Processes: The hyper-giant may have had to update its internal

processes and its mapping system to automatically consider
FD’s recommendations.

Server resp. network load: The hyper-giants resource/ cost opti-
mization may favor different server clusters.

Thus, we cannot expect that the hyper-giant always follows
the ISP’s recommendation to realize an “ISP-optimal” mapping. To
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Figure 16: Scatter-plot with heatmap overlay: Compliance
ratio vs. hyper-giants traffic normalized by peak traffic for
February 2019.

understand these operational limits, we compute the ratio between
the actual load on the long-haul links and one assuming the hyper-
giant would follow all recommendations. This approach removes
the effect of topological changes and thereby, reveals the actual
benefits of FD.

Overall, we see, in Figure 15(b), that before the introduction
of FD the gap was increasing. Moreover, during the time of the
misconfiguration in December 2017 the gap was sizable. Once FD
was fully operational, the overhead reduced to 1.17 for most months.
Indeed, we still see a decreasing trend indicating that FD is beneficial
for both the hyper-giant and the ISP.

Next, we explore why a hyper-giant may not follow FD’s recom-
mendations. In particular, we focus on whether or nor the mapping
compliance ratio decreases under high traffic load. The motivation
comes from how the hyper-giant’s other resource/cost constraints
may dominate their motivation to reduce latency. Accordingly, we
plot for each hour in the month of February 2019 the fraction of
traffic that is following the FD’s recommendation vs. the hyper-
giants traffic volume (normalized by its peak hourly traffic volume
within the month). Figure 16 shows the resulting scatter-plot over-
layed with a heatmap to highlight the center of gravity. The plot
shows that for most hours the compliance ratio is rather large,
between 80% and 90%, which matches previous observations. How-
ever, for peak hours, the compliance ratio decreases but typically
still exceeds 70%. Even for the worst hour the compliance is above
60%.
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5.4 Hyper-giant KPI: Latency reduction
The hyper-giant’s main incentive to use Flow Director is to improve
latency. While this hyper-giant could measure the effects itself,
it lacks the visibility of FD, e.g., choice of routes within the ISP.
Thus, we approach this problem in the same manner as before:
for each day we compute the distance per byte for the actual and
the optimal mapping.7 We then compute the gap by taking the
difference between both, and then normalize it with the maximum
observed gap over the two years. Figure 15(c) shows the results.
We also added two support lines for the mean gap in May 2017
vs. March 2019. This plot again highlights that as the mapping
compliance increases the gap closes, which will improve the QoE
metrics of the hyper-giant and ISP and underline the benefits of
FD. This observation is also supported by the hyper-giant’s own
private measurements, which show a reduction of round-trip times
(RTT) since the activation of FD.

5.5 What-if analysis
Given the benefits of the hyper-giant-ISP collaboration for a single
hyper-giant, we next investigate the potential benefits if all other
considered hyper-giantswould also use FD recommendations. Using
data from March 2019, Figure 17 shows the theoretically possible
ISP’s long-haul traffic reduction, which with more than 20% is very
sizable (assuming no resource constraints on the hyper-giant side).

We see that the potential long-haul traffic reduction varies from
hyper-giant to hyper-giant since hyper-giants interconnect with
the ISP at different PoPs and their traffic matrices differ. For some
hyper-giants traffic can be reduced by 40%, e.g., for HG6. For other
hyper-giants e.g., HG9, the benefit is much less, even though its
mapping compliance is less than 80%. The reason for this counter-
intuitive result is a consequence of the currently used optimization
function (optimize for hop-count and distance). For example, the
optimization potential is small for consumers that are located in-
between two of a hyper-giant’s ingress PoPs evenwhen themapping
is sub-optimal. The specific peering configuration of HG9 together
with the mapping function in use fosters this effect.

However, the choice of optimization function for FD is flexible as
long as it is computable using network information. For the initial
deployment we focused on a function that provides (a) stability over
time, (b) simplicity of evaluating the cooperation, and (c) avoids
high-frequency changes.

6 SUMMARY AND OUTLOOK
In this paper, we report on our experience in building, rolling-out,
and operating Flow Director (FD), the first-ever ISP-hyper-giant
collaboration system. For two years, FD has been enabling one of
the largest eyeball networks world-wide to steer the large traffic
volumes from one of the most distributed hyper-giants: it provides
recommendations to this hyper-giant’s mapping system in real-time,
i.e., which hyper-giant’s server cluster should serve a consumer IP
prefix given an optimization function defined by the ISP .

To motivate this system deployment, we investigate to which de-
gree hyper-giants are able or rather unable to find optimal mappings

7We are aware that distance is not the only factor affecting latency, but serves well as
a proxy for the latency in optimal conditions i.e., uncongested networks, which is the
case for the targeted ISP.
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Figure 17: Quartile boxplot for the ratio of traffic under op-
timal mapping conditions vs. observed traffic.

for this ISP. Challenges include changes in (1) the hyper-giants/ISP
connectivity, (2) the ISP’s routing/topology, and (3) the geographic
distribution of the ISP’s IP address space. These often lead to map-
ping compliance of ≤ 64%, opening a large space for improvements
via the Flow Director .

The goal behind the deployment of FD is to reduce traffic on
–costly– long-haul links. Thus, the system uses an optimization
function that is a combination of path length and distance. FD helps
to decrease the hyper-giant traffic on these links by 30% by rec-
ommending appropriate ingress points to the hyper-giant and by
steering traffic to shorter ISP links. Moreover, the gap between
actual and “ISP-optimal” long-haul traffic has also decreased to
roughly 1.15 (15% reduction of the overhead). For the hyper-giant,
the incentive to interface with FD is latency reduction. Using a
topology-agnostic KPI: the distance-per-byte’s gap to reach con-
sumers decreased by almost 40%. Moreover, we find a strong nega-
tive correlation between traffic demand and mapping compliance
metric. Namely: available resources and cost factors external to the
FD affect its overall efficiency.

Realizing FDwithin the ISP was, at times, a frustrating experience
as we had to overcome many challenges, including (1) policy en-
forcement e.g., clearance for the necessary input data, (2) changing
processes within the ISP e.g., obtaining up to date topology infor-
mation, (3) interfacing with proprietary solutions, and (4) handling
system failures and data problems. Moreover, having a principle
agreement for collaboration between an ISP and a hyper-giant does
not mean immediate deployment. Nevertheless, FD has now been
in operation for more than two years, and it has outperformed our
expectations. If the system were to be used by all top-10 hyper-
giants, the traffic on long-haul links would further reduce to less
than 80%.

In the future, we plan to further improve FD by (1) adding other
optimization functions, e.g., to reduce max. utilization, (2) taking
advantage of its analytic capabilities e.g., to assess ISPs on the
suitability of a new peering location, and (3) interfacing with ISPs’
routers to optimize egress traffic.
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