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Abstract— We introduce an Internet traffic anomaly detection
mechanism based on large deviations asymptotic results. Using
past traffic traces we characterize network traffic during
various time-of-day intervals, assuming that it is anomaly-free.
We present two different approaches to characterize traffic: (i) a
model-free approach based on the method of types and Sanov’s
theorem, and (ii) a model-based approach modeling traffic using
a Markov modulated process. Using these characterizations
as a reference we continuously monitor traffic and employ
large deviations results to compute the probability that the
monitored traffic is “consistent” with the corresponding refer-
ence characterization. Low values of this probability identify,
in real-time, traffic anomalies. Our experimental results show
that applying our methodology (even short-lived) anomalies are
identified within a small number of observations. Throughout,
we compare the two approaches presenting their advantages
and disadvantages. We validate our techniques by analyzing
real traffic traces with time-stamped anomalies.

Index Terms— Network security, intrusion detection, statisti-
cal anomaly detection, method of types, large deviations.

I. INTRODUCTION

ALTHOUGH significant progress has been made in net-
work monitoring instrumentation, automated on-line

traffic anomaly detection is still a missing component of
modern network security and traffic engineering mecha-
nisms. Previous studies showed that many types of traffic
anomalies, such as attacks, worms, misconfiguration, net-
work failures and a rapid increase of traffic volume (flash
crowds), can be detected by monitoring the aggregate traffic
at a border router. These approaches are typically grouped
in two categories: signature based anomaly detection where
known patterns of past anomalies are used to identify ongo-
ing anomalies [1, 2], and statistical anomaly detection which
identifies patterns that substantially deviate from normal
patterns of operation [3]. Recent research studies showed that
systems based on pattern matching had detection rates below
70% [4]. Furthermore, such systems need constant (and
expensive) updating to keep up with new attack signatures.
As a result, more attention has to be drawn to statistical
methods for traffic anomaly detection since they can identify
even novel (unseen) types of anomalies.

In this paper we introduce a new statistical traffic anomaly
detection framework that employs rigorous fault detection
methodologies at short time scales. Our approach is fairly
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standard for statistical anomaly detection. First, we learn
what constitutes “normal behavior” by observing past sys-
tem behavior, assuming that it is anomaly-free. Using this
knowledge we continuously monitor the system to identify
time instances where system behavior does not appear to
be normal. The novelty of our approach is in the way we
characterize normal behavior and in how we assess devia-
tions from it. More specifically, we propose two methods
to characterize normal behavior: (i) a model-free approach
employing the method of types [5] to characterize the type
(i.e., empirical measure) of an i.i.d. sequence of appropriately
averaged system activity, and (ii) a model-based approach
where system activity is modeled using a Markov Modulated
Process (MMP). Given these characterizations of normal
behavior obtained from past system history, we compute
the probability that current system behavior deviates from
normal. Naturally, we employ the theory of Large Deviations
(LD) [5]. LD theory provides a powerful way of handling
rare events and their associated probabilities. The two key
technical results we rely upon are Sanov’s theorem [5] in
the model-free approach and a related result for the empirical
measure of a Markov process for the model-based case.

We note that the words “traffic” and “router” are purpose-
fully absent from the previous paragraph. Rather, we use the
generic term “system”. This is to indicate that our approach
can be easily adapted to identify anomalies in any trace of
system activity we would like to monitor (e.g., access to
various application ports, IP source-destination addresses,
system calls, etc.). In this paper, however, we focus on
two case studies: (a) three different representations (bytes,
packets and flows) of sampled origin-destination flow data
from a backbone network, and (b) the aggregate traffic that
arrives to or originates from the border router of some local
area network (LAN) we wish to monitor.

Traffic has diurnal variations which are primarily due
to human activity. However, for relatively short time-scales
(e.g., of about an hour), and especially during busy hours,
stationary models can be appropriate [6]. The model-free
approach aggregates traffic over short time intervals to which
we will refer to as time buckets. Although the correlation
between samples in short time scales is significant, it reduces
rapidly between aggregates over a time bucket. Hence, we
consider the sequence of traffic aggregates over a bucket
as an i.i.d. sequence and employ the method of types to
characterize its distribution. Our model-based approach uses
an MMP process to model legitimate traffic during some
time-of-day interval. Earlier work has shown that MMP
models can accurately characterize network traffic [7, 8].

The methods we present are statistical; as a result, our
approach has the potential of detecting novel anomalies,
such as previously unseen attacks. This is crucial for net-
work security as new types of attacks are constantly be-
ing engineered. A novel feature of our approach is that
it compares subtle distributional differences between the



reference traffic characterization and observed traffic traces.
As we will see, this is critical as it enables us to detect
attacks –including some short-lived ones– that do not result
in significant changes in traffic volume. First or second
moments of traffic measurements would be too insensitive
to these types of attacks. To the best of our knowledge, this
is the first attempt to develop a framework that provides
a statistical on-line methodology for anomaly detection in
short time scales identifying temporal anomalies as opposed
to techniques working over much longer time-scales [3]. The
only infrastructure requirement in order to deploy our method
is a simple counter.

As mentioned earlier, we rely upon observing the system
during an anomaly-free period to learn what constitutes
normal behavior. Of course, one can never ensure that a trace
of system activity is anomaly-free. Yet, even in those cases
that the reference trace is “tainted” it is useful to know that
the current activity is statistically different. Moreover, one
would often update the reference trace with more recent ac-
tivity, thus, almost eliminating the possibility that non-typical
behavior (hence, relatively short-lived) will be classified as
typical. We report a number of experimental results from
applying our approaches to two different network traces: (a)
one week of sampled origin-destination flow data from the
Abilene backbone network, and (b) the 1999 MIT Lincoln
Lab (DARPA evaluation) trace [4]. We are able to detect a
variety of anomalies such as attacks and volume anomalies
(even short ones) within a few samples, with very high
success rate and low false alarm rate.

The rest of the paper is organized as follows. In Section II
we present our model-free method for anomaly detection. In
Section III, we provide the basic theoretical background of
our model-based method. In Sections IV and V we compare
the two methods and validate our methodology using real
measurements with time-stamped anomalies. In Section VI
we review related work and identify the major differences
with our approaches. We conclude in Section VII.

II. A MODEL-FREE APPROACH

In this section we discuss our model-free approach. Con-
sider a time series X1, . . . , Xn of traffic activity (say, in
bits/bytes/packets/flows per sample). Let Y b

t the partial sum
(or aggregate traffic) over the time bucket starting at (t−1)b
and containing b samples, namely, Y b

t =
∑b

i=1 X(t−1)b+i.
The crucial assumption we make is that Y b∗

1 , . . . , Y b∗

bn/bc is
an i.i.d. sequence for some appropriate bucket size b∗. (It is
possible to select such a b∗ by finding the value of b∗ so that
|ACF (k)| ≤ 2√

n
, ∀ k > b∗, where ACF (k) = E[(Xt −

µ)(Xt+k − µ)]/σ2 is the autocorrelation function with µ
denoting the mean and σ2 the variance of the timeseries.)

We quantize the values of the partial sums Y b∗

t mapping
them to the finite set Σ = {α1, . . . , αN} of cardinality N .
For the rest of the paper, we will be referring to Σ as the
underlying alphabet. The quantization is done as follows: we
let [r0, rN ] the range of values Y b∗

t takes, divide it into N
subintervals [r0, r1], . . . , [rN−1, rN ] of equal length, and map
[ri−1, ri] to αi for i = 1, . . . , N . To select the appropriate
size of the alphabet N we follow the approach of [8] and
use the so called Akaike’s Information Criterion (AIC) [9].
In particular, N is set to minimize:
Q(N, r1, . . . , rN−1) = −L (r1, . . . , rN−1) + N(N − 1),

where L (·) is the log-likelihood of the model with respect
to a process realization. The key observation motivating
the AIC is that L (·) tends to favor models with a larger
number of free parameters. The AIC removes this bias by
introducing a penalty for the number of free parameters;
thus, the resulting N is considered the most appropriate for
the given trace (minimizing modeling and estimation error).
Once we have N , elements of the alphabet that are not
observed in the trace are merged with neighboring ones to
obtain N ′ which is the final size of the alphabet.

A. Large Deviations of the Empirical Measure

Combinatorial methods can be applied for the empirical
measures of Σ-valued process. Let Yt = (Y b∗

t−w+1, . . . , Y
b∗

t )
be the trace of the w most recent partial sums using a bucket
size b∗. We assume that these random variables are i.i.d.,
following a law µ ∈ M1(Σ), where M1(Σ) denotes the space
of all probability measures on the alphabet Σ. Let also, Σµ

denote the support of µ, i.e., Σµ = {αi : µ(αi) > 0}.
Define the type (empirical measure) of Yt as

E
Yt

w,b∗(αi) =
1

w

w
∑

j=1

1αi
(Y b∗

t−w+j), i = 1, . . . , N,

where 1αi
is the indicator function of Y b∗

t−w+j being of type
αi. Namely, E

Yt

w,b∗(αi) is the fraction of occurrences of αi in
the sequence Yt. Let EEE

Yt

w,b∗ = (E Yt

w,b∗(α1), . . . ,E
Yt

w,b∗(αN )).
The next theorem, which is due to Sanov, establishes a

large deviations result for EEE
Yt

w,b∗ (see [5, Sec. 2.1.10]).

Theorem II.1 For every ν ∈ M1(Σ) let

I1(ν) = H(ν|µ),

where H(ν|µ) is the relative entropy of the probability
vector ν with respect to µ:

H(ν|µ)
4
=

N
∑

i=1

ν(αi) log
ν(αi)

µ(αi)
.

Then, for any set Γ of probability vectors in M1(Σ)

− inf
ν∈Γ◦

I1(ν) ≤ lim inf
w→∞

1

w
log P[EEE Yt

w,b∗ ∈ Γ]

≤ lim sup
w→∞

1

w
log P[EEE Yt

w,b∗ ∈ Γ] ≤ − inf
ν∈Γ

I1(ν),

where Γ◦ denotes the interior of Γ.

More intuitively, Theorem II.1 states that for a long trace
Yt (i.e., large w) its empirical measure is “close to” ν with
probability that behaves as

P[EEE Yt

w,b∗ ≈ ν] ∼ e−wI1(ν).

B. Anomaly Detection Algorithm

Theorem II.1 can be used to identify anomalies. The
proposed algorithm is summarized as follows:

1) From an anomaly-free trace construct the alphabet
Σ = {α1, . . . , αN} and the empirical measure (law)
µ induced by this sequence.

2) For each time t let Yt = (Y b∗

t−w+1, . . . , Y
b∗

t ) be
the trace of the w most recent partial sums using a



bucket size b∗. Compute its empirical measure and let
EEE

Yt

w,b∗ = νt,w be the result.
3) Then, ρt,w

4
= e−wI1(νt,w) approximates the probability

that the trace Yt is drawn from the probability law µ.
If ρt,w is consistently low over some observed time inter-

val, we can conclude that the observed trace deviates from
the anomaly-free trace, which indicates an anomaly. ρt,w can
be better observed in the logarithmic scale. Formally, we
identify an anomaly at time t if

ρτ,w < ε, ∀τ = t − k + 1, . . . , t, (1)
where n is the length of the traffic trace we process, w =
bn/b∗c is the number of partial sums we generate from this
trace, and ε is the detection threshold we use. The parameters
n, b∗, k, ε affect the rule’s performance and can be tuned
experimentally. Notice that we can compute consecutive ρτ,w

by using a sliding window of length n. Thus, we generate
a new value for ρτ,w with every traffic sample. As we will
see, this enables us to detect anomalies very fast.

We proceed by presenting a model-based method, where
the i.i.d assumption is not a requirement, thus it can be
directly applied to the timeseries and not to the partial sums.

III. A MODEL-BASED APPROACH

We start with devising an MMP model for representing
traffic activity. We should point out that our goal is not to
adopt the most sophisticated and accurate traffic model; the
quality of the model should be judged based on whether it
is useful in anomaly detection.

A. An MMP model

We assume that the origin-destination traffic (in
bits/bytes/packets/flows per time unit) or the (inbound
or outbound) traffic trace observed at a border router,
corresponding to a specific time-of-day interval, can be
characterized by a stationary model over a certain period
(e.g., a month) if no technological changes (e.g., link
bandwidth upgrades) have taken place. A traffic trace can be
a sequence of bits/bytes/packets/flows per time unit, where
time units are defined depending on the available data or as
we see fit for detecting anomalies. We propose the use of
an MMP to model the traffic activity during a small time
interval (several hours). Such a process is characterized
by an underlying Markov chain with transition probability
matrix Ξ. To each state i, i = 1, . . . ,M , we associate an
interval [ri−1, ri] of real numbers from which observations
are drawn. That is, when the MMP is in state i traffic
activity observations range in [ri−1, ri]. (For the application
we are considering we do need to specify how observations
are drawn from [ri−1, ri]; in general they can follow some
probability distribution.) MMPs, when the state is “hidden”,
are also known in the literature as Hidden Markov Models
(HMMs) [10]. We restrict ourselves to models in which the
ranges of possible observations corresponding to different
states are disjoint. Thus, an observation can be uniquely
associated to an MMP state (the state is no longer hidden)
and therefore the term disjoint Markov Modulated Process
(d-MMP) is more appropriate.

To model the traffic trace as a d-MMP we let [r0, rM ]
be the the range of all observations we make, split [r0, rM ]
into M subintervals of equal length, and assign state i,
i = 1, . . . ,M , to interval [ri−1, ri]. To select the appropriate

number of states M we use the AIC as in Section II.
Given M , the transition probabilities Ξ are obtained via
maximum likelihood estimation. We consider the constructed
model to be reliable since it is the outcome of a long
period of anomaly-free observations. Different models can
be constructed for different time-of-day intervals (business
hours, evening hours, overnight, etc.).

B. Large Deviations of the Empirical Measure

Once we obtain the d-MMP model from an anomaly-free
trace we are interested in comparing ongoing traffic activity
to the model in order to identify potential deviations that
would indicate an anomaly. To that end, given any trace we
need to determine the probability that the trace is “explained”
by the model.

Assume that the d-MMP has an irreducible underlying
Markov chain with M states 1, 2, . . . ,M and transition
probability matrix Ξ = {p(i, j)}M

i,j=1. Let p denote the
vector consisting of the rows of Ξ. Let Y denote a sequence
Y1, Y2, . . . , Yn of states that the Markov chain visits with
the initial state being Y0 = σ, and consider the empirical
measures

E
Y
n,2(y) =

1

n

n
∑

k=1

1y(Yk−1Yk),

where y ∈ A 2 4
= {1, . . . ,M} × {1, . . . ,M} and 1y is

the indicator function for the subset y. Note that when
y = (i, j) ∈ A 2 the empirical measure E Y

n,2(y) denotes the
fraction of times that the Markov chain makes transitions
from i to j in the sequence Y. Let now A 2

p

4
= {(i, j) ∈

A 2 | p(i, j) > 0} denote the set of pairs of states that
can appear in the sequence Y1, Y2, . . . , Yn and denote by
M1(A

2
p ) the standard |A 2

p |-dimensional probability simplex,
where |A 2

p | denotes the cardinality of A 2
p . Note that the

vector of E Y
n,2(y)’s, denoted by EEE Y

n,2 = (E Y
n,2(y); y ∈ A 2

p ),
is an element of M1(A

2
p ). For any q ∈ M1(A

2
p ), let

q1(i)
4
=

M
∑

j=1

q(i, j) and q2(i)
4
=

M
∑

j=1

q(j, i) (2)

be its marginals. Whenever q1(i) > 0, let qf (j | i)
4
=

q(i, j)/q1(i). We will be using the notation qf = (qf (1 |
1), . . . , qf (M | 1), qf (1 | 2), . . . , qf (M | M)). We say that
a probability measure q ∈ M1(A

2
p ) is shift invariant if both

its marginals are identical, i.e., q1(i) = q2(i) for all i. A large
deviations result for EEE Y

n,2 is established in the next theorem
and is proven in [5, Sec. 3.1.3].

Theorem III.1 ([5]) For every q ∈ M1(A
2
p ) let

I2(q) =











M
∑

i=1

q1(i)H(qf (· | i) | p(i, ·)), if q is shift
invariant,

∞, otherwise,

where H(qf (· | i) | p(i, ·)) is the relative entropy, that is,

H(qf (· | i) | p(i, ·)) =
M
∑

j=1

qf (j | i) log
qf (j | i)

p(i, j)
.



Then, for any set Γ of probability vectors in M1(A
2
p ),

− inf
q∈Γ◦

I2(q) ≤ lim inf
n→∞

1

n
log P[EEE Y

n,2 ∈ Γ] ≤

lim sup
n→∞

1

n
log P[EEE Y

n,2 ∈ Γ] ≤ − inf
q∈Γ

I2(q),

where Γ◦ denotes the interior of Γ.

More intuitively, Theorem III.1 states that for a long trace
Y (i.e., large n) its empirical measure is “close to” q with
probability that behaves as

P[EEE Y
n,2 ≈ q] ∼ e−nI2(q).

C. Anomaly detection algorithm

Theorem III.1 can be used to identify anomalies. The
proposed algorithm is summarized as follows.

1) From an anomaly-free trace obtain a d-MMP as out-
lined in Subsection III-A. Let p be the resulting
transition probability vector.

2) For each time t let Yt = (Yt−n+1, . . . , Yt) be the trace
of current traffic activity consisting of n consecutive
traffic measurements. Compute its empirical measure
and let EEE

Yt

n,2 = qt,n be the result.
3) Then, ρt,n

4
= e−nI2(qt,n) approximates the probability

that the trace Yt is drawn from the d-MMP with
transition probability vector p.

If ρt,n is consistently low over some observed time inter-
val, we conclude that the observed trace is not “consistent”
with the reliable model, which indicates an anomaly. As we
will see, ρt,n can be better observed in a logarithmic scale.
For an automated anomaly detection rule one can use the
rule in 1, i.e., identify an anomaly at time t if

ρτ,n < ε, ∀τ = t − k + 1, . . . , t, (3)
where n, k and ε are the parameters affecting the rule’s
performance (success and false alarm rates) and which have
to be tuned. Obviously, other variations of this rule are
possible, for instance, setting a threshold for the time-average
of ρτ,n over the window [t − k + 1, . . . , t].

IV. EXPERIMENTAL SETUP I: THE ABILENE DATA SET

In this section, we validate our methodology against real
traffic from a backbone network. Our source of data is the IP-
level traffic flow measurements collected form every point of
presence (PoPs) in the Abilene Internet2 backbone network.
Abilene is the major academic network, connecting over
200 universities in the US, and peering with other research
networks in Europe and Asia. Abilene has 11 PoPs resulting
in 121 origin-destination flows.

The data we are using is sampled flow data from every
router of Abilene for a period of one week (April 7 to
13, 2003). Sampling is random capturing of 1% of all
packets entering every router. Three different representations
(features) of sampled flow data are used, as timeseries of the
number of bytes (B), of packets (P) and of flows (F). In
order to avoid synchronization issues, the measurements are
aggregated into 5 minutes bins.

A log with the anomalies that took place is also provided.
Three different types of anomalies are present: DoS: dis-
tributed Denial of service attack against a single victim;
SCAN : scanning a host for a vulnerable port (port scan)

or scanning the network for a target port (network scan);
APLHA: unusually high rate point to point byte transfer.
There are also some anomalies that are labeled as unknown
(UNKN ). In total there are 271 anomalies: 133 DoS,
81 SCAN, 32 ALPHA and the rest are unknown [11].
Origin-destination flows aggregate the traffic of thousands of
connections (in a period of 5 minutes), thus, traffic anomalies
of a destination may hide in the byte representation, but
can appear in other representations like the packet or flow
representations. DoS anomalies were always present in the
packet (P) representation. This is expected as most DoS
attacks bombard a single destination with a huge number
of packets. Instances of DoS are not observed in the flow
representation and may be observed in the byte (B) repre-
sentation. The SCAN anomalies are observed only in the flow
(F) representation. ALPHA anomalies are characterized by
spikes in the byte representation only. Following the above
observations we can even characterize anomalies that are
denoted as unknown.

A. Outline of the Technique

We apply both our methods to the different timeseries
(representations of B/P/F) for the 121 origin-destination
flows. In order to avoid the effect of diurnal variation we
consider 200 samples (each one representing the activity of
5 minutes) every day. We use as reference the activity that has
been observed for the same time interval the previous day.
For the first day of the week, as we do not have information
from the previous day, we take as reference the network
activity of the second day.

We apply the model-free approach following the algorithm
described in Subsection II-B. We construct the alphabet of
the three representations and the corresponding probability
law for every day of the anomaly-free week. We then process
the network activity for the next day. We compute ρt,w –
the probability that the observed traffic follows the same
(anomaly-free) law – using the procedure outlined in Sub-
section II-B. Working with statistics of the autocorrelation
function, we found that b∗ = 3 and w = 10 are good values
for our data set. In order to identify the threshold ε in (1)
we run our algorithm and compute ρt,w for the reference
trace, which should yield O(1) probabilities. We found that
ρt,w is always below 10−3 in the reference trace, thus we
set ε = 10−3.

We also follow the approach of Section III-A to devise
an appropriate d-MMP traffic model. Using this model,
for every day of the week and for every time sample we
compute ρt,n – the probability that the observed traffic trace
is consistent with the d-MMP model – for an appropriately
selected trace length n (cf. Step 2 of the algorithm in
Subsection III-C). By following the same procedure as above,
we select ε = 10−2 in (3).

On a notational remark, we denote an anomaly as ORIG-
DEST-xxxx, where ORIG is the ingress PoP, DEST is the
egress PoP and xxxx is the time point in the time series (from
1 − 2016) of the related representation where an anomaly
occurs.

B. Anomaly Detection Examples

In this subsection we discuss the performance of our
framework and we compare the two proposed methods.
Fig. 1, illustrates a DoS attack in the Indianapolis-Seattle
origin-destination flow and the associated probability ρt,w
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Fig. 1. Model-Free Method.
(Top): Packet representation for the
Indianapolis-Seattle flow. (Bottom):
Value of ρt,w . The rectangle denotes
a DoS attack.

Fig. 2. Model-Based Method.
(Top): Packet representation for the
Indianapolis-Seattle flow. (Bottom):
Value of ρt,n. The rectangle denotes
a DoS anomaly.

Fig. 3. Comparison of the two
methods. (Top): Model-Free Method,
(Bottom): Model-Based Method. The
rectangle denotes a SCAN anomaly.

Fig. 4. Comparison of the two
methods. (Top): Model-Free Method,
(Bottom): Model-Based Method.
The rectangle denotes an ALPHA
anomaly.

when the model-free based method is applied. This prob-
ability is significantly low in the vicinity of the anomaly.
It is to be expected that it can not pinpoint the time of
the anomaly due to aggregation effect of the partial sums
and our use of a window of size w. In the absence of any
information on when the anomaly occurs within this window
we can estimate its time as w

2 time units after the first time
ρt,w drops below ε. On the other hand, applying the model-
based method (Fig. 2), we can more precisely identify when
an anomaly occurs. The disadvantage of the model-based
method is that the false alarm rate is larger than that of the
model-free method which benefits from the averaging over
the time bucket b∗. The same observations are valid for other
types of attacks, namely SCAN (Fig. 3) and ALPHA (Fig. 4).

We summarize our results in Table I. We should point
out that the performance of our framework is related to
the sampling frequency, i.e., if we increase the sampling
frequency to 1 minute or even few seconds, we expect
the sensitivity of our detection mechanism (and hence, the
success rate) to increase.

V. EXPERIMENTAL SETUP II: THE DARPA EVALUATION
DATA SET

Next, we validate our method against the 1999 MIT
Lincoln Lab (DARPA Evaluation) data set [4]. The data set
consists of tcpdump data collected at the border router of a
local network.

Three weeks of training data were provided in the DARPA
Evaluation data set. The first and third weeks of the training
data do not contain any attacks. This data was provided
to facilitate the training of anomaly detection systems. The
second week of the training data contains a selected subset of
attacks from the 1998 DARPA evaluation data set in addition
to several new attacks. In addition, two weeks of network
based attacks in the midst of normal background data were
also provided. The experimental setting includes different
types of machines and operating systems.

There are 201 instances of about 56 types of attacks
distributed throughout these two weeks. In particular, the
attack events that either occurred or were attempted are the
following: Denial of Service (DoS) –unauthorized attempt to
disrupt the normal functioning of a victim host or network;
Remote to Local (R2L) –obtaining user privileges on a
local host by a remote user without proper authorization;
User to Root (U2R) –unauthorized access to local superuser
or administrator privileges by a local unprivileged user;
Surveillance or Probe (PROBE) –unauthorized probing of
a machine or network to look for vulnerabilities, explore
configurations, or map the network’s topology; and Data

Compromise (DATA) –unauthorized access or modification
of data on a local or remote host. A detailed taxonomy of
the attacks is presented in [12].

Throughout our study, we also observed some anomalies
that we could not classify using the DARPA Evaluation re-
port. Trying to classify these anomalies, we found that some
of them are correlated with unusually high traffic volume;
hence, we will refer to them as volume traffic anomalies. The
identification of these types of anomalies is very important
for traffic engineering tasks such as network provisioning,
monitoring, pricing and mitigation of high traffic volume. A
detailed study including these types of anomalies appeared
in [11] showing their significance.

We followed the same outline that was presented for the
previous data set from Abilene. The first 36, 000 seconds
(from 08:00-18:00) of the outbound traffic of each day
of the first week were used to construct the alphabet and
the d-MMP for the model-free and model-based model,
respectively. We then observed the traffic of each day of
the fifth week and we investigated how this deviates from
the reference traffic of the same day of the first week. For
the model-free method, the optimal values were found to
be b∗ = 20, w = 3, k = 10 and the threshold was set
to 10−3. For the model-based method optimal the optimal
values were n = 60, k = 3 and the threshold was set to
10−5. The performance of both methods when applied to
the DARPA data set is summarized in Table II. As there are
no representations of different features in this data set, we
give the aggregate false alarm rate for each method.

VI. RELATED WORK

In [3], the authors used wavelet filters to detect anomalies
in network traffic including outages, flash crowds, attacks
and measurements failures. Our approach differs from that
one in the sense that we try to detect short-lived network
traffic anomalies within a few samples. Namely, our method,
as we implemented it, does not investigate traffic anomalies
occurring over long time-scales (hours or days); instead we
focused on anomalies over relatively short time-scales.

Recently, a number of intrusion detection tools such as
Snort [1] or Bro [2] have been developed. Their aim is
to identify application specific intrusions and attacks. Our
approach is clearly advantageous as it is not application
specific and can identify most types of traffic anomalies.

From a theoretical point of view, the authors in [13]
studied a number of information-theoretic measures for
anomaly detection. Their study was also performed using
the DARPA Evaluation data set. Among other observations,
they concluded that the relative entropy can better measure



Model-Free Method Model-Based Method

Anomaly Success Rate False Alarm Rate Success Rate False Alarm Rate

DoS 92% 5% 87% 10%

SCAN 92% 9% 86% 11%

ALPHA 93% 3% 87% 10%

UNKN 88% 10% 80% 12%

Overall 92% 7% 86% 11%

TABLE I
SETUP I: SUCCESS AND FALSE ALARM RATES FOR EACH TYPE OF ANOMALY,

USING THE MODEL-FREE METHOD (WITH ε1 = 10−3 , w = 20, b∗ = 3 SAMPLES,
AND k = 3 SAMPLES) AND THE MODEL-BASED METHOD (WITH ε2 = 10−2 ,

n = 10 SAMPLES, AND k = 3 SAMPLES).

Model-Free Method Model-Based Method

Attack Category Success Rate Success Rate

DATA 100% 100%

DoS 90% 86%

PROBE 89% 84%

R2L 86% 76%

U2R 88% 83%

Overall 90% 83%

False Alarm Rate 7% 12%

TABLE II
SETUP II: SUCCESS AND FALSE ALARM RATES FOR EACH TYPE OF

ANOMALY, USING THE MODEL-FREE METHOD (WITH ε1 = 10
−3 , w = 3,

b∗ = 20 SECONDS AND k = 10 SECONDS) AND THE MODEL-BASED

METHOD (WITH ε2 = 10
−5 , n = 60 SECONDS, AND k = 10 SECONDS).

the similarity between two datasets. Both our approaches
rigorously derive a rule on how to compare two datasets.
It turns out that the relative entropy plays a critical role in
both rules we derive.

The authors in [11, 14, 15] have introduced a framework
to diagnose spatial anomalies, which is based on principal
component analysis to partition the high dimensional space
where a set of network traffic measurements live into disjoint
subspaces corresponding to normal and anomalous condi-
tions. Our methodology does not require whole network
information and focuses on rapidly identifying temporal
anomalies in each origin-destination flow or link.

Very recently the authors in [15] used data mining and
information theory techniques to identify network anomalies.
Their methods take into account more information than the
traffic volume, including, the origin and destination address
of each flow, as well as source and destination ports using
results from netflow. As we commented in the Introduction
our methods can be easily adapted to handle such traces
of activity as well. Our methods are on-line, providing a
rigorous way to identify anomalies using a fixed sliding
window. All the other methods we surveyed are off-line.

VII. CONCLUSIONS

We introduced a general distributional fault detection
scheme able to identify all sorts of temporal anomalies
anomalies from attacks and intrusions to various volume
anomalies and problems in network resource availability.
We provided two different approaches, a model-free and a
model-based one. The model-free method works on a longer
time-scale processing traces of traffic aggregates over a small

time interval. Using an anomaly-free trace it derives an asso-
ciated probability law. Then it processes current traffic and
computes the probability that it conforms to this probability
law. The model-based method constructs a Markov modu-
lated model of anomaly-free traffic measurements and relies
on large deviations asymptotic results to compare this model
to ongoing traffic activity. In particular, our results compute
the probability that ongoing traffic activity is “consistent”
with the model. In both methods, deviations in distributional
characteristics of the traffic result in low values of the
“conformance” probability, which identifies an anomaly. To
the best of our knowledge, this is the first work for on-
line anomaly detection based on large deviations results
and distributional characteristics of empirical measures. We
present a rigorous framework to identify traffic anomalies
providing asymptotic thresholds for anomaly detection. We
also estimate the size of the sliding window which provides
reliable results for traffic anomaly detection in real-time.

Since we monitor the detailed distributional characteristics
of traffic and do not rely on the mean or the first few mo-
ments we are confident that our approach can be successful
against new types of (emerging) attacks. Our method is of
low implementation complexity (as it is based only on a
counter), and is based on first principles, so it would be
interesting to investigate how it can be embedded on routers
or other network devices.
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