
No-hop: In-network Distributed Hash Tables
Lily Hügerich

TU Berlin
lily@inet.tu-berlin.de

Apoorv Shukla
Huawei Munich Research Center
apoorv.shukla1@huawei.com

Georgios Smaragdakis
TU Delft

g.smaragdakis@tudelft.nl

ABSTRACT
We make a case for a distributed hash table lookup in the
network data plane. We argue that the lookup time perfor-
mance of distributed hash tables can be further improved via
an in-network data plane implementation. To this end, we in-
troduce No-hop, an in-network distributed hash table imple-
mentation, which leverages the data plane programmability
at line rate gained from P4. Our initial results of transporting
distributed hash table logic from hosts’ user space to the fast
path of switches in the network data plane are promising. We
show that No-hop improves the performance of locating the
responsible host and maintains the properties of distributed
hash tables while outperforming two baselines.

CCS CONCEPTS
• Networks → Network protocol design; Data center
networks;Bridges and switches;Programmable networks;
In-network processing; Network algorithms.

KEYWORDS
DHT, Scalability, P4, Data Plane Algorithms
ACM Reference Format:
Lily Hügerich, Apoorv Shukla, and Georgios Smaragdakis. 2021.
No-hop: In-network Distributed Hash Tables. In Symposium on
Architectures for Networking and Communications Systems (ANCS
’21), December 13–16, 2021, Layfette, IN, USA. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3493425.3502757

1 INTRODUCTION
Distributed hashing was introduced more than 20 years ago
to efficiently locate and store objects in a distributed system.
A special case of distributed hashing, namely, consistent
hashing, became very popular via its application to peer-to-
peer systems [1–3] and content delivery networks [4, 5]. In

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ANCS ’21, December 13–16, 2021, Layfette, IN, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9168-9/21/12.
https://doi.org/10.1145/3493425.3502757

consistent hashing, when the Distributed Hash Table (DHT)
is resized, e.g., due to the churn of nodes, only a small number
of nodes needs to be remapped. Moreover, each node does
not need to maintain a routing table for all the nodes in
the network. In popular implementations, e.g., Chord [1],
each node keeps a state for only 𝑂 (𝑙𝑜𝑔(𝑁)) other nodes
in the system, where 𝑁 is the total number of nodes. The
lookup also terminates within a small number of forwarding
steps. Later, Gupta et al. [2] proposed a technique, called One
Hop, to store complete routing tables at each node. With
this technique, they showed that one hop lookup is possible
even for relatively large networks (100k nodes) with minimal
bandwidth requirements for update messages.

Today, variations of the original Chord DHT or One Hop
lookup systems are used by large-scale datacenter appli-
cations, e.g., Amazon’s Dynamo [6] and Cassandra [7]. At
the same time, datacenters are becoming increasingly pro-
grammable, e.g., with the use of the P4 language [8, 9] for
implementing custom in-house functionalities. Such as, the
work of Pegasus [10]which uses programmable TOR switches
to coordinate the replication and location of popular items
in server racks. In this paper, we investigate whether the dat-
aplane programmability enabled by P4 can further improve
lookup time and, thus, improve the performance of applica-
tions that run in programmable datacenters. In particular,
we ask: “Can we ensure faster key-value lookups compared to
existing DHTs and One Hop lookups, by leveraging network pro-
grammability?”. To answer this question, we implement an
in-network key-value lookup system for DHTs and compare
against two baselines, namely, Chord [1] and One Hop [2].
Distributed Hash Tables in a Datacenter Environment.
DHTs are a distributed lookup system [1, 2]. Even though
in the datacenter scenario we have a central controller, we
argue that the properties of DHTs can be beneficial. Since
the addition and subtraction of hosts can happen with minor
disruption in Chord [1], which makes it an ideal candidate
to implement scalable clusters in a datacenter. Furthermore,
such clusters can be load balanced if a uniform (probability
of each output value occurring is about the same [11]) hash
function is chosen.

In this paper, we develop No-hop, for fast lookups in data-
centers that use DHT logic by offloading the lookup mecha-
nism to the dataplane via programmable switches. In Figure 1,
we illustrate one of the implementations of No-hop running
on only one programmable switch which can be deployed in

https://doi.org/10.1145/3493425.3502757
https://doi.org/10.1145/3493425.3502757

ANCS ’21, December 13–16, 2021, Layfette, IN, USA Lily Hügerich, Apoorv Shukla, and Georgios Smaragdakis

Packet

S

S

S

S

S

S

S

S

S

Packet

Figure 1: Illustration of two load balanced scalable clusters (in black
and white) managed by one No-hop switch (blue).

a datacenter containing no prior programmable switches. It
shows that two DHTs create two clusters (black and white)
for working with two different user groups. The blue switch
runs our system, No-hop, and is responsible for both sets of
key-value lookups. The DHT node ID signify the responsi-
bility of a node for a subset of the system’s resources, this
can either be computational or storage resources.

Existing DHTs such as our baselines, Chord and One Hop
can also bring these benefits to our environment but the
lookup of IDs is first fulfilled at a host [1, 2]. This leads
to network and host resources being wasted as the packet
travels first to the incorrect host and then the incorrect host
has to lookup the ID and resend the packet. We argue that
this is unnecessary in a centralized environment.
Challenges. The main challenge was to overcome the prob-
lem of a greenfield deploymentwhich requires all the switches
to be programmable but is extremely costly. To work around
it, we develop two implementations. The first implementation
has table sizes that stay consistent as the system scales. This
implementation, however, relies on an architecture with only
P4-enabled programmable switches. The second implementa-
tion (see Figure 1) requires only one P4-enabled switch in the
entry path for all nodes. This switch maintains a full table
with the respective ranges of all nodes. Given these options,
No-hop can serve a variety of deployment scenarios.
Our Contributions:
• We present No-hop system which leverages data plane
programmability via P4 to offload host DHT lookups in
the user space to the fast path in the P4 switches.

• Our experiments demonstrate that No-hop outperforms
two baselines, namely, Chord and One Hop, by up to
383% and 68%, respectively.

• We release the No-hop software [12] including, two
No-hop implementations for exclusively P4-enabled
switches and hybrid (partially P4-equipped) systems.

2 BACKGROUND
Next, we provide the background on our two baselines: Chord
and One Hop, followed by the P4 language.
Chord. [1] is a DHT that maps a given key onto a Chord
node where nodes are arranged in a ring. Each Chord node
is responsible for a set of IDs ranging between its ID and
the ID of the predecessor of the node. The predecessor is the
Chord node that comes before that node in the ring. The ID
partitioning system allows the convenient implementation of
data lookup, lending Chord well to peer-to-peer applications.
Chord Design Goals. Chord aims to address the problems
of load balancing, availability, scalability, decentralization,
and flexible naming in peer-to-peer applications. Each Chord
node has an ID range for which it is responsible. This par-
titioning of the ID range leads to natural load balancing. It
also facilitates availability because if one Chord node fails,
its successor becomes responsible for the failed nodes as
well. Furthermore, a ring in Chord allows for the seamless
addition and removal of nodes which ensures scalability and
resilience [13]. Chord is decentralized, this is facilitated by
Chord node-join and stabilize processes.
Chord Finger Table. A key aspect of Chord is the finger
table. The use of finger tables reduces the otherwise linear
search time for a Chord node storing a key to 𝑂 (𝑙𝑜𝑔(𝑁)),
where 𝑁 is the number of nodes in a ring.
One Hop. Similar to Chord, One Hop is a DHT. The biggest
difference to Chord is that instead of finger tables which only
store a subset of the values One Hop stores all DHT mem-
ber values [1, 2]. This leads to One Hop usually finding the
correct host while only contacting one other host, hence the
name One Hop [2]. The authors of One Hop argue that even
though small tables ease organizational work with member-
ship changes, the cost of the extra routing hops versus the
one in One Hop is too high [2].
One Hop Design Goals. One Hop aims to create a man-
ageable and scalable system where only one host has to be
contacted before reaching the final destination [2]. If the
single hop criteria cannot be achieved, it is referred to as
a failed query. Failed queries occur when the queried node
does not receive notification of a change to the table [2].
P4 Language. [8, 9] is a domain-specific language that
allows data plane programmability by writing custom P4
programs executed on P4 (enabled) switches.

3 No-hop: SYSTEM DESIGN
To explain the idea of No-hop, we show in Figure 2 the po-
tential path taken by a packet through the same network
but compared between Chord (grey), One Hop (black), and
No-hop (blue). All incoming DHT packets from all systems

No-hop: In-network Distributed Hash Tables ANCS ’21, December 13–16, 2021, Layfette, IN, USA

S

S

S

S

S

S

S

S

S

Figure 2: Example process of a packet moving to its final destina-
tion (black triangle) after being originally sent to a randommember
node (white triangle). The grey path is the one taken by a packet in
Chord, black in One Hop and blue in No-hop.

first are routed to one random host in the system, this ran-
dom host is marked with a white triangle. The No-hop packet
never reaches this random host because the No-hop switches
direct the packet immediately to the correct host, resulting
in zero host hops to the final location (marked with a black
triangle). This is contrasted to our two baselines, Chord and
One Hop. Where Chord takes two hops to reach the final
location and One Hop one. This diagram is just one example
of many of the potential paths incoming packets can take.

To achieve the key-value lookup in-network offloading of
a DHT we implemented two versions. The first, No-hop
Forward relies on a system with exclusively P4-enabled
switches. The second, No-hop Rewrite only needs one P4-
enabled switch in every packet’s entry path. As illustrated
in Figure 2, a No-hop Forward implementation would run
on all switches while a No-hop Rewrite implementation
would only need to run on the blue switch. Our two imple-
mentations can be compared to our two baselines. No-hop
Forward like Chord has smaller tables. No-hop Rewrite
uses, like One Hop, a complete routing table, which allows a
single switch to handle the process but leads to a larger rout-
ing table. Both No-hop Forward and No-hop Rewrite have
the same performance and route along the same paths but are
different in the hardware needs and the table construction.
No-hop Rewrite. It only needs a subset of the switches to
run the No-hop Rewrite P4 code, the rest can be classic IP
packet routing switches. In No-hop Rewrite when a packet
arrives at the switch running the P4 code, the switch looks
up the correct value and rewrites the IP header of the packet
to send the packet to the correct host. Snippet 1 illustrates
the rewrite action in the No-hop Rewrite P4 program.

Snippet 1: Rewrite action of No-hop Rewrite

action dht_rewrite(bit <32> dht_address){
hdr.ipv4.dstAddr=dht_address;
}

The packet is then routed as an IP packet. If a packet does
not pass a switch running the No-hop Rewrite P4 code on
its way or if the responsible switch table has not been up-
dated, the receiving host can lookup to send the packet to
the correct host. The corresponding controller is responsible
for filling the No-hop Rewrite tables which are the same
for all programmable switches running the P4 code.
No-hop Forward. Unlike No-hop Rewrite, No-hop
Forward needs all involved switches to be P4 enabled.
No-hop Forward switches can without using IP send the
packet to the correct host. Once a packet enters a No-hop
Forward switch, the switch checks its table to see which
port the packet should be sent out. Snippet 2 shows the P4
action for a No-hop Forward forwarding.

Snippet 2: No-hop Forward forwarding

action dht_forward(bit <9> port){
standard_metadata.egress_spec=port;
}

The corresponding controller fills the No-hop Forward ta-
bles which are all dependent on the switches’ placement.
The table for any switch 𝐴 has, per group, match ranges
for every neighbor of 𝐴. The ranges for every neighbor
are the combined ID ranges of the reachable group hosts
from that neighbor without traversing 𝐴. If two neigh-
bors have the same ranges, the neighbors split the ranges.
Generate_Range_Table(Switch A) shows the pseudo code
for generating the ranges for the table of switch 𝐴 in a sin-
gle group scenario. A range match in the table returns the
outgoing port to the corresponding neighbor.

Generate_Range_Table (Switch A) :
%RT[X]= Range t a b l e en t ry f o r ne ighbor X
for Switch 𝑁 ∈ Neighbors (A) :

for Host 𝐻 ∈ Hosts :
i f A ∉ Shortest_Path (𝐻, 𝑁) :

𝑅𝑇 [𝑁] . add_ranges (𝐻 . r ange s)
for Switch 𝑁 ∈ Neighbors (𝐴) :

for Switch 𝐵 ∈ Neighbors (𝐴) :
i f (𝐵 ≠ 𝑁) & (𝑅𝑇 [𝐵] = 𝑅𝑇 [𝑁]) :

split (𝑅𝑇 [𝐵], 𝑅𝑇 [𝑁])
return 𝑅𝑇

Group ID. No-hop has a Group ID to implement multiple
DHTs in one system coordinated by one set of switches, such
as in Figure 1, or the use case of scalable clusters. The Group
ID is the ID of the DHT to which the packet should be routed.
In Snippet 3 the lookup table for both No-hop Rewrite
and No-hop Forward can be seen. The group ID has to fit
exactly while the packet ID has to fit in the range of the
responsible node.

ANCS ’21, December 13–16, 2021, Layfette, IN, USA Lily Hügerich, Apoorv Shukla, and Georgios Smaragdakis

Snippet 3: Lookup of Group ID and DHT node

table No_hop_lookup {
key={

hdr.dht.group_ID : exact;
hdr.dht.ID : range;

}

Node Join. It corresponds to the joining of another host for
adding more hosts while the system is running. To join, a
host needs a physical connection to a system switch. Then,
the host sends a join message to the switch. The switch will
then forward the packet to the controller which updates the
switch tables accordingly. Afterwards, the controller sends a
packet to the newly joined host with its ID.
Node Failure. Failures can happen in two ways. The first
is an intentional failure. A host will leave the network and
sends a failure message with its own ID to its TOR switch.
Next, the switch forwards the message to the controller to
update switch tables accordingly.
The second case is in the case of an unintentional failure. A
host failed and did not send a prior failure message. The fail-
ure will be recognized by an adjacent host in the stabilization
process. The notifying host will then send the failure mes-
sage of the ID of the failed stabilization to its TOR switch.
Finally, the TOR switch forwards it to the controller that
updates the switch tables accordingly.
Stabilization. Every host sends a stabilization message pe-
riodically, i.e., after every stabilization time interval. The
stabilization message is a simple lookup message (𝑆) sent
to the ID: (Own_ID+1) mod Max_ID. If a response is not
received within the time limit, a failure message with the
ID: (Own_ID+1) mod Max_ID is sent. Upon receiving a sta-
bilize message, the host sends a lookup message with the ID:
(Received_ID-1) mod Max_ID and 𝐴𝑐𝑘 in the message body.

4 PROTOTYPE
The No-hop prototype includes the No-hop client, the P4 code
that processes and forwards No-hop Rewrite and No-hop
Forward packets, and the corresponding controllers which
are written in python and follow the P4 runtime control
plane specification [14].
No-hop Header. Table 1 illustrates the No-hop header. For
our prototype, we use an ID_SIZE of 6, resulting in 64 differ-
ent 6 bit IDs. The protocol includes messages of type 0 − 3
resulting in a 2 bit message_type field. The message type
0 is for first_contact meaning the packet is entering the
network and has no ID. No-hop assigns a packet with mes-
sage type 0 an ID and forwards it to the corresponding host.
To send a message the message type 1 should be used. The
message types 2 and 3 are failure and join. Following, in

bit<2> bit<ID_SIZE>
Message Type Packet ID

0: first_contact Empty if message type==0
1: look_up 0 < Packet ID ≤ 2𝐼𝐷_𝑆𝐼𝑍𝐸

2: failure ID of failed node
3: join

bit<Group_ID_SIZE>
Group ID

Defines which DHT the packet should be routed to.
Table 1: No-hop Header: ID_SIZE=6 & Group_ID_SIZE=8.

the header is the packet ID field, with a length of ID_SIZE.
Lastly, the group defines to which DHT the ID is in reference.
For more on group IDs refer to Section 3 (Group ID). Note,
in our implementation No-hop is a layer four protocol.
Table Sizes. Both implementations of No-hop have table
entries that contain a Group ID and one ID range. This
results in one Group ID and two IDs (min ID and max
ID) per entry. The implementation tables sizes differenti-
ate because of the number of entries and the result of a match.

𝐺𝑟𝑜𝑢𝑝_𝐼𝐷_𝑠𝑖𝑧𝑒 = ⌈log2 (G) ⌉ (1)
𝐼𝐷_𝑠𝑖𝑧𝑒 = ⌈log2 (H) ⌉ (2)

𝑇𝑆𝑓 = (𝐺 · (𝐷 + 1))︸ ︷︷ ︸
of entries

· (𝐺𝑟𝑜𝑢𝑝_𝐼𝐷_𝑆𝐼𝑍𝐸 + (2 · 𝐼𝐷_𝑆𝐼𝑍𝐸) + 9)︸ ︷︷ ︸
Size of entries

(3)

𝑇𝑆𝑟 = (𝐺 · (𝐻 + 1))︸ ︷︷ ︸
of entries

· (𝐺𝑟𝑜𝑢𝑝_𝐼𝐷_𝑆𝐼𝑍𝐸 + (2 · 𝐼𝐷_𝑆𝐼𝑍𝐸) + 32)︸ ︷︷ ︸
Size of entries

(4)

Where:
𝐺 = amount of groups
𝐻 = max hosts per group
𝐷 = # of neighbors with access to group hosts.

𝑇𝑆𝑓 = No-hop Forward table Size (Bits)
𝑇𝑆𝑟 = No-hop Rewrite table Size (Bits)

In No-hop Forward, all switches run the corresponding P4
code so each switch only needs to know the forwarding rules
to its neighbors. In case of a match, the No-hop Forward
table returns a nine bit port identifier. The resulting table
size can be seen in Equation 3.

Since No-hop Rewrite is designed to require at minimum
one switch to maintain the table, the switch tables must
contain the location of all hosts in all groups. This results
in as many entries as there are group hosts. Additionally,
the reliance of No-hop Rewrite on IP packet forwarding
results in matches returning an IP address (32 bit IPv4). The
resulting table size can be seen in Equation 4.
Fault Tolerance. If a packet arrives at the wrong host be-
cause the host’s ID changed midst routing, this would lead to
a faulted routing. Depending on the use case of No-hop this
fault could be handled differently. If No-hop is used as a clas-
sic DHT and the IDs are to certain data resources, the host

No-hop: In-network Distributed Hash Tables ANCS ’21, December 13–16, 2021, Layfette, IN, USA

S

S

S

S

S

S

S

S

S

Figure 3: 4-ary Fat-Tree Test Topology.
Chord

One Hop

No-hop

0 5 10 15 20

Figure 4: Switch traversals per lookup for first 1000 test packets of
every implementation. No-hop has 3 hops while Chord and OneHop
have on average ≈ 9 and ≈ 6.3 switch traversals, respectively.

would reprocess the packet and send it to the correct host
resulting in a one hop lookup in case of a fault. If No-hop is
used to divide, track and load balance stateless computation
resources, this packet could still be processed by the host
formerly responsible for the ID and the failure would be
treated as a delayed ID change.

5 EVALUATION
The No-hop prototype runs in a mininet network [15] and
uses the Simple Switch GRPC, a version of the BMv2 Sim-
ple Switch [16]. Our tests are conducted in a 64 bit Ubuntu
virtual machine with 2048 MB base memory. The hosts
run our server-client implementation which processes and
sends No-hop, One Hop, and Chord packets. The host pro-
gram is implemented using Scapy [17].
Test Topology. To evaluate our No-hop prototype, we test
No-hop on a tree topologywith 9 switches and 8 hosts. Figure
3 shows the test topology. In No-hop Forward all switches
run the corresponding P4 code while in No-hop Rewrite
only the blue switch runs the corresponding P4 code.
Baselines.To compare No-hop, we implement two baselines,
Chord and One Hop. In our baselines, IPv4 packets are used.
The controller computes the shortest path for all the baseline
packets using the breadth first search algorithm as all links
in our test topologies have equal weight.
Test Packets. We evaluate the benefits of No-hop by com-
paring with the two baselines on two performance met-
rics. These metrics are: (i) number of switch traversals and
(ii) time. Switch traversals can be seen as an indicator of the

Chord One Hop Medians
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ti
m

e
(S

ec
on

ds
)

4.83x

1.68x

No-hop

Figure 5: Box plot graph without outliers for packet lookup time
to responsible host, 1024 packets per data set. Notches depict the
95% confidence intervals. Whiskers are a maximum length of 1.5×
the interquartile range. No-hop shows a 4.83× and 1.68× speedup to
Chord and One Hop respectively.

network resources used by the incoming packet. In both eval-
uations, we send 16 packets of every possible 64 (2𝐼𝐷_𝑆𝐼𝑍𝐸)
packet IDs, resulting in 1024 packets for each system.
Switch Traversal. Figure 4 shows three heatmaps repre-
senting switch traversals. Switch traversals are the number
of times the packet passed through a switch. The closer the
heatmap is to white, the fewer switch traversals occurred.
As can be seen, all packets in No-hop have exactly 3 switch
traversals, this is because the switches in No-hop immedi-
ately route the packet to the correct host, and all hosts are
reachable with three switch traversals. As can be seen some
packets in One Hop and Chord also only take 3 hops, this
is the case when the correct host is chosen randomly by
the client. One Hop follows No-hop in switch traversal per-
formance. The highest amount of switch traversals were
observed in Chord with some packets experiencing greater
than 20 switch traversals.
Performance Evaluation. To test lookup time, we send
the same set of packets with a 10 milliseconds interval be-
tween each. Figure 5 illustrates the results of this test. The
results correspond to the findings of the switch traversals
per lookup in Figure 4. The median lookup time of packets in
No-hop is up to 1.68× faster than One Hop and 4.83× faster
than Chord. We observe performance improvement from
Chord to One Hop because all nodes in One Hop maintain
full routing tables and thus, can fulfill the lookup with one
hop. This comes at the expense of larger tables [2]. No-hop
Forward, however, benefits from an efficient table size while
still improving on the performance of One Hop. To see more
on the difference in table sizes between No-hop Forward
and No-hop Rewrite, refer to Section 4 (Table Sizes).

6 RELATEDWORK
Distributed Hash Tables. Distributed hash tables (DHT)
are often used in distributed file systems [18], especially
peer-to-peer systems. Chord [1] was first introduced in 2001

ANCS ’21, December 13–16, 2021, Layfette, IN, USA Lily Hügerich, Apoorv Shukla, and Georgios Smaragdakis

and is still in use. While Chord has a ring topology, other
DHTs [2, 3, 13, 19–23] can be implemented in a variety of
network topologies, including trees (Tapestry [23]), XOR
(Kademlia [3]), butterfly (Viceroy [21]), and hybrid (Pas-
try [22]) topologies. Some DHTs focus on minimizing the
number of hops and thereby latency [2, 6, 24–26]. Exam-
ples include our second baseline One Hop [2]. This is often
achieved by each node maintaining full routing tables to
minimize the hops [2, 6, 24]. Others use a replication frame-
work additionally to a classic DHT to enable low latencies
[25] or a combination of subdivision and replication within
subdivisions [26]. Still, to the best of our knowledge No-hop
has been the only DHT system to consistently need no hops
in the lookup process.
Distributed File Systems. Distributed file systems (dFT)
are a key component of cloud computing [27, 28]. Amongst
the dFTs that are based on DHT principles is the Amazon
file system Dynamo [6, 7, 29–33]. Dynamo and others can
be seen as a one hop DHT since every node has access to the
locations of all others [6, 7, 24, 29, 30]. These systems’ per-
formance can be improved by incorporating the offloading
of the lookup process to a programmable switch to reduce
further the hops required to locate an ID.
In-network key-value Lookup. Recent work studies in-
network caches that also benefit from an offloaded key-value
lookup system [10, 34–37]. However, the focuses of these
works are different than this of No-hop. Zhu et al. [37] focus
on maintaining consistency at line rate and Liu et al. [35] en-
able in-network computing. The work presented in [34, 36]
focuses on in-network caching. Lastly, the work of Jialin Li
et al. [10] uses programmable switches to load balance and
keep track of replicated items within server racks. This work
requires that the clients know the home server location of
the requested item so it does not form a lookup. No-hop how-
ever is a lookup for multi peer systems in the network data
plane that also has properties which lead to the natural load
balancing across all network resources including network
links. Although these works also benefit from load balancing,
their focus is not on offloading for a DHT.
In-network Applications. The advancement of a custom
data plane facilitated by data plane programming via P4 has
led to new data plane applications. P4xos [38, 39] proposes
moving the Paxos consensus algorithm [40] to the data plane.
One of the P4xos contributions is moving the logic that al-
lows for fault tolerance to the data plane. Other P4-based
in-network applications include load balancers [41], data
center switches [42], network-based, e.g., LPM (longest pre-
fix match) switches [43], multimedia traffic routing based
on RTP (Real-Time Transport Protocol) timestamps [44], au-
tomated troubleshooting have been addressed in the data
plane in [41, 45–52], and network monitoring [53–55].

7 DISCUSSION
Choice of Hash Function. The choice of a hash function is
crucial for all types of DHT implementations. Cryptographic
properties and aspects such as collision resistance [11, 56]
should be considered to identify a suitable hash function.
Testing Limitations. In this paper, we have not exhaus-
tively investigated the use of No-hop in diverse network ar-
chitectures. Our current implementation of No-hop relies on
prior knowledge of the network topology. Additionally, we
have not yet tested No-hop on a hardware implementation.

8 CONCLUSION AND FUTUREWORK
We have presented No-hop that leverages the P4 language
for a data plane implementation of DHTs. No-hopmoves the
lookup to the network data plane and, thus, processes pack-
ets in the fast path of the network data plane via switches
instead of the user space of the hosts. Our experiments show
that No-hop leverages the benefits of DHTs in a centralized
datacenter environment, while outperformingDHTs in terms
of lookup time.
eBPF Implementation and Smart NIC Offloading. In
the future, we plan to implement No-hop in eBPF and XDP.
This would allow a single end user to benefit from No-hop
without prior knowledge of the network [57–59]. Afterwards,
we would look into offloading via Smart NICs [60, 61]. Of-
floading eBPF programs to Smart NICs has already proven
to be beneficial [62]. This will allow us to compare No-hop
at different levels of the lookup process.
Evaluation of Churn Impact. In our future work we also
plan to evaluate the effect of churn on our system. No-hop
like our baselines has the capabilities to handle the rapid
joining and leaving of hosts while routing packets, however
we have neither evaluated the effect of this in relationship
to the lookup time in No-hop nor the baselines.
Hardware Implementation. As a part of our future
agenda, we plan to apply No-hop on commercial-grade P4
programmable switches and networks to report on our ex-
perience. Accordingly, we believe No-hop Rewrite will be
more feasible to implement on hardware as it only requires
one programmable switch. No-hop Forward, however, will
require more hardware resources. Via a hardware imple-
mentation of No-hop, we plan to investigate the benefits of
No-hop in real hardware deployment.

ACKNOWLEDGEMENT
This work and its dissemination efforts are partially sup-
ported by the European Research Council (ERC) Starting
Grant ResolutioNet (ERC-StG-679158) and BMBF BIFOLD
(01IS18025A and 01IS18037A).

No-hop: In-network Distributed Hash Tables ANCS ’21, December 13–16, 2021, Layfette, IN, USA

REFERENCES
[1] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan.

Chord: A scalable peer-to-peer lookup service for internet applications.
In ACM SIGCOMM, 2001.

[2] A. Gupta, B. Liskov, and R. Rodrigues. One Hop Lookups for Peer-to-
peer Overlays. In HotOS, 2003.

[3] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer informa-
tion system based on the xor metric. In IPTPS, 2002.

[4] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin. Consistent Hashing and Random Trees: Distributed Caching
Protocols for Relieving Hot Spots on the World Wide Web. In STOC,
1997.

[5] B. M. Maggs and R. K. Sitaraman. Algorithmic Nuggets in Content
Delivery. ACM CCR, 45(3), 2015.

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s highly available key-value store. In SOSP, 2007.

[7] A. Lakshman and P. Malik. Cassandra: a decentralized structured
storage system. ACM SIGOPS Operating Systems Review, 44(2), 2010.

[8] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker. P4:
Programming Protocol-independent Packet Processors. In ACM CCR,
2014.

[9] P4 Language Consortium. P416 language specs, version 1.1.0, 2018.
[10] J. Li, J. Nelson, E. Michael, X. Jin, and D. R. K. Ports. Pegasus: Tolerating

SkewedWorkloads in Distributed Storage with In-Network Coherence
Directories. In USENIX OSDI, 2020.

[11] P. Rogaway and T. Shrimpton. Cryptographic hash-function basics:
Definitions, implications, and separations for preimage resistance,
second-preimage resistance, and collision resistance. In International
workshop on fast software encryption, 2004.

[12] L. Hügerich. No-hop Software. https://github.com/lilyhuegerich/No-
hop, 2020.

[13] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and
I. Stoica. The impact of DHT routing geometry on resilience and
proximity. In ACM SIGCOMM, 2003.

[14] P4Runtime. https://p4.org/p4-runtime/.
[15] Mininet. http://mininet.org/.
[16] P4 Language Consortium. Simple Switch GRPC. https://github.com/

p4lang/behavioral-model/tree/master/targets/simple_switch_grpc.
[17] Scapy. https://scapy.net/.
[18] C. Wu, V. Sreekanti, and J. M. Hellerstein. Autoscaling Tiered Cloud

Storage in Anna. 12(6), 2019.
[19] C. Plaxton, R. Rajaraman, and A. Richa. Accessing nearby copies of

replicated objects in a distributed environment. SPAA, 1999.
[20] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A

scalable content-addressable network. In ACM SIGCOMM, 2001.
[21] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable and dynamic

emulation of the butterfly. In SOSP, 2002.
[22] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object lo-

cation, and routing for large-scale peer-to-peer systems. InMiddleware,
2001.

[23] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Kubiatowicz.
Tapestry: A resilient global-scale overlay for service deployment. IEEE
JSAC, 2004.

[24] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang, A. Rajendran,
Z. Zhang, and I. Raicu. ZHT: A light-weight reliable persistent dynamic
scalable zero-hop distributed hash table. In ISPDC, 2013.

[25] V. Ramasubramanian and E. G. Sirer. Beehive: O (1) Lookup Perfor-
mance for Power-Law Query Distributions in Peer-to-Peer Overlay.
In NSDI, 2004.

[26] I. Gupta, K. Birman, P. Linga, A. Demers, and R. Van Renesse. Kelips:
Building an efficient and stable p2p dht through increased memory
and background overhead. In IPTPS, 2003.

[27] J. Balasangameshwara and H. L. Chandrakala. Performance-Driven
Load Balancing for Distributed File Systems in Clouds. International
Journal of Computer Applications, 975.

[28] S. Ghemawat, H. Gobioff, and S-T. Leung. The Google file system. In
SOSP, 2003.

[29] Apache Cassandra. Overview. https://cassandra.apache.org/doc/latest/
architecture/overview.html.

[30] L. Monnerat and C. L. Amorim. An effective single-hop distributed
hash table with high lookup performance and low traffic overhead.
Concurrency and Computation: Practice and Experience, 27(7), 2015.

[31] Riak. Riak core. https://github.com/basho/riak_core.
[32] B. Agapiev and I. Agapiev. DHT-based distributed file system for

simultaneous use by millions of frequently disconnected, world-wide
users, 2010. US Patent 7,716,179.

[33] Project Voldemort. Voldemort is a distributed key-value storage system.
http://www.project-voldemort.com/voldemort/.

[34] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica.
Netcache: Balancing key-value stores with fast in-network caching.
In SOSP, 2017.

[35] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy, and K. Atreya.
Incbricks: Toward in-network computation with an in-network cache.
In ASPLOS, 2017.

[36] Z. Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman, X. Jin, and I. Stoica.
Distcache: Provable load balancing for large-scale storage systems
with distributed caching. In FAST, 2019.

[37] H. Zhu, Z. Bai, J. Li, E. Michael, D. Ports, I. Stoica, and X. Jin. Harmonia:
Near-linear scalability for replicated storage with in-network conflict
detection. VLDB, 13(3), 2019.

[38] H. Dang, P. Bressana, H.Wang, K. Lee, N. Zilberman, H.Weatherspoon,
M. Canini, F. Pedone, and R. Soulé. P4xos: Consensus as a network
service. In IEEE/ACM Transactions on Networking, volume 28. IEEE,
2020.

[39] NetPaxos. https://github.com/usi-systems/p4xos-public.
[40] L. Lamport. The part-time parliament. In Concurrency: the Works of

Leslie Lamport, 2019.
[41] P4 Language Consortium. Load Balance. https://github.com/p4lang/

tutorials/tree/master/exercises/load_balance.
[42] switch.p4. https://github.com/p4lang/switch.
[43] P4 Language Consortium. basic. https://github.com/p4lang/tutorials/

tree/master/exercises/basic.
[44] FOX Networks Engineering & Operations Advanced Technology.

Switching media streams based on RTP timestamps in P4. https:
//github.com/FOXNEOAdvancedTechnology/ts_switching_P4, 2016.

[45] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. Silkroad: Making stateful
layer-4 load balancing fast and cheap using switching asics. In ACM
SIGCOMM, 2017.

[46] B. Pit-Claudel, Y. Desmouceaux, P. Pfister, M. Townsley, and T. Clausen.
Stateless load-aware load balancing in p4. In ICNP, 2018.

[47] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford. Hula: Scalable
load balancing using programmable data planes. In ACM SOSR, 2016.

[48] A. Shukla, K. N. Hudemann, A. Hecker, and S. Schmid. Runtime
Verification of P4 Switches with Reinforcement Learning. In ACM
NetAI, 2019.

[49] A. Shukla, S. Fathalli, T. Zinner, A. Hecker, and S. Schmid. P4CONSIST:
Towards Consistent P4 SDNs. In IEEE Journal on Special Areas in
Communication (JSAC)- NetSoft, 2020.

[50] A. Shukla, K. Hudemann, Z. Vági, L. Hügerich, G. Smaragdakis,
A. Hecker, S. Schmid, and A. Feldmann. Fix with P6: Verifying Pro-
grammable Switches at Runtime. In INFOCOM, 2021.

https://github.com/lilyhuegerich/No-hop
https://github.com/lilyhuegerich/No-hop
https://p4.org/p4-runtime/
http://mininet.org/
https://github.com/p4lang/behavioral-model/tree/master/targets/simple_switch_grpc
https://github.com/p4lang/behavioral-model/tree/master/targets/simple_switch_grpc
https://scapy.net/
https://cassandra.apache.org/doc/latest/architecture/overview.html
https://cassandra.apache.org/doc/latest/architecture/overview.html
https://github.com/basho/riak_core
http://www.project-voldemort.com/voldemort/
https://github.com/usi-systems/p4xos-public
https://github.com/p4lang/tutorials/tree/master/exercises/load_balance
https://github.com/p4lang/tutorials/tree/master/exercises/load_balance
https://github.com/p4lang/switch
https://github.com/p4lang/tutorials/tree/master/exercises/basic
https://github.com/p4lang/tutorials/tree/master/exercises/basic
https://github.com/FOXNEOAdvancedTechnology/ts_switching_P4
https://github.com/FOXNEOAdvancedTechnology/ts_switching_P4

ANCS ’21, December 13–16, 2021, Layfette, IN, USA Lily Hügerich, Apoorv Shukla, and Georgios Smaragdakis

[51] A. Shukla, S. Schmid, A. Feldmann, A. Ludwig, S. Dudycz, and
A. Schuetze. Towards transiently secure updates in asynchronous
sdns. In SIGCOMM, 2016.

[52] A. Shukla, S. J. Saidi, S. Stefan, M. Canini, T. Zinner, and A. Feldmann.
Towards Consistent SDNs: A Case for Network State Fuzzing. In IEEE
Transactions on Network and Service Management, 2019.

[53] Int specification. https://github.com/p4lang/p4-applications/blob/
master/docs.

[54] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh,
V. Jeyakumar, and C. Kim. Language-directed hardware design for
network performance monitoring. In ACM SIGCOMM, 2017.

[55] J. Liu, W. Hallahan, C. Schlesinger, M. Sharif, J. Lee, R. Soulé, H. Wang,
C. Caşcaval, N. McKeown, and N. Foster. P4v: Practical Verification
for Programmable Data Planes. In ACM SIGCOMM, 2018.

[56] E. Andreeva, B. Mennink, and B. Preneel. Open problems in hash
function security. In Designs, Codes and Cryptography. Springer, 2015.

[57] M. Fleming. A thorough introduction to eBPF. Linux Weekly News,
2017.

[58] S. McCanne and V. Jacobson. The BSD Packet Filter: A New Archi-
tecture for User-level Packet Capture. In USENIX winter, volume 46,
1993.

[59] N. Van Tu, J-H. Yoo, and J. W-K. Hong. Accelerating Virtual Network
Functions With Fast-Slow Path Architecture Using eXpress Data Path.
IEEE Transactions on Network and Service Management, 17(3), 2020.

[60] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. An-
drewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung, H. K. Chan-
drappa, S. Chaturmohta, M. Humphrey, J. Lavier, N. Lam, F. Liu,
K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel, T. Sapre, M. Shaw,
G. Silva, M. Sivakumar, N. Srivastava, A. Verma, Q. Zuhair, D. Bansal,
D. Burger, K. Vaid, D. A. Maltz, and A. Greenberg. Azure accelerated
networking: Smartnics in the public cloud. In NSDI, 2018.

[61] K. Sabhanatarajan, A. Gordon-Ross, M. Oden, M. Navada, and
A. George. Smart-NICs: Power proxying for reduced power consump-
tion in network edge devices. In IEEE ISVLSI, 2008.

[62] J. Kicinski and N. Viljoen. eBPF Hardware Offload to SmartNICs:
cls_bpf and XDP. In NetDev, 2016.

https://github.com/p4lang/p4-applications/blob/master/docs
https://github.com/p4lang/p4-applications/blob/master/docs

	Abstract
	1 Introduction
	2 Background
	3 No-hop: System Design
	4 Prototype
	5 Evaluation
	6 Related Work
	7 Discussion
	8 Conclusion and Future Work
	References

