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ABSTRACT

The ever-increasing Internet traffic poses challenges to net-
work operators and administrators that have to analyze large
network datasets in a timely manner to make decisions re-
garding network routing, dimensioning, accountability and
security. Network datasets collected at large networks such
as Internet Service Providers (ISPs) or Internet Exchange
Points (IXPs) can be in the order of Terabytes per hour. Un-
fortunately, most of the current network analysis approaches
are ad-hoc and centralized, and thus not scalable.

In this paper, we present Datix, a fully decentralized,
open-source analytics system for network traffic data that
relies on smart partitioning storage schemes to support fast
join algorithms and efficient execution of filtering queries.
We outline the architecture and design of Datix and we
present the evaluation of Datix using real traces from an
operational IXP. Datix is a system that deals with an im-
portant problem in the intersection of data management
and network monitoring while utilizing state-of-the-art dis-
tributed processing engines. In brief, Datix manages to ef-
ficiently answer queries within minutes compared to more
than 24 hours processing when executing existing Python-
based code in single node setups. Datix also achieves nearly
70% speedup compared to baseline query implementations of
popular big data analytics engines such as Hive and Shark.

Categories and Subject Descriptors

C.2.3 [Network Operations]: Network Monitoring; H.2.4
[Systems]: Query Processing
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1. INTRODUCTION

The Internet has become the dominant channel for inno-
vation, commerce, and entertainment. Both Internet traffic
and penetration increase at a pace that makes it difficult to
track Internet growth and trends in a systematic and scal-
able way. Indeed, recent studies show that Internet traffic
continues to grow by more than 30% annually as it has done
the last twenty years and is expected to continue at the same
pace in the future [2]. Yet, operators of Internet Service Pro-
viders (ISPs) and Internet Exchange Points (IXPs) have to
analyze large network datasets to optimize parameters re-
garding network routing, dimensioning, accountability and
security. ISPs serve, depending on their footprint thousands
to tens of millions of end-users daily and facilitate billions
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of network connections daily [27]. IXPs consist of physical
machines (core switches) to facilitate traffic exchange among
different types of networks [14]. Some of the most success-
ful IXPs, connect more than 600 networks and are handling
aggregate traffic that is peaking at multiples of Terabytes
per second. To put this traffic into perspective, on an aver-
age business day in 2013, one of the largest IXPs, AMS-IX
in Amsterdam, exchanged around 25 PB while AT&T and
Deutsche Telekom reported carrying 33 PB and 16 PB of
data traffic respectively [14].

To monitor traffic at that scale, specialized technologies
such as sFlow [6] or NetFlow [5] are used. An sFlow record
contains Ethernet frame samples and captures the first 128
bytes of each sampled frame. This implies that in the case
of IPv4 packets the available information consists of the full
IP and transport layer headers (i.e., source and destination
IPs and ports, protocol information, and byte count) and 74
and 86 bytes of TCP and UDP payload, respectively. These
records are then collected in a centralized location for pro-
cessing. NetFlow does not capture part of the payload but
only source/destination IP and port, interface, protocol, and
type of service information. Typically data scientists that
analyze sFlow or NetFlow records rely on centralized ap-
proaches to execute queries. Centralized processing of these
records is not scalable when it comes to processing multiple
Terabytes of data. A number of distributed approaches [22,
12] have been proposed to tackle the scalability issue, but
they are too slow to efficiently execute popular join and fil-
tering queries, e.g., for a particular time period.

In this paper, we present the design and implementation
of Datix, a network analytics system that utilizes a num-
ber of techniques to both accelerate network data (sFlow
or NetFlow) processing and efficiently execute join and fil-
tering queries. Datix is based on distributed techniques of
data analytics such as MapReduce [15] and incorporates log
processing techniques [11] to speed up join queries. Datix
also efficiently handles data in the form of a star schema [17]
that yields additional performance improvements. To eval-
uate the performance benefits that Datix offers we consider
a number of popular join queries that combine the informa-
tion from a main dataset, in our case being the sFlow data
collected at an IXP, with additional complementary infor-
mation provided by secondary datasets, such as the mapping
of TP addresses to their corresponding AS, IP geolocation,
and IP profile information, e.g., reverse DNS lookup as re-
ported by Internet measurement studies such as ZMap [16].

Our contributions can be summarized as follows:
e We introduce a smart way of pre-partitioning the dataset



in files that contain records of a certain range of values,
so as to facilitate data processing and query execution.

e Using this particular partitioning scheme we are able to
efficiently execute filtering queries, for example across a
certain time period, avoiding the need to process the en-
tire dataset but instead accessing only the necessary files.

e We integrate these features into Datix, an open-source®,
SQL compliant network data analysis system by imple-
menting distributed join algorithms, such as map join [11]
in combination with custom-made user-defined functions
that are aware of the underlying data format.

2. SYSTEM DESCRIPTION

Datix operates on top of cloud or dedicated computing
resources and runs user queries on data that reside in dis-
tributed file systems such as HDFS [28] or HBase [13]. It
uses either Hive over Hadoop [30] or Shark over Spark [32]
to run distributed MapReduce jobs, generated by translat-
ing the user queries from an SQL-like language (HiveQL).
Datix divides input datasets in two categories. The first
category is the central (log) dataset which in our case is the
sFlow data collected at the IXP for its operational purposes.
This dataset is the central table of our star-schema data for-
mulation and needs to be joined with several other datasets
(meta-datasets) on one or several of its columns. In our IXP
data case, as well as in the general log processing case [11],
this dataset is expected to be orders of magnitude larger
than the rest meta-datasets. Apart from the log dataset,
Datix supports the import of several meta-datasets which, in
this study, are the IP to AS and IP to Country mappings [3]
and the IP to reverse DNS lookup mapping [4]. We choose
to use these meta-datasets for our analysis because they are
publicly available sources. Nevertheless, Datix supports the
import of arbitrary meta-datasets even proprietary ones de-
pending on each user’s preferences. Meta-dataset sizes can
range vastly according to the information they provide. In
order to handle all meta-dataset cases, we divide them in
two categories: (i) the small sized ones that are in the or-
der of several Megabytes and can fit in the main memory
of mappers (i.e., a single process entity in the MapReduce
terminology) and (ii) the large sized ones which are bigger
and do not abide to the main memory constraints of map-
pers. Small sized meta-datasets are stored in HDFS files
while large sized ones are stored in HBase tables, indexed
according to their star-schema join attributes.

By summarizing raw traffic data and joining it with meta-
data using Datix, it is possible to efficiently answer popular
operational queries, such as heavy hitter queries, e.g., which
are the most popular IPs, AS-pairs, or ports by volume or by
frequency of appearance, summary queries, e.g., the aggre-
gated traffic per AS or IP, or range queries, e.g., which are
the IPs that are active in two different time periods (when
denial of service attacks took place) that are responsible for
more than 1% of the overall traffic and more than 3% of the
HTTP request traffic.

Figure 1 illustrates the architecture of Datix. A graphical
interface assists the user to provide custom query parame-
ters. Then, Datix takes over and appropriately rewrites the
user input to HiveQL compliant queries (upper part of Fig-
ure 1) that can be forwarded to the Processing Engine layer
comprised by either Hive or Shark. The Processing Engine
layer handles the query execution by translating the HiveQL
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Figure 1: Datix Architecture.

input to a sequence of distributed processing jobs that take

input from the required Datix datasets stored in HDFS or

HBase (lower part of Figure 1). In detail, Datix consists of

the following four layers:

Datix Partitioner/Indexer: This layer is responsible
for pre-partitioning the datasets, according to user-specified
partitioning attributes while utilizing a K-d Tree [24] (Sec-
tion 3.3). These attributes can be either join attributes (e.g.,
source and destination IP) or filtering attributes (e.g., times-
tamp, protocol, port). Our pre-partitioning aims to achieve
a number of optimization objectives:

e Meta-data required for the processing of each partition of
the log data must fit in a mapper’s main memory in order
to perform efficient map-joins [11].

e Large sized meta-datasets should be efficiently indexed in
order for mappers to be able to retrieve their respective
meta-data with minimum overhead.

e Apart from join attribute partitioning the log dataset must
be partitioned according to filtering attributes that are
used to efficiently run queries on a subset of the log dataset.

Furthermore, large meta-datasets are indexed using HBase.
Storage Engine: This layer stores and indexes all nec-

essary datasets. Each partition of the log dataset is stored

in a separate HDFS file while the partitioning information

(K-d Tree) is also stored in HDFS. As mentioned before,

small meta-datasets are stored in HDFS while larger ones

are stored and indexed using HBase.

Processing Engine: This layer is responsible for the dis-
tributed execution of HiveQL queries that take input from
the respective Datix datasets residing in either HDFS or
HBase. In particular, either Hive or Shark produces a multi-
step plan for executing the query in accordance with the
number of actions requested.

Datix SQL Rewriter: This module is responsible for
translating the user input preferences into a HiveQL query
that both Hive and Shark can interpret and execute. The
Datix Rewriter utilizes custom made user-defined functions
in order to inject Datix related code inside the HiveQL query
execution. It also consults the K-d Tree partitioning scheme,
stored in HDF'S, in order to apply filtering constraints and
reduce the query input to only the required partitions. One
of the desired properties of the K-d tree is to locate the
portions of a dataset that have to be processed and thus
avoid unnecessary processing (Section 3.3). Hence, with this
scheme it is possible to efficiently execute range queries e.g.,
for a particular time period.



3. DESCRIPTION OF ALGORITHMS

In this section, we give an overview of the suite of dis-
tributed join algorithms currently implemented in Datix.
We present the two major types of algorithms implemented:
(i) when the meta-dataset is small enough to fit in the main
memory of a map task (Sections 3.1, 3.2), and (ii) when the
meta-dataset does not fit in memory (Section 3.3). Even
though Hive and Shark support map-joins, there are some
prerequisites that have to be fulfilled. First, map-joins need
to be equi-joins and second, one of the two tables should be
small enough to fit in a mapper’s main memory. In the fol-
lowing sections, we describe how Datix manages to overcome
the aforementioned restrictions in each case.

3.1 Map equi-join

Problem Statement: For two tables, a large table L
and a small table S, the goal is to perform the equi-join
L p,.c=s.c S on a specific characteristic (column) ¢ of the
two tables, with |S| < |L|, so that S can fit in the main
memory of a mapper task. This assumption holds true for
the case of IP to AS and IP to Country mapping files which
are less than 12 Megabytes in size each.

Instead of using the basic, shuffle join, implementation
of Hive which requires a lot of disk I/O and data trans-
fer, we utilize a join method based on the map-join tech-
nique [29] and more specifically, on Broadcast Join as de-
scribed in [11]. Our map equi-join performs the join oper-
ation during the map phase. At each node, S is retrieved
from HDFS and stored locally in the Distributed Cache of
each mapper. Each map task then uses an in-memory hash
table to join a split of L with the appropriate records of S.

In the beginning of a map task, it is checked whether S
has already been stored in memory. If not, the hash table
containing the key-value pairs of S is built. Then, while each
record of L is processed, the map function extracts the join
key and searches the hash table to produce the desirable join
output. We note here that this process only transfers the
small table S to all cluster nodes and thus avoids the costly
data shuffling of the large table L, minimizing any time con-
suming data transfers. However, a possible drawback is that
S has to be loaded several times, since each mapper runs as
a separate process. This can be optimized by loading S only
once per node, using a shared memory among mappers.

3.2 Map theta-join

Problem Statement: Similar to Section 3.1 consider
the case where we have two tables L and S but now the goal
is to perform a compound theta-join on a specific column,
i.e., our goal is to compute L MMr.c>5.ciAL.c<S.co O The
rational is that the files containing the IP to AS and IP to
Country mappings consist of IP ranges that are part of an
AS or country dataset and not a record for each IP address
with its corresponding information. Thus, it is clear that we
cannot perform an equi-join without blowing up the size of
files from a few MB to some Gigabytes.

To perform the theta-join required, we must now use a
different data structure rather than a hash table and so we
choose to design our algorithm using an order-preserving
data structure, such as a TreeMap [7]. The methodology, in
this case, consists of the following steps. We transfer table S
to each map task and import it in a TreeMap main memory
structure. To produce the join results, for each record of L
we extract the join key and perform a range search against
the TreeMap structure. We integrate this functionality in

Hive and Shark by using custom made user-defined functions
that are responsible for the aforementioned operations.

3.3 Map equi-join with large meta-dataset

Problem Statement: The definition of the problem is
almost identical to this in Section 3.1 except for the fact
that now S is quite large and cannot fit in a mapper’s main
memory as a whole. An example of this restriction is the
IP to reverse DNS lookup mapping file which is around 57
Gigabytes in size. In this case, we must follow a slightly
different approach to implement a map-join and avoid un-
necessary data transfers. In particular, the key idea here
is that each sFlow data file contains a limited number of
unique IP addresses and thus, it is not required to transfer
the entire mapping file into memory but only the portion
that contains the information about these unique IPs (see
semi-join in [11]). Our approach is to pre-partition the sFlow
data. Knowing beforehand the range of IPs in each file we
can retrieve the respective records from HBase. Thus, uti-
lizing the order-preserving storage of HBase we can perform
range scans and transfer only the required IP to reverse DNS
(IP-DNS) pairs into a mapper’s memory.

Pre-partitioning can be performed using various approaches

but we turn our attention towards two methods:
Method 1: Static partitioning. The first approach in
partitioning is to use a uniform partition scheme across the
join fields (IP addresses) of the log dataset. The meta-data
required for each partition of the log (sFlow) dataset should
fit in the main memory of a map task. In our IXP use case,
we divide the IP-DNS meta-dataset in chunks of IP-DNS
pairs that can fit in memory, and then apply the same uni-
form partitioning to the sFlow data. We must take into
account that each sFlow file contains a source and a desti-
nation IP. Thus, the partitioning needs to be in two dimen-
sions with each one corresponding to one of these IP types.
This way of partitioning the dataset is quite straightfor-
ward. However, it fails to produce balanced output sFlow
data files. This particular partitioning scheme does not con-
sider the distribution of IP addresses in the sFlow files and
hence, which IP pairs tend to exchange more traffic than
others. Furthermore, the number of output files is quite
large without being equally balanced in size (actually a lot
of files end up empty) which results in poor performance
during the partitioning phase. The implementation consists
of two steps:

(i) Partitioning: A MapReduce job is responsible for
performing the actual partitioning after defining the split
points from the mapping file and produces sFlow files con-
taining records with IP addresses in a given range as well as
files containing the actual unique IPs in every chunk. This
process is done off-line before any actual query is issued.

(ii) Query: The second step is to integrate the creation
of the hash table containing the unique IP to reverse DNS
lookup pairs and the equi-join implementation logic in a
user-defined function which is aware of the underlying par-
titioning scheme.

Method 2: Dynamic partitioning. The second ap-
proach overcomes the restrictions and problems of the afore-
mentioned method by using a dynamic data structure for
partitioning the dataset, called K-dimensional Tree (K-d
Tree) [24]. This data structure is well suited, among other
alternatives (e.g., R-Tree), for space partitioning such as
the one we are interested in for the following reasons: (i)
it leaves no empty space when partitioning the data, (ii) it
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Figure 2: Join Execution using K-d Tree.

ensures that all output files will contain a balanced number
of records, and (iii) it allows multiple dimensions in data
partitioning. This last feature leads, naturally, in an ef-
ficient way of executing multi-dimensional filtering queries.
Although the K-d Tree structure does not perform efficiently
when the number of dimensions increases beyond a certain
limit, it is suitable for our cause since the number of di-
mensions for the important analytics queries in the sFlow
dataset does not exceed 10. For values close to 10 the per-
formance of K-d Tree is slightly reduced but nevertheless it
is still quite acceptable. There are three steps:

(i) Sampling: First, a relatively small (about 1%) sam-
pling of the input data is performed to create the K-d Tree
that holds the information of the split points used during the
partitioning step. During the sampling step, the number of
maximum records m that each file will contain after the par-
titioning has taken place, is also set. This value is chosen
to allow the creation of similar in length log table partitions
while their size is close to the HDFS’s predefined block size
for well-balanced load distribution among mappers.

(ii) Partitioning: The second step is the use of the K-d
Tree for partitioning the dataset according to the split points
specified in the previous step. This process is executed in a
separate MapReduce job that outputs the log table partition
files that contain data within a hypercube of the partitioning
space attributes and files containing the unique join values
present inside each partition, in ascending order. The lat-
ter information is used to efficiently retrieve the respective
meta-data values from the HBase indexed meta-datasets.

(iii) Query: The final step is to construct a user-defined
function that integrates the above described functionality.
The operations of this function are clearly illustrated in Fig-
ure 2. The user-defined function takes as input a join at-
tribute (e.g., IP) and the K-d Tree structure. It uses the par-
tition’s join range as well as the file that contains the unique
join values of the respective partition in order to transfer
the relevant meta-data to a mapper’s memory. Essentially,
it follows a merge join technique between the unique join
values and the HBase indexed meta-dataset. When the rel-
evant meta-data are retrieved, an equi-join similar to that
in Section 3.1 produces the join output (see Algorithm 1).

As mentioned before, the required IP-DNS pairs are trans-
ferred from HBase, a fact that renders network throughput
a determining factor for the system’s performance. In or-
der to make the HBase merge-join operation more efficient,
we introduce a new scan utility that enhances the perfor-
mance when reading a range of IPs from HBase. Our scan
utilizes a method called seekTo() that uses a heuristic to
decide whether the next key-value pair will be accessed se-
quentially using the next() method or it will be accessed

Algorithm 1 Join execution using K-d Tree

1: function EVALUATE

2: if DnsMap == NULL then

3: kd = readTreePartitionFile()

4: kd.findBuckets(min, max, 1)

5: L.sort()

6: partNum = l.indexOf(partNum)

7 line = readLineFrom(uniqueIPFile)

8: s = HBaseTable.getScanner(scan.setStartRow(line))
9: result = s.next()

10: while line != NULL && result != NULL do
11: if UniquelP > ScanIP then

12: result=s.seekTo(line, UniqueIP-ScanIP)
13: else

14: line = br.seekTo(result.getRowKey())
15: if result.getRowKey().equals(line) then
16: keyValue.putInHashMap()

17: return DnsMap.get(ip)

immediately by jumping directly to it (see Figure 2). Es-
sentially, it is best to choose the latter when the number
of intermediate key-value pairs is above a certain threshold
defined by the cost of initializing a jump to the next pair
compared to the cost of sequentially accessing all of the in-
termediate pairs [26].

The combination of the aforementioned techniques results
in a significant speed up in the execution time of each query.
Apart from that, it provides us with a straightforward way
of implementing range queries, e.g., across a certain time
window, by exploiting the properties of a K-d Tree to find
the specific sFlow files that contain records whose target-
values lie in the specified range. This way we can limit the
number of files that need to be processed and avoid a time
consuming scan of the entire dataset.

3.4 Dynamic Mapping Files

The mapping files of IPs to ASes, IP geolocation, and re-
verse DNS lookup are not static and they do change over
time. These changes might not be that often, e.g., IP block
assignments to ASes, or they may get updated daily, e.g.,
geolocation information. Datix supports the import of mul-
tiple time-varying mapping files. To accomplish this, we use
two different storage approaches based on the size of meta-
datasets. Small ones are stored in an HDFS directory con-
taining all the different timestamp versions (each file’s name
is appended with the timestamp version). As mentioned be-
fore, large mapping files are stored in HBase which natively
supports multiple key-values that have different timestamp
versions. In each case, during query time the appropriate
key-value pairs are loaded into memory according to the log
partition’s timestamp range.

4. EXPERIMENTS

Cluster Configuration: The experimental setup con-
sists of an ~okeanos IaaS [21] cluster of 15 VMs. The HDF'S,
MapReduce, HBase and Spark master is equipped with 4
virtual CPUs, 4GB of RAM and 10GB of disk space. There
are also 14 slave nodes hosting all other required processes
each of which has 4 virtual CPUs, 8GB of RAM and 60GB of
disk space, summing up to a total of approximately 900GB
of disk space. Each worker VM runs up to 4 map tasks and 4
reduce tasks, each consuming 768MB of RAM. We utilized
Hadoop v1.2.1, HBase v0.94.5, Hive v0.12.0, Spark v0.9.1
and Shark v.0.9.1 respectively.

System-level Comparison: We compare the perfor-
mance of Datix when running the same queries using either
Hive or Shark as the data analysis tools. We evaluate the
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Figure 3: Hive vs Shark.

performance of these two systems based on the query execu-
tion time and we comment on the performance advantages
and disadvantages of each system.

Dataset Specification: In our experiments we used a
set of sFlow data coming from a national Internet Exchange
Point. This dataset spans a period of about six months
from 31/07/2013 until 17/02/2014 and is around 1TB in
size. In addition, supplementary information of IP to AS
and country mappings was retrieved from Geolite [3]. These
two files are 12MB and 7MB in size respectively. Finally,
IP to reverse DNS lookup mapping had a size of 57GB and
was retrieved from the ZMap public research repository that
archives Internet-wide scans (scans.io [4]).

Dataset Partitioning: Table 1 depicts the overhead of
pre-partitioning the dataset for variable dataset sizes. Both
sampling and partitioning have been incorporated into the
resulting values. As we can see, data loading time scales lin-
early in respect to dataset size especially for smaller values.
For larger datasets, there is an additional slight overhead,
mainly due to the fact that more mapper and reducer pro-
cesses have to be scheduled to complete the job. In addition,
pre-partitioning takes roughly 4 times more compared to a
simple scan of the respective dataset.

Dataset Size (%) | 20% | 40% | 60% | 80% | 100%
Loading (min) 24 50 78 | 102 | 150
Table 1: Data Loading vs Dataset Size.

Figure 4: Dataset Scalability.

Query . Datix-Hive Datix-Shark
Type | Fython | Hive 2D 3D 2D 3D
topAS 58min 170min | 50min 52min | 15min 16min
topDNS >24h 135min | 35min 76min | 30min 64min
topDNS o4l | 116min | 30min | 9min | 28min || Smin

1 week

Table 2: Base Join Implementation vs Datix.

Table 2 reports the execution times for two query types
using a Python based centralized approach, the default join
implementation of Hive and Datix. These queries compute
the top-k AS or DNS pairs, i.e., we refer to Fully Qualified
Domain Names (FQDN), exchanging network data for the
entire time period of the dataset we possess. These queries,
although simple, cover the basic SQL functionalities and can
be used to form more complex or specific ones. In particu-
lar, these two queries use: join operators, GROUP BY op-
erators, COUNT operators and ORDER BY operators. By
combining some or all of the aforementioned operators, more
complex queries can be formed to utilize in full scale Datix
capabilities. For example, a popular query would be “Calcu-
late the daily traffic of a specific web-server over time” that
uses some of the primitives described above (i.e., filtering
in time dimension and GROUP BY/COUNT operators to
calculate daily traffic). In all tables and graphs, 3D parti-
tioning (i.e., source, destination IP, timestamp) results are

Figure 5: Nodes Scalability.

presented, unless it’s explicitly stated otherwise.

For our Python based experiments, we used a host ma-
chine featuring a Core i7-4820K CPU with 8 threads, 48GB
of RAM and 8TB disk. For the topAS query, where the
meta-dataset is small enough and fits in a main memory dic-
tionary, the Python based implementation is nearly 4 times
slower than Datix on top of Shark while it is almost the
same for Datix using Hive. There are several reasons why
the latter takes place. First, the machine we used for our
Python experiments has a CPU clocked 2 times faster than
that of the VMSs, thus, in the case where all operations are
in-memory, the difference in speed is obvious. Second, the
performance of VMs running on top of an IaaS that might
over-provision its resources cannot be as good as a phys-
ical machine. Furthermore, the mapping of virtual CPUs
may not be one-to-one with the physical CPUs of each host.
Lastly, the communication overhead between mappers and
reducers when using MapReduce-based applications is an-
other thing to consider. On the other hand, the meta-dataset
for the topDNS query is quite large and thus, it is not feasi-
ble to store it in main memory. A possible solution to this
problem is to store the meta-dataset in a database (e.g.,
MySQL) and for each sFlow record issue a query to retrieve
the required information. Due to high latency when access-
ing the database, this implementation is inefficient and the
query requires more than one day to be executed even in the
case of a week’s amount of data. In contrast, Datix manages
to execute these queries offering scalability and efficiency as
discussed in detail in the following paragraphs.

As a second observation, we note that our distributed join
algorithms outperform the ones in Hive by nearly 70% both
for topAS and topDNS queries because we manage to effi-
ciently exploit in-memory computations and avoid expensive
disk I/O operations compared to the simple join algorithm
used by Hive. In the case of Shark, the base join imple-
mentation fails during execution due to lack of memory,
while our implementation is more robust and is executed
successfully in short time as shown in Table 2. Another
point of interest is the behavior of our system when using a
2D (i.e., source and destination IPs) or 3D (including times-
tamp) partitioning scheme. In the case of 3D partitioning,
a considerable increase in the execution time occurs for the
topDNS query. To explain this behavior, we note that when
more dimensions are used, the sFlow files produced con-
tain IPs in a wider range and therefore, more IP-reverse
DNS lookup pairs have to be transferred from HBase. This
fact is verified, since the execution time of the topAS query,
where all operations are performed in-memory, is not af-
fected. Despite this noticeable overhead, using 3D parti-
tioning results in much better performance when it comes
to filtering queries as shown in the third row of Table 2. To



75¢ ) E
[ 1 TxtFile
e ORC File
S50k i
£ 50
Q
E
=250
oL 1L
topAS top.
Query Type

Figure 6: Text vs ORC file format.

explain this, we note that adding another dimension (i.e.,
timestamp of sFlow records) results in much faster query
execution since the processing is limited only to the sFlow
files that contain the appropriate records.

In order to provide a direct comparison of the two differ-
ent big data analysis tools, we then test the performance of
Hive versus Shark. Figure 3 shows the execution time for
both systems for two different queries. For a fair comparison
we used the exact same HiveQL query for Hive and Shark.
We observe that for the topDNS query the execution time
is similar in both systems. This behavior is expected since
this query requires a large amount of data to be transferred
from HBase, a process that is limited by the available net-
work throughput and therefore is independent of the char-
acteristics of each tool. However, for the topAS query Shark
is significantly faster.

Figures 4 and 5 show the scalability of our system in re-
spect of dataset size and number of available nodes respec-
tively. In Figure 4, we vary the volume of data processed
while we keep the number of nodes at 14. In contrast, in
Figure 5 we vary the number of nodes while processing the
entire dataset. A first observation is that our system scales
linearly with the dataset size regardless of the tool used.
Shark is faster in all cases when compared to the corre-
sponding implementation in Hive. This is mainly due to the
following reasons. First, Shark avoids data spilling to disk
for all the intermediate results in a multi-staged MapRe-
duce job, thus, it avoids time consuming I/O operations.
Second, it utilizes an efficient task scheduling algorithm and
hence, overcomes the expensive launch procedure of mapper
or reducer tasks that takes place in traditional MapReduce
engines, like Hadoop. Moreover, we observe that for small
number of nodes the system’s scalability is close to linear
while experiencing a slight degradation in performance as
this number increases. Lastly, the difference in execution
time when using Hive and Shark is quite significant for the
topAS query regardless of the cluster or dataset size.

Figure 6 shows the speedup in execution time for both
query types when using the ORC file format [19] instead of
a plain text format on top of Hive. ORC file format uses a
column based approach when storing a Hive table data and
is able to retrieve only the required column data. Therefore,
in queries that combine information only from a few columns
we observe a significant speedup in total execution time.

As an overall comment, Datix yields significant perfor-
mance gains when the meta-dataset is quite large and the
available RAM is not sufficient to perform a simple map-
join. In particular, our partitioning scheme is designed to
overcome such limitations and enables us to efficiently an-
swer various queries. However, when the meta-dataset is
small enough, a Python-based approach running on a single
node with lots of resources (CPUs and RAM) is expected to

yield comparable performance to Datix. Nevertheless, our
system still overpowers such methods (even by a small per-
centage) and is by far better than the baseline join of Hive
and Shark.

5. RELATED WORK

Distributed Join Algorithms: Distributed join over
MapReduce-like systems is challenging and therefore differ-
ent approaches have been proposed to address this issue. A
first attempt to introduce join algorithms for log process-
ing was presented in [11], where the authors compare dif-
ferent algorithms, depending on whether the meta-dataset
can fit in memory, that can be used to implement equi-
joins in MapReduce. However, this work does not tackle
the problem of theta-joins which consist of more general
join conditions. In fact, our approach modifies the Broad-
cast Join algorithm presented in this work to effectively deal
with theta-joins. In [31], the authors introduce techniques
that support other joins and different implementations, but
it is also required to extend the MapReduce model. Further-
more, users have to implement non-trivial functions that can
handle the dataflow in the distributed system. Hence, this
work cannot support high-level languages that run on top of
MapReduce (i.e., Hive) compared to our approach. In [25,
8], the authors propose algorithms that perform partition-
ing during query time to speed up execution time, whereas
our approach focuses on pre-partitioning data in order to
efficiently use map-phase joins.

Network Analytics: There is a number of systems that
have been proposed for network traffic analysis and each
one tackles a particular aspect of this broad research area.
In [22], an approach was presented to analyze network traffic
by processing libpcap files in a distributed environment pro-
vided by Hadoop’s MapReduce in combination with Hive as
a data warehousing tool. The authors implemented an intel-
ligent NetFlow reader in Hadoop that was aware of the par-
ticular format of libpcap files which could be spread across
different nodes in the cluster. Our work is rather orthogo-
nal as our join algorithms can be integrated in their system
and by using the same meta-datasets can extract additional
information about network traffic. In [23] the authors in-
troduce a machine learning paradigm to classify host roles
based on network traffic analysis by collecting sFlow records.
Essentially, this work tries to extract information like our
approach by analyzing sFlow packets and utilizing MapRe-
duce as the execution framework and NoSQL databases as
storage. The difference of our proposed approach is that by
enabling the use of arbitrary meta-datasets we can extract
much richer information about network routing, dimension-
ing and security features rather than only classifying host
roles. A system that can perform both streaming and batch
processing of network traffic in order to analyze the con-
stantly increasing volume of network traffic data is presented
in [12]. It addresses the scalability problem of existing sys-
tems by using distributed methodologies such as MapReduce
but it does not support the use of high-level languages over
Hadoop framework and thus, cannot be executed over Spark
without considerable effort.

The Bro monitoring system [1] offers powerful solutions
for collecting and analyzing massive network data but it re-
quires significant effort to run on top of cloud computing
infrastructures and to support queries on data that reside
on distributed files systems. An increasing number of com-
panies such as DeepField, Guavus and Conviva have heav-



ily invested in the deployment of scalable network analytics
platforms on top of Spark or Hadoop but they are commer-
cial and closed source solutions.

The work presented in [18] deals with hierarchical parti-
tioning, optimizing the query plan to prune processing only
to required data partitions. For each data dimension there is
a different level in the partitioning tree structure. It involves
changing the optimizer module by adding extra features to
decide on the chain of joins performed. The main focus of
the authors is on traditional RDBMSs while they claim that
their approach can be extended to parallel databases. Our
approach differs in the fact that we use a flat partitioning
scheme dictated by the K-d Tree structure and our system
design is tailored to using NoSQL storage and distributed
system techniques. Furthermore, our partitioning scheme
focuses on splitting the volume of data appropriately to fit
in a mapper’s memory to perform efficient map-side joins.

In [20], the authors present TidalRace which builds on
data streaming applications and show how to optimize parti-
tion-based operations. Datix focuses on log processing (batch
operations) and overall optimization of query execution in
various cases. In contrast, TidalRace supports incremental

updates to partitioning information, partition re-organization,

and partition-wise optimizations.

DBStream [10] is a Data Stream Warehouse solution for
Network Traffic Monitoring and Analysis applications. The
queries we execute could also be deployed on this system by
extending the functionality of DBStream to support the im-
port of various meta-datasets like Datix and then evaluate
the resulting performance. DBStream supports real-time
data analysis and incremental queries apart from batch pro-
cessing jobs. However, it is deployed in a centralized manner
over a traditional RDBMS (PostgreSQL) while our system
is fully decentralized, designed to be able to scale to a large
number of nodes and gain extra performance when more
resources become available. TicketDB [9], which is the pre-
decessor of DBStream, was compared to vanilla MapReduce
jobs performing reduce-side joins, but it does not use a par-
titioning scheme similar to our K-d Tree approach to enable
efficient execution of map-side joins.

6. CONCLUSION

In this paper we introduced a novel network analytics
system that depends on distributed processing techniques
and is able to effectively execute filtering queries over state-
of-the-art distributed processing engines. We introduced a
smart pre-partitioning scheme to speed up the execution
time of filtering queries (i.e., over a particular time period
or set of IP addresses) and we integrated this functional-
ity into an SQL compliant system by using custom-made
user-defined functions that are aware of the data format
and implement a custom variation of map-join algorithm.
Our approach reduced query execution time compared to
the basic Hive and Shark implementation by nearly 70%,
while efficiently answering queries that took over a day to
be processed with existed Python-based code. In this work,
we used sFlows as a log dataset from which various infor-
mation was recovered. Extensions of our work include the
assessment of the system’s performance when sFlow records
are being streamed rather than stored in advance.
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