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Content moved closer to end users to reduce latency.!
!
Connections from end users are terminated at CDN 
servers close to the end users.
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Viewing the Internet’s core from the distributed 
measurement platform of a CDN.
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Back-Office Web traffic accounts for a significant fraction of core Internet 
traffic — Pujol et al., IMC, Nov. 2014.!
!
End-user experience is at the mercy of the unreliable Internet and its 
middle-mile bottlenecks — T. Leighton, CACM, Vol. 52. No. 2, Feb. 2009.
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A six-month timeline of RTTs between servers in 
Honk Kong, HK and Tokyo, JP
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A six-month timeline of RTTs between servers in Honk 
Kong, HK and Tokyo, JP!
!
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A six-month timeline of RTTs between servers in Honk 
Kong, HK and Tokyo, JP!
!
Level-shifts in RTTs over both IPv4 and IPv6
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To what extent do changes in the AS path affect 
round-trip times?
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Night Day

A portion of the timeline of RTTs between servers in 
Honk Kong, HK and Tokyo, JP.!
!
Daily oscillations in RTT between the servers.
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Night Day

How common are periods of daily oscillation in 
RTT, and where do they occur?
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What affects end-to-end RTTs more – routing or 
congestion?
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How does IPv4 and IPv6 compare with respect to 
routing and performance?
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1. To what extent do changes in the AS path affect 
round-trip times?!
!
2. How common are periods of daily oscillation in 
RTT, and where do they occur?
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Effect of routing changes on end-
to-end RTTs

15



Data Set: Long Term

!

•  ≈600 dual-stacked servers in 70 different countries.!
‣ US, AU, DE, IN, JP, …
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Traceroutes conducted between servers in both 
directions over both protocols.
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33

Every 3 hours traceroutes done over the full-mesh.!
All traceroutes in a given 3 hour time frame have 
the same timestamp.
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A-B Trace Timeline
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Traceroutes over the full-mesh every 3 hours for 16 
months from Jan. 2014 through Apr. 2015.!

≈700M IPv4 and ≈600M IPv6 traceroutes!
Trace timeline Sa ➝ Sb is different from Sb ➝ Sa
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AS1-AS2-AS3-AS4  22.3 ms
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• Extract two pieces of information from each traceroute!
‣ AS path inferred from interfaces in the traceroute output!
‣ end-to-end RTT between the two servers!
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A–B trace timeline!
(AS-path, end-to-end RTT) tuples spanning the study period
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Popular AS path observed in A–B trace timeline!
AS1-AS2-AS3-AS4 with prevalence 60%
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Transactions on Networking 1997
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Most paths had one dominant route, with 80% 
dominant for at least half the period.
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80% of the trace timelines experienced 20 or fewer 
changes over the course of 16-months.
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How do the AS-path changes affect the baseline 
RTT of server-to-server paths?
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Group RTTs by AS paths.!
Baseline: 10th-percentile of each AS-path (bucket).!

28



time

AS1
AS2
AS3
AS4
22.3

AS1
AS2
AS3
AS4
29.7

AS1
AS2
AS3
AS4
23.1

AS1
AS5
AS9
AS4
18.2

AS1
AS5
AS9
AS4
17.9

Optimal Path: path with lowest baseline.!
         Optimal: AS1-AS5-AS9-AS4!
Sub-Optimal: AS1-AS2-AS3-AS4
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Baseline of sub-optimal path with prevalence of 
60% is ~4.5 ms increase in end-to-end RTT.
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Typically a routing change causes only a small 
change in RTT.
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But for a minority of cases, the change can be significant.!
10% of trace timelines over IPv4 the (sub-optimal) AS paths that 
led to at least a 20 ms increase in RTTs had a prevalence of at 
least 30%
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Effect of periods of daily oscillation 
on end-to-end RTTs
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Data Set: Short Term

!

•  ≈3,500 server clusters in 1,000 locations in 100 
different countries.
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ping measurements every 15 minutes for one week from Feb. 
22, 2015 through Feb. 28, 2015.!

≈2.9M IPv4 and ≈1M IPv6 server pairs!
Based on Time Sequence Latency Probes by Luckie et al., IMC 2014
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A B

36

end-to-end RTT



A B

Identify first segment with high-correlation with 
end-to-end RTT?
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3155 links were congested in our study of IPv4 traceroutes.!
1768 internal & 1121 interconnection links.!

!

Weighting links by the number of server-to-server paths that 
cross them …!

interconnection links are more popular!!
!

Large majority of the interconnection links with congestion 
were private interconnects.
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Typical overhead due to congestion is 20-30 ms.
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Values between 20-30 ms —!
US: accounts for 90% of density.!
Europe & Asia: accounts for 30% of density.!
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Transcontinental links in Europe & Asia.!
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Routing changes typically do not 
affect end-to-end RTTs.!

Congestion is not the norm.
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What about non-typical cases?
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Congestion!

Only 2% of the server 
pairs over IPv4, and just 

0.6% over IPv6, 
experience a strong 

diurnal pattern with an 
increase in RTT of least 

10 ms.

Routing!

For10% of server pairs 
the (sub-optimal) AS 

paths that led to 20 ms 
increase in RTTs 

pertained for at least 
30% of the study period 
for IPv4 & 50% for IPv6.
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Congestion!

Only 
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Routing!

10% of trace timelines 
the (sub-optimal) AS 

paths that led to at least 
20 ms increase in RTTs 
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30% of the study period 
for IPv4 & 50% for IPv6.



- Focus on bandwidth!
- No packet loss measurements; platform 

limitations!
- Explore IPv4 & IPv6 infrastructure sharing
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Use measurements over paths between CDN 
servers to understand the state of the Internet 
core.
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trace timeline!

AS1– AS2– AS3– AS4 and AS1– AS5– AS9– AS4
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80% of trace timelines have 5 or fewer AS paths in 
IPv4, and 6 or fewer in IPv6.
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Pairing AS paths in the forward & reverse directions 
still reveals 80% of server pairs to have 8 or fewer 
path pairs in IPv4, and 9 or fewer in IPv6.
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Comparing magnitudes of increase in (baseline) 10th 
percentile of RTTs of AS paths (each relative to the best 
AS path of the corresponding trace timeline) with the 
lifetime of AS paths …
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X-axis: deciles of the distribution of AS-path lifetimes.!
half-open intervals!
[0.0, 3.0h) has no data points!
Same value for 0th% and 10th% of the AS-path lifetime distribution
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Y-axis: deciles of the distribution of magnitudes of 
increase in 10th percentile of RTTs of AS paths (each 
relative to the best AS path of the corresponding trace 
timeline).
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Baseline RTTs of AS paths with longer lifetimes are 
close in value to that of the best AS path of 
corresponding trace timelines.
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Paths with poor-performance are often those with 
relatively short lifetimes.
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Similar observations from IPv6 traceroutes.
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